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ABSTRACT

Despite many years of study and advanced biological, medical and math-
ematical understanding of diseases together with commitment to child
survival, malaria and persistent infectious diseases of childhood continue
to inflict the developing nations, especially the Sub-Saharan Africa in
large proportions. In 1990 the Kenyan under-five mortality rate was re-
ported as 97 deaths per 1000 live births, but in 2006 it had increased to
121 deaths per 1000 live births. Kenya is thus among the countries with
least progress towards Millennium Development Goal Four (MDG 4) of
32 deaths per 1000 live births in 2015. In malaria endemic places, malaria
co-infections with persistent infections like meningitis, pneumonia and ro-
tavirus are common. Furthermore, these diseases have a high symptom
overlap with malaria thus frequently leading to clinical misdiagnosis and
its associated problems.

The objective of the study was to develop and analyse, using the stabil-
ity concepts of differential equations, deterministic mathematical models
for the co-infection of malaria with meningitis, pneumonia and rotavirus
among Kenyan children under the age of five years. This is because chil-
dren in this age group have not develepad sufficient immunity and are
thus more vulnerable to infection.

The symptom overlap between malaria and these persistent infections,
in resource scarce settings typical of the developing world, is a cause
for concern. This is because in such settings diagnosis is often clinically
done. Our analysis indicate thaf protection against a second infection is
desirable in minimizing the effects of co-infection. Without laboratory di-

agnosis, the presence or absence of a co-infection may not be established
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Chapter 1

Introduction

Infectious diseases continue to cause suffering and mortality in human
population, especially in the developing world, despite significant ad-
vances in medical science. The situation is compounded by the fact
that infectious disease agents adapt and evolye, so that new infectious
diseases have emerged and some existing diseases have re-emerged [25].
About 29,000 children under the age of five die every day, mainly irom
preventable causes. More than 70% of child deaths every year are at- .
tributable to six causes: diarrhoea, malasia, neonatal infection, pneumo-
nia, preterm delivery, or lack of oxygen at birth. Some of the deaths are
caused by diseases such as measles or tetanus while others result indi-
rectly from marginalization, conflict and HIV/AIDS. These deaths occur
mainly in the developing worid. For instance, an Ethiopian child is 30
times more likely to die by his or Ler fifth birthday than a child in Western
Europe. South-central Asia has the highest number of neonatal deaths,
while sub-Saharan Africa has the highest rates of deaths overally in chil-
dren. Millennium Development Goal Four(MDG 4) is to reduce child
mortality by two-thirds, from 93 children of every 1,000 dying before age



(

[MASENO UNIVERSITY|
S.G. S. LIBRARY J

'

five in 1990 to 31 of every 1,000 in 2015 [58]. A good understanding
of the transmission dynamics of infectious diseases can lead to better ap-

proaches in devising prevention and treatment strategies of these diseases.

Mathematical models of the dynamics of diseases can significantly con-
tribute to the understanding of infectious diseases and guide the choice
of intervention measures. Although mathematical modelling dates as far
back as the year 1760, deterministic modelling seems to have begun in
ernest in the 20th century [25|. To date models continue to be developed
and applied to study the dynamics of diseases. For instance mathemat-
ical models have been applied in controlling schistosomiasis, a parasitic
disease that can damagé internal organs and impair cognitive growth and

development in children [23].

1.1 Background of the Study

Humans acquire malaria following infective bites from infected Anopheles
female mosquitoes during blood feeding. Plasmodium falciparum is the
parasite species largely responsible for most human malaria infections
in Africa. Each year 350-500 million cases of malaria occur worldwide,
and over one million people die, most of them young children less than
five years of age in sub-Saharan Africa [64]. In 2002 malaria was the
fourth cause of death in children in developing countries. In Malawi in
2001, malaria was responsible for 22% of all hospital admissions, 26% of
all outpatient visits and 28% of all hospital deaths. In Kenya malaria

accounts for 19% of all hospital admissions, 30% of all outpatient visits,
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with an estimate of 20% of all deaths in children less than five years of
age being attributed to the disease [32].

People living in malaria-endemic areas are frequently exposed to other
diseases such as pneumonia, meningitis, rotavirus and sepsis. Some of
these diseases not only take advantage of the compromised immunity due
to the prolonged malaria exposure, but also have symptom overlap with
malaria. Therefore the diagnostic challenge is that a symptom may be
due to a single infection or co-infection. For example, in malaria-endemic
areas if an acute febrile patient is found to be malaria-positive, malaria
is naturally assumed to be the sole cause of the fever. Failure to diagnose
other co-infections means a delay in the initiation of their therapy and

possibly ensuing sever complications to the patient [24].

Intervention efforts employed in malaria-endemic countries include insecticide-
treated nets (ITNs), intermittent preventive treatment in pregnancy (IPTp)
and infancy (IPTi) and artemisinin-based combination therapy (ACT)
[64]. Research on the effectiveness of these interventions and the poten-
tial confounding effects of severe peadiatric co-infections is still lacking.

In this study, we develop models for malaria in children that enable us

to gain more insights into the epidemiological consequences of the com-
mon co-infections and possible remedial measures. This study focuses on
children under the age of five years because they are most likely to suffer
from the severe effects of malaria with other deadly infections since they

have not developed sufficient naturally acquired immunity [57].



1.1.1 Malaria and Meningitis in Children . _

Meningitis is an inflammation of the membranes (meninges) and cere-
brospinal fluid surrounding the brain and spinal cord, usually due to the
spread of an infection. The symptoms include headache, fever and a stiff
neck. The causative agent may be viral, fungal or bacterial infection.
Bacterial meningitis can be fatal, with complications ranging from brain
related infection or damage (such as deafness, paralysis, seizure and even

mental retardation) to spread of infection through the blood.

In a study carried out in Kenya, 4% of the children admitted in the hos-
pital were found to be infected with both malaria and acute bacterial
meningitis. It was noted in the study that both malarial parasites and
bacteria played a major role in the pathogenesis in the group of children

with high mortality [3].

1.1.2 Malaria and Pneumonia in Children

The term pneumonia refers to any infection of the lung, and may be fatal
since it affects a respiratory organ. The cause of the infection may bhe
viral or bacterial. The viruses which cause pneumonia include influenza
A and B viruses; respiratory syncytial virus (RSV); and haemophiius
parainfluenzae types 1, 2 and 3. The most common cause of bacte-
rial pneumonia is Streptococcusv pneumonige. This form of pneumonia

is characterised by an abrupt onset of illness with shaking chills, fever



and production of a rust-colored sputum. Other bacteria causing pneu-
monia include Haemophilus influenzac type b, group A streptococcus,
and Mycobacterium tuberculosis (TB). Approximately 150 million new
cases of pneumonia occur annually among children younger than 5 years
worldwide, accounting for approximately 10-20 million hospitalizations.
Ninety-five percent of all episodes of clinical pneumonia in young children
worldwide occur in developing countries [49]. Pneumonia accounts for one
fifth of all childhood deaths worldwide, with approximately 2 million chil-
dren dying each year [6].

Malaria and pneumonia are the leading causes of death among children
in malarious countries in sub-Saharan Africa, each contributing 20 — 26%
of the total under-five mortality [26, 30]. A study carried out in Uganda
showed that 27 (19%) out of the 139 children enrolled in an urban hos-
pital were co-infected with both malaria and pneumonia [26]. Another
study carried out in Uganda also showed that out of 2,944 malaria cases
in under-fives at 14 health centres, 37% had pneumonia [30]. The most
common causes of deaths in Kenyan children after the neonatal period
are pneumonia, diarrhoea, measles, malaria, and malnutrition or a com-

bination of these conditions [40].

1.1.3 Malaria and Rotavirus in Children

Rotavirus is a pathogen of the gastrointestinal tract that causes severe

acute gastroenteritis and diarrhosa in infants and young children [62]



Human rotavirus infections are ubiquitous. Some review anéi.lyses show
that rotavirus accounted for 6% of diarrhoea episodes and 20% of deaths
caused by diarrhoea in children less than five years of age in develop-
ing countries [43]. Rotaviruses are shed in high concentrations in stools
of infected children and are transmitted by the faecal-oral route, both
through close person-to-person contact and through fomities such as toys
and countertops. Rotaviruses are also transmitted tlirough other modes,

such as focally-contaminated food, water and respiratory droplets.

In a study carried out in Ghana, it was observed that 11.8% of the 243
children examined were co-infected with Plasmodium falciparum and en-
teropathogens, where rotavirus was also found to be the common en-

teropathogen present in more than half of the patients [46].

1.2 Statement of the problem

The infant mortality in Kenya can largely be attributed to preventable
childhood diseases. Recent reviews show that these diseases often occur
simultaneously, largely because of shared or overlapping risk factors, or
because one disorder increases the risk of the other. Furthermore, pub-
lished models on the dynamics of malaria co-infections with persistent
infections like meningitis, pneumonia and rotavirus are rare and yet these
co-infections are common. Therefore, research on the effectiveness of dis-
ease intervention strategies, especially in the light of malaria co-infections

with persistent peadiatric infections is necessary to help realise the MDG
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4 of 32 deaths per 1000 live births by 2015.

1.3 Objectives of the study

The broad objective of this research was to develop compartmental models
to study the co-dynamics of malaria and persistent paediatric infections
such as meningitis, pneumonia and rotavirus among children under the

age of five years in Kenya.

The specific objectives of this research were:

(i) To describe, formulate ard analyse deterministic models for each of

the co-infections considered.

(ii) To determine whether there is a possibility of a backward bifurcation

in the models formulated

(iif) To evaluate the increase or decrease in the number of malaria co-
infection cases attributed to the persistent infections in children who

live in malaria-endemic regions.

(iv) To propose remedial measures needed to minimize the effects of

co-infection.



1.4 Scope of the Study ;

This study was carried out at Maseno University, Kenya, Africa, and the
information and data about the diseases considered was obtained from
the Ministries of Medical Services and Public Health and relevant bodies

such as UNICEF, WHO.

1.5 Outcomes and research impact

(i) This study results in an improved understanding of the dynamics
and effects of co-infection with malaria and persistent paediatric

diseases.

(ii) The study also gives an insight on possible intervention measures for

minimizing the effects of co-infections.



Chapter 2

Literature review

2.1 Mathematical models for malaria

A number of mathematical models have been developed and analysed to
explain the dynamics of infectious diseases in humans. Many of these
models are described by systems of ordinary differential equations for-
mulated under reasonable assumpticns and parameters. Mathematical
models for malaria infection in humans have also been developed, with
the pioneering work done by Ross [48]. For example, in [35], a malaria
model with partial immunity in‘h'umans is presented. In this work, a
compartmental ordinary differential equations model in which the human
population is subdivided into groups of susceptible, incubating, infective
and recovered individuals while the mosquito population is subdivided
into groups of susceptible, incubating and infective vectors is formulated.
An explicit formula for the basic reproduction number is derived. Exis-
tence of disease-free and endemic equilibria is shown. Using a numerical
example, it is demonstrated that models having the same reproductive

number but different numbers of progession stages can exhibit different



transient transmission dynamics. e

Similarly in [28] a model for the transmission of malaria is presented.
Contrary to [35], the model excludes the incubating stages for both the
human and vector populations. The results of the study suggest that,
if the disease-induced death rate is large enough, there may be endemic
equilibrium when the reproduction number is less than unity and the
model exhibits backward bifurcation and saddle-node bifurcation, which
implies that a reproduction number less than one is not sufficient to erad-
icate malaria. An intra-host model for the dynamics of malaria and the
immune system is developed and analysed in [56]. It is established that
if the basic reproduction number is greater than one, a unique endemic
equilibrium that is globally stable exists and that the parasites persist
at the endemic steady state. The numerical analysis shows that in the

presence of immune response, the endemic equilibrium is unstable.

Human migration and travel also greatly affect the dynamics of infectious
diseases. In [55], a host-vector model for malaria with infective immi-
grants is developed and analysed. The model is shown to exhibit a uni(iue
endemic equilibrium state if the fraction of the infective immigrants is
positive. When this fraction approaches zero, there is a sharp threshold
for which malaria can be reduced. A deterﬁinistic model analysing the
effect of control strategies on the transmission dynaaics of malaria is pre-
sented in [13]. The model theoretically assesses the potential impact of
personal protection, treatment and possible vaccination strategies. The

analysis shows that vaccination and personal protection, as well as treat-

ment meeting certain conditions, can reduce the spread of malaria in a
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community. £

2.2 Mathematical Models for Meningitis

An age-structured model of meningococcal meningitis is formulated and
analysed in [39]. This model considers disease transmission by the normal
infectives and carriers. The reproductive number computed is a sum
of two reproductive numbers corresponding to infections by infectives
and carriers. Stability conditions for equilibria points are derived and
it is shcwn that the disease persists whenever the reproduction number

is greater than one.

2.3 Mathematical Models ‘for Rotavirus

The rotavirus transmission model in [63] observes the levels of cross-
immunity‘necessary to suppress similar strains. The authors address the
issue of heterogeneity among strains of the sarﬁe pathogen by lookingv at
three different models. These are the altered susceptibility, the altered in-
fectivity and the partial immunity models based on Susceptible-Infected-
Recovered (SIR) and Suscept-ible—Infected—Susceptible (SIS) framework,
to propose different interaction meché‘nisms, and examine their conse-
quences in terms of equilibrium results. The study [52] examines the role
of maternal antibodies in age-structured models with and without vacci-
nation. The study delves further into the dynamics of passive immunity,

and consider only one strain of rotavirus. In yet another study, the dy-
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namics of rotavirus infections are studied using a simple mathematical
model that includes the impact of breast feeding, seasonality and the

possibility of control via vaccination [51].

2.4 Malaria co-infection models

A deterministic model of co-infection of HIV and malaria is presented
in [42]. This model was analysed both analytically and numerically.
The analysis shows that the malaria-only-sub-model and HIV-malaria co-
infection model undergo the phenomenon of backward bifurcation, and
the HIV-only model has a globally-asymptotically stable disease free-
equilibrium whenever the reproduction number is less one. The numerical
analysis shows that the two diseases coexist whenever the reproduction
number of each of the two diseases exceed unity and the number of new
cases of malaria at a steady state seems to be higher than those of HIV
at all time. It was also shown that a reduction in sexual activity of in-
dividuals with malaria symptoms results in a decrease in the number of
new cases of HIV and the mixed HIV-malaria infection while increasing

the number of malaria cases [42].

In yet another study [1], a mathematical model to describe the dual
infection of HIV and malaria is developed. From this model, it was estab-
lished that the dual infection of HIV and malaria fuels the spread of both
diseases. The model was applied to a setting in Kisumu, Kenya, with

an adult population of about 200,000 and it was estimated that since
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1980, the interaction was responsible for 8,500 new HIV infégtion cases
and 98,000 excess malaria episodes. The research emphasized the need
for more concerted health services for early and effective treatment and

prevention of malaria in the HIV-infected persons.

The analysis of the mathematical model exploring malaria and tuber-
culosis co-dynamics shows that there is a synergistic relation between the
diseases [50]. In [34], a mathematical model for malaria and meningitis
co-infection among children under five years of age is developed and anal-
ysed. The analysis shows that the disease-free equilibrium of the model
may not be globally asymptotically stable whenever the basic reproduc-
- tion number is less than unity. The Centre Manifold theorem is used
to show that the model has a unique endemic equilibrium which is lo-
cally asymptotically stable when the basic reproduction number is less
than unity and unstable otherwise. The authors deduce further that a
reduction in malaria infection cases either through protection or prompt
effective treatment, which is dependent on the socio-economic status of a

community, would reduce the number of new co-infection cases.
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Chapter 3

Modelling the dynamics of
Malaria-Meningitis

Co-infection among children

A study carried out in Kenya showed that 4% of the children admitted in
the hospital were infected with both malaria and acute bacterial menin-
gitis. The study noted that co-infection played a major role in the group
of children with high mortality [3]. We present an overview of meningitis
and thereafter develop a mathematical model to study the dynamics of

malaria-meningitis co-infection.

3.1 Overview of Meningitis
Meningitis is an infectious disease characterized by inflammation of the

meninges (the tissues that surround the brain or spinal cord), usﬁally due

to the spread of an infection into the cerebral spinal fluid (CSF). The
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cause of the infection may be bacterial, viral, fungal or para;éitic. Some
of the risk factors for the disease are a compromised immune system due
to illness, such as HIV/AIDS or use of immunosuppressant drugs. The
symptoms of meningitis inciude neck and/or back pain, headache, high
fever and a stiff neck. These symptoms can develop over several hours,
or they may take 1 to 2 days. Bacterial meningitis may cause acute or
chronic brain injury leading to death or disability (such as deafness, paral-
ysis, seizure and even mental retardation) [53]. The seasonal outbreak of
meningitis in the African meningitis belt, a band of sub-Saharan Africa,
usually results into a high disease mortality and morbidity [29]. An out-
break in 1996-1997 claimed more than 25,000 lives, with about 250,000
cases of illness across ten countries. However, in 2008 there were only

27,000 cases across the entire belt [47].

Eerly diagnosis, though challenging, axd medication of cases of acute bac-
terial meningitis leads to a reduction in death and neurologic sequelae.
The challenge in the clinical diagnosis is greater in malaria endemic ar-
eas. For example, &t a tertiary centre in Malawi, meningitis was included
in the admission differential diagnosis in only 42% of the subsequently
proven bacterial meningitis cases, most having been initially thought to
be malaria [41]. Similarly, a study carried out at a Kenyan district hospi-
tal found out that clinicians correctly included a diagnosis of meningitis
at the initial clinical assessment in only 30% of admissions for whom a

finai diagnosis of meningitis was confirmed [18].
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3.2 Model Description and Formulation

To study the dynamics of malaria-meningitis co-infection we formulate a
model in which the total human population at any time ¢, denoted Ny
is subdivided into subpopulations of susceptible humans (Sg), those ex-
pose{x o malaria parasites only (F;), individuals infected with malaria
(1), those infected with meningitis (I3), individuals exposed to malaria
and infected with meningitis (Ej2) and individuals infected with both
malaria and meningitis (I;). The total vector population at any time t,
denoted N, is subdivided into subpopulation of susceptible (S,), exposed

(Ey) and ihfectious (I,). This means that

Ng=Syg+E,+L+ I+ Ej s+ 1, (321)

and

N, =S, +E,+ 1, (3.2.2)

The rates of infection of susceptible humans with malaria and meningi-
tis are Apme and A,. respectively, while that of susceptible vectors with
mazlaria is \,. Let ¢ and v be malaria and meningitis induced mortal-
ity in humans respectively, and suppose that py and p, are per capita
natural death ratés of the human and mosquito populations respectively.
The constant per capita recruitment rate into the susceptible human and
vector populations are Ay and A, respectively. The rates at which ex-
posed human and vector populations develop malaria clinical symptoms
are oy and o, respectively, while the rate at which humans progress ficin
the Ey5 class to the I, class is eoy, where € is a modification parameter

representing the assumption that meningitis infected individuals exposed
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to malaria develop malaria symptoms «t a faster rate than those who are
not infected with meningitis. Define ¢; as the rate at which individuals
infected with malaria recover, ¢, as the recovery rate from meningitis and
¢3 as the recovery rate from both infections. The recovered individuals
do not acquire temporary immunity to either or both diseases and thus

become susceptible again.

We assume that infection with meningitis when one is exposed to malaria
takes place at an advanced stage of this exposure. The parameter 6 ac-
counts for the increased susceptibility to infection with meningitis for
individuals infected with malaria, while the parameter p accounts for
the decreased susceptibility to infection with malaria for individuals in-
fected with meningitis because of decreased contact due to ill health. The
individuals displaying symptoms of both malaria and meningitis suffer
malaria-induced mortality at the rate ¥, where the parameter ¥ ac-
counts for the assumed increase in malaria-related mortality due to the
dual infection with meningitis and alsc suffer meningitis-induced mor-
tality at the rate 77y, where the parameter 7 accounts for the assumed
increase in meningitis-related mortality due to the dual infection with
malaria. Let o denote the number of bites per human per mosquito (bit-
ing rate of mosquitoes), By, as the transmission probability of malaria in
humans per bite, 8, as the transmission probability of malaria in vectors
from any infected human, § as the effective contact rate for infection with
meningitis.

This yields

17



- ofml,
Ama = N (3.2.3)
2 = 2Bl £ 010 (3.2.4)
Ny
;M ,3(12 Fullg + K'Ic) , (325)
Ny

where & and s model the relative infectiousness of the co-infected indi-

vidual as compared to their counterparts.

From the above definitions and variables we have the following model

dSy
dt

dE;
4t
dl;

a
dl,

- Ad = AnaSH — AmeSu + 015y + 63 + ¢3l, — puSu,

AmaSH — Ame By — ogEy — pu By,

- ogBy — 0Amely — Y1, — 610y — pyl,

AmeSH = PAmalz — ¢2l. — 712 — puls,

PAmala + Ane By — (€0 + v + pun) Ere, (3.2.6)
€01 Brg + 0Amely — (B3 + 0 + 177 + pr)le,

Ay — ASy — 1Sy,

AvSy = ayEy — l‘va

= oyEy — pyl,.
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3.3 Positivity of Solutions e

Model (3.2.6) describes the human and mosquito populations and there-
fore we show that the associated state variables are non-negative for all
time ¢ > 0 and that the solutions of the model (3.2.6) with positive ini-
tial data remain positive for all time ¢t > 0. We assume the associated

parameters as non-negative for ell time ¢ > 0.

Lemma 3.1. Lei the initial data be {(Sy(0), S,(0) > 0), (E1(0), [1(0),
I;(0), E12(0), I(0), E,(0), I,(G)) > 0} € . Then the solution set {Sy, E,
L, Iy, Ers, I, Sy, Ey, I, }(t) is positive for all t > 0.

Proof. Considering the first equation in (3.2.6) i.e

dSu

=g =03 At = MaSt — MneSu + ¢1 1y + ¢2Ip + ¢sl. — puS,

This equation may be transformed into an equality by dropping the pos-
itive terms on the right hand side. Thus

dS | o

/_dSH 2 —/(A”';G+A7ne+/lH)dt
( ) 2 SH(O)e_(f(Ama+Ame)dt+th) Z 0

v

Similarly from the second equation in (3.2.6) i.e

dE,

—E = AMSH_)‘YTLCEI —G'HEl _IJ'HEI)

19
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we have , ‘e

dE
d_tl 2 —()\me+aH+HH)E1
1
/E_ldEl > - /()\me + o + pu)dt
El(t) Z El(O)C_(f('\'"E+‘7H+#H)t Z O

We can proceed in a similar manner and show that all the state variables

are positive for all time {. O

3.4 Boundedness of solutions

We show that all feasible solutions are uniformly-bounded in a proper

subset ¥ = Uy x U,

Lemma 3.2. Solutions of the model (3.2.6) are contained in the region

\I"—'q’HX\I’.U.

Proof. To show that all feasible solutions are uniformly-bounded in a
proper subset ¥, we split the model (3.2.6) into the human component
(Ng) and the mosquito component (N,), given by equations (3.2.1) and
(3.2.2) respectively.

Let

(Su, By, I, I, Eyp, I) € RS,

be any solution with non-negative initiai conditions. From a theorem on

differential inequality in [4] it follows that

limsup Sg(t) < —Aﬂ
t—oo HH

20
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Taking the time derivative of Ny along a solution path of the model
(3.2.6) gives '

dN,
d_tH = AH — MHNH - ’l,bI1 - 'YI2 - (ﬁw +777)Ic
Then,
dNyg
— il i -
5 < Aw —paNg

From the theorem in [4] on differential inequality it follows that

0< Ny < -A'E + NH(O)G—“Ht
bu

where Ng(0) represents the value of (3.2.1) evaluated at the initial values

of the respective variables. Thus as t — oo, we have

0< Ny < ’—E (3.4.1)

This shows that Ny is bounded and all the feasible solutions of the human-
only component of model (3.2.6) starting in the region ¥4 approach, enter

or stay in the regioii, where

, A
\IIH = {(SH!EhIl)IZ: E12, Ic) : NH S /Jl—:

Similarly,let ’
(S E.,, I,) eR}

21
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be any solution with non-negative initial conditions. Then

Ay
limsup S,(t) < =

t—ro0 v

Taking the time derivative of IV, along a solution path of the model (3.2.6)

gives
dN v
dt

= Ay — Ny

The mosquito-only component (3.2.2) has a varying population size.

Therefore,
dNn,
dt

< Av & F'vN v
From the theorem in [4] on differential inequality it follows that

A,

0.<_Nv$_
Fo

+ N, (0)e M

where N, (0) represents the value cf (3.2.2) evaluated at the initial values

of the respective variables. Thus as t — oo, we have

o<nN, <X (3.42)
Ho

This shows thst N, is bounded and all the feasible solutions of the
mosquito-only component of model (3.2.5) starting in the region ¥, ap-

proach, enter or stay in the region, where
‘I’u = {(Sv, Equ) : Nv < %:"}

Thus it follows from (3.4.1) and (3.4.2) that Ny and N, are bounded and
all the possible solutions of the model starting in ¥ will approach, enter

22



or stay in the region ¥ = ¥y x ¥, Vt > 0. a

Thus V is positively invariant under ilie flow induced by (3.2.6). Exis-
tence, uniqueness and continuation results also hold for the model (3.2.6)
in U. Hence model (3.2.6) is well-posed mathematically and epidemiolog-

ically and it is sufficient to consider its solutions in V.

3.5 Equilibrium States of the model

The equilibrium points of the model (3.2.6) are obtained by setting the left
hand side 6f the model to zero and solving simultaneously, giving rise to
two possible equilibrinm points namely: the disease-free and the endemic
equilibrium points. We assume there is no trivial equilibrium point since

there is constant recruitment into human and vector populations.

3.5.1 Disease-free equilibrium point of the model

In the absence of infection by either or both diseases, the model (3.2.6),
has a steady-state solution called the disease-free equilibrium (DFE) de-
noted by E°. We define the “diseased” classes as the human or mosquito
populations that are either exposed or inféctious. Define the positive

orthant in R® by RS and the boundary of RS by ORY.

Lemma 3.3. For all.equz’lz'bm'um poinis on W N BRi, Ei=1 =1 =

Eu=I.=E,=1,=0
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The positive DFE for human and mosquito populations fo[r_vthe model

(3.2.6) are

A
NH=§-’1 and N, = —2.
HH Mo

Lemma 3.4. The model (8.2.6) has exactly one DFE,
E° = (8£,0,0,0,0,0, 5*,0,0)

,P'ti’

(3.5.1)

Proof. The proof of the lemma requires that we show that DFE is the
only equilibrium point of (3.2.6) on ¥NARY.. Substituting E° into (3.2.6)
shows all derivatives equal to zero, heace DFE is an equilibrium point.
From Lemma 3.3, the only equilibrium point for Ny is %g- and the only
equihbriufn point for N, is %: Thus the only equilibrium point for ¥ N
R’ is the DFE. ' ' O

3.6 The Basic Reproduction number R

The global dynamics of the model (3.2.9) is highly dependent on an impor-
tant epidemiological parameter called the basic reproduction number Ry.
It is defined as the average number of secondary infections an infectious
individual would cause over his infectious period in an entirely susceptible
population. We specifically define the basic reproduction number, R,,,, as
the number of secondary malaria (or meningitis) infections due to a single
malaria (or a single meningitis-infective) individual. When R, < 1, it
means an infectious individual is causing, on average, less than one new
infection and thus the disease does not invade the population. On the
other hand, when R,,,, > 1, then an infectious individual is causing, on

average, more than one new infection and thus the disease invades and
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persist in the population. We determine R, using the next. generation
operator approach in [15, 59]. To employ this method, we rewrite (3.2.6)
beginning with the infected classes Ey, I1, Iz, E1g, Ic, &y, I, followed by the
uninfected classes Sy, S,. This yields

dB, Bmly o Bl + Ei2 + KIc)E

& - TNy H Ny 1 = ogbh = pr b,
dI Io+ Eg + &1,
-1 = UHEl_gﬂ( 2 - )11—¢11—¢111—HH11a
dt NH
dl. Io+ Eyo + kI, 5o e
Td_t% = By NI; )SH =g ﬁH Iy — ¢oly — yIy — gy,
dE afm1, Iy + B9+ kI,
dtu = p ?VH Iz‘f A, Nllj )El — (eog + v+ pu)Ens,
dIc I + E y + mlﬂ \
r 6UHE'lz'*'eﬁ( 2 Nij )11 — (¢ + 9+ ny+ pw)le,
dE, _ of,(L+6L) \
- | = No Sy — 0By — uEy,
dl,
% = oyEy — poly.
dSH _ aﬂmI., ,B(Iz + E12 + RIC)
dt An Ny Su Ny o
+é1 11 + ¢ola + ¢3l. — i SH,
is, afy(Iy +61,)
B - BT Ny

(3.6.1)

Define F; as the rate of appearance of new infections in the class or
compartment ¢ and V; = V; -V, where V; is the rate of transfer of indi-

viduals out of compartment i, and V;" is the rate of transfer of individuals

into compartment ¢ by all other means. Therefore
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and

The Jacobian of F; at the disease-free equilibrium is denoted F', and

afmly B(I2+E12+kIc)
PNy I, + Nu E;

(9BUztEr2trle) ’2*’]51;4"‘[‘ + ¥ +é1+pa)L —onEy

(p2Bele + ¢+ 7 + ) T2
(o + v+ pr)Erz
(@5 + F9 + 07 + pu)l. — eonErg
(0w + 1) Ey
poly — 0y By

is given by

(o

o o © o o o

0 0 0 0 Oaﬁm\
0 0 0 0 0 0
0 B B Bk 0 0
0 0 0 0 0 0
0 c 0 0 0 0
0 0 0 0 0 0 )

fosn )

0

Io+Ei2+klc
Ny SH

Io+E T,
9@.(%211

H

aby(l1+éle) o

Ny v
L /

(ES-—-)-I”I?,?“I“ +og+py)Ey
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Similarly, the Jacobian of V; at the disease-free equilibrium. is denoted

V, and is given by

( hp 0 O 0 0
—owg hy O 0 0

0 0 hs O 0
0

o o O Q@ O
o o o o o©o

0

0 —eoyg hs

0 0 0 he O
0 0 0 -0y )

0 0
0 O
0 0
0 0

\

where hy = og+pn, b = V+@1+um, ha = do+y+1m, ha = eog+y+pm
hs = ¢3 + 9 +ny + pu and hg = 0y + .

The basic reproduction number R, is by definition [15] the spectral
radius of the matrix FV~!. The eigenvalues of the matrix F'V ! are

: O - | o2BmBuog vty A
0,0,0,0, $at+v+um and + \/AFM?,(GH+MH)(’~'--+Mu)(¢1+¢+#H)'

Therefore Ry is given by

o azﬁmﬂpd Ha"vN'HAlv B
il maX{\/AHuﬁ(aH T um)ow + i)+ B ) ot

(3.6.2)

¢ : — azgm.@uaHle‘HAv
Denoting Rimq = \/AH#?; (o +um)(ov+p) (1 +Y+um)

and Rme = g,
we have R, = max{Rma, Rme}-
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Roe is a measure of the average number of secondary malaria’infections

in human or mosquito population caused by a single infective human or
mosquito introduced into an entirely susceptible population. R, can be

expressed as

Rme = V' Rmp X Rmy

where
a,BvaHN'HAv
= 3.6.3
Bt = N imlom + pE)s + 9 £ i) (363)
and
Ry = — Lm0 (3.6.4)
v Eo(0y + o) o

The equation (3.6.3) represents the total number of malaria infections in
mosquitoes caused by a single infected human. It is directly proportional
to the biting rate «, the probability of survival till infectious stage for hu-

1
G1+Y+um On
the other hand (3.6.4) represents the total number of secondary malaria

mans —%Z— and the mean time spent in the infective class
HYUH

infections in humans caused by one infected mosquito. This number is

highly dependent on the mosquito biting rate o and the probability of

moesquito survival till the infectious stage ﬁjy—”

Remark 3.5. From (3.6.4), it is evideut that strategies for the reduction
of malaria infections in humans should target reduction of the mosquito
biting rate a through protection such as the use of insecticide treated nets.
Methods that aim at vector elimination ur reduction such as draining stag-
nant water breeding grounds aﬁd spraying would reduce the probability
of mosquito survival till the infectious stage and thus reduce malaria in-

fections in humans.
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Simuilarly, R, is a measure of the average number of secondary menin-
gitis infections in humans caused by a single infective human introduced
into an entirely susceptible population. The following lemma follows from

Theorem 2 of [59].

Corollary 3.6. The disease-free equilibrium E° of the model (3.2.6) is

locally asymptotically stable whenever R,,,, < 1 and unstable when R, >

1

3.7 Global stability of the disease-free equi-
librium
The global asymptoiic stabiiity (GAS) of the disease-free state of the

model is investigated using tke theorem Ly Castillo-Chavez et.al [10]. We

rewrite the model as

dX
W - H(X’Z)’ ‘ )
%% = Q(X,2),G(X,0)=0 (3.7.1)

where X = (Sg, S,) and Z = (El,Il,Ig,Eu',Ic,E,,,Iv), with the compo-
nents of X € R? denoting the uninfected population and the components
of Z € R7 denoting the infected population.

The disease-fiee equilibrium is now denoted as

' A A
E° = (X*0),X*= (=2 v 7
(X*,0) (NH p (3.7.2)
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The conditions in (3.7.3) must be met to guarantee a local asymptotic
stability: |

% = H(X,0),X"* is globally asymptotically stable (GAS)
G(X,2) = PZ-G(X,2),G(X,Z)>0for(X,2) € Q (3.7.3)

where P = D,G(X*,0) is an M-matrix (the off-diagonal elements of P
are non-negative) and  is the region where the model makes biological

sense. If the system (3.7.1) satisfies the conditions of (3.7.3) then the
“ theorem below holds.

Thecrem 3.7. The fized point E* = (X*,0) is a globally asymptotically
stable equilibrium of sysiem (3.7.1) provided that Ry, < 1 and the as-

sumptions in (8.7.3) are satisfied.

Proof. From the model system (3.2.6) and (3.7.1), we have

: Ag — ugS
H(X,O)::- H — MHPH
Av"‘llﬂvsu :

G(X,2)=PZ - G(X,2)



where -
(Zhe 0 0 0 0 0 abm \
o —hy 0 0 O 0 0
0 0 hg B Bk 0 0
P=| 0 0 0 —h 0O 0 0
0 0 0 ey —hp O 0
0 a8, 0 0 aByd —hy O
\ 0 0 0 0 0 o -m)
and
(Gx.2)\ [ epul(i- S) 4 Ame B )
Gi2(X,2) OAmeln
Gs(X, Z) Pmaly + LIz + By + £1)(1 — $2)
G(X,2)=| Gux.,2) | = —(AmeBr + pPAmal2)
Gs(X, 2) —0Amey
Ge(X, 2) ofy(I +81)(1 — £)
\ Gix.2) )\ 0 )

where hg = on + pu, b1 = ¥+ ¢1 + pm, hs = B — (¢2 + 7 + pa),
hg = cog +v + pr, hio = g3+ 9P + v+ pg and hyy = 0y + .

Gu(X,Z) <0, Gs(X, Z) < 0 and so the conditions in (3.7.3) are not met
so E° may not be globally asymptotically stable when R, < 1. O

~ This implies that there is the possibility of future disease outbreaks
when the conditions favouring the outbreaks are prevailing. During such

outbreaks individuals tend to take protective measures against infection.
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We thus investigate the dynamics of (3.2.6) by considering, in turns, two

scenarios of maximum protection.

Case I: Maximum protection against malaria

Suppose individuals are fully protected against infective mosquito
bites during a malaria outbreak, i.e @ = 0 , theu there would be no
new malaria infections. In this case, the basic reproduction number of

the model (3.2.6) would be given by Ry, = Rme and the matrix G (X,2)

would become

(ax2)\ | doncEy )
Ga(X, Z) OAmel
Gs(X, 2) B+ Big + KL)(1 — ££)
GX,2)=| GuX,2) | = “AmeEy
Gs(X, Z) el
Ge(X, 2) _ 0
\ G(x.2) |\ 0 )

Once again we note that G4(X, Z) < 0, G5(X, Z) < 0 and so the disease-
free equilibrium is not globally stable. However, due to the fast dynamics
of meningitis, with an incubation period ranging between hours and two
days compared to about 14 days for malaria [53], we may overlook the
term ApeE;. TLis is because malaria exposed individuals may not sub-
stantially influence the dynamics‘ of the co-infection. Global stability can

then be achieved if individuals already iniected with malaria are protected
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against infection with meningitis. For children, this protection could be

realised in the form of childhood immunizations against meningitis.

Case II: Maximum protection against meningitis
If on the other hand individuals take fully protective measures against
meningitis during an outbreak so that there are no new meningitis in-
fections, then 8 = 0. Consequently only 54(X, Z) = —pAmala < 0. To
achieve global stability for the disease-free equilibrium of the co-infection
we would need to protect meuingitis infecéed individuals against malaria

infection.

We thus observe that protection against cnly ore infection may not
yield much during an outbreak of one dicease where the other is endemic.
It would be helpful, especially for diseases with symptom overlap, to
conduct laboratory tests to confirm or rule out co-infection with a view

to initiating correct and timely prophylaxis.

3.8 Backward‘bifurcat.ion and Local stabil-

ity of the Endemic equilibrium

A bifurcation point is a point in parameter space where the number of
equilibrium points, or their stability properties, or both, change. As noted
earlier, an infectious disease doesl not invade a population of susceptibles
when the basic reproduction number is less than unity. However, when

the basic reproduction number is greater than unity, then the invasion
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occurs. The occurrence of backward bifurcation then implieé:tha.t the
endemic equilibrium does exist even if the basic reproduction number is
less than unity. The epidemiological implication of backward bifurcation
is that reducing the basic reproduction number to less than unity is not
sufficient to control an epidemic.

When the basic reproduction number is unity each infectious individuai
causes one new infection. From [17], therefore, whether a disease invades
with the basic reproduction number equal to unity will be determined
by whether the basic reproduction number increases or decreases as the
disease increases along the centre manifold. When backward bifurcation
oceurs, the diseases-free equilibrium may not be globally asymptotically
stable even if the basic reproduction number is less than unity and thus
a stable endemic state co-exists with the diseases-free equilibrium. We

employ the theorem by [8, 9] to investigate the possible occurrence of

backward bifurcation.

For purpose of convenience, we reproduce the theorem below.

Theorem 3.8. Castillo-Chavez and Song [9]

Consider the following general system of ordinary differential equations

with & parameter ¢

dz

= =f(@,9), f:K'xR->R" and f € CA(R" xR)

where 0 is an equilibrium point of the system (i.e.f(0,¢) = 0 for all ¢)

and

1 A_= D,f{0,0) = (%(0, 0)) 1s the linearization matriz of the sysien

around the equilibrium point 0 with ¢ evaluated at 0;
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2. Zero is a simple eigenvalue of A and all other eigenvalues of A have

-niegative real parts;

8. Matriz A has e right 2igenvector w and a left eigenvector v corre-

sponding to the zero ez'gen'ualue.

Let fr, be the kth component of f and

_ ¥ Pl 00
a= 3 vkw;wjm;(o, ),

ky,j=1

- 0> f
b = ka’l_iim(o,())

k,i=1

then the local dynamics of the system around the equilibrium point 0 is

totaily determined by the signs of a and b. Particularly,

(i)ba >9, b >0, when 8% <0 with {2:| < 1, (C,9) s locally asymptot-
ically stable and there exists a positive unstable equilibrium; when
0< B, <1, (0,0) is unstable and ihere exists a negative and locally

asymptotically stable equilibrium.

(it) a < 0, b < 0, when B < 0 with |8%] < 1, (0,0) is unstable;
when 0 < B, < 1, (0,0) is asymptotically stable and there erists a

positive unstable equilibrium.

(i) a > 0, b < 0, when B, < 0 with |8%] < 1, (0,0) is unstable, and
there exists a negative and locally asymptotically stable equilibrium;

when 0 < f;, < 1, (0,0) is stable and there ezists a positive unstable

equslibrium.
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\
(iv) a < 0, b > 0, when B}, changes from negative to positive, (0,0)
changes its stability from stable to unstable. Correspbndz’ngly a neg-

ative equilibrium becomes positive and locally asymptotically stable.

Particularly, if a > 0 and b > 0, then ¢ backward bifurcation occurs at

gt =0.

To apply this theorem we make the following change of variables.
Let Sy = xy, By = 29, 11 = z3, I = 74, B3 = 75, [13 = 16, Sy = 27, By =
zg, I, = zg so that Ny = 1+ 2o+ 23+ x4+ 25+ 26 and N, = 27+ x5+ Tg.
The model (3.2.6) can be rewritten in the form ¢ = F(z) where X =

(21,9, T3, T4, T5, T6, 1, T, Tg) and F = (f1, f2, f3, fa, f5, fo: [1, fa: fo) as

d;ti = fi=Ag— A oT1— A, Z1 + 173 + Paxys + P3Te — puTy,
%;_2. = fo= A5 — N 22 — (05 + pE)Ts,

i;tﬁ = fo= ouwy— 00, @8 — (0 + b1 + par)a,

%4_ =" fi= X m - PrmaTs — (P2 + 7 + pr)Ta,

d_daiti = fo=pAeaTa+ A5 T2 — (evr + v + prr)Ts, (3.8.1)
ﬂdftﬁ = fo=eonxs + 07, x5 — (63 + Y + 17 + pr)zs,

% = fr= Ay — (XS + po)ar,

.‘%fi = fos = Nxr = (0y + po)Ts,

dxg

= = fe=0vTs — s

Wher_e Ae, = 2Bmzs o &ﬁvgﬂl—;?ghs_) and X, = ﬂﬂ:€4+§i+m6}'

c
NH H

The jacobian of (3.8.1) at the DFE E° is given by
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(0 b —Bids —B —Pr+ay

0 0

0 -K; 0 0 0 0 0 0

0 ong —Ks 0 0 0 0 0

0 0 0 K3 B Bk 0 0

J(E°)= 0 0 0 0 ~Ky 0 0 0
0 0 0 0 €E0H —Ks 0 0

0 0 —oBup 0 0 —adBp —pw O

0 0 0 aByp 0 0 adfyp 0

\ 0 0 0 0 0 0 0 oy

where K1 = oy + pz, Ko = ¥ + ¢y + pg, Ks = B — ($2 + v+ pr),
Ky=eog+v+pn, Ks = g3+ +ny+ g, Ko = 0y +p, and p = 42ls,

To analyze the dynamics of (3.8.1), we compute the eigenvectors of its

jacobian at the DFE.

This jacobian has a right eigenvector denoted by
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T . -
W= (’whwz,'wa,wuws,ws,whws,wg) and is given by

hrws — aBmwe

T BH
- ofmwe
W = —
Ki
W = Ot‘B 'm0 H'W9
’ K\ K,
wg = 0
Wy = 0
We = G
—aﬂva 3
Wy = ==———
Hy
W HoWy
8 —_Uu
wyg = Wy

A ) iy
The left eigenvector is defined by V = (vy, vq, V3, V4, Us, V6, V7, Vg, Vo)
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and is given by <
m = 0
i o THU3
V3 = Vs
Ve = — 0B Bupo V3
‘ K1K3Ks
,31)4 + €0fyVg
W= TR
_ Brug — adBypur
Vg = K5
v = az‘sﬂmﬁvpali VU3
Ly K1Ke
afmorv3
Vg = s==————
K1 Kg
Vg = 0

Consider the case when R,,,, = 1 (assuming that R, < Rn,) and
choose B, = By, as a bifurcation parameter. Solving for £, from R, =
R, = 1 gives

B =B = Az:!iﬁ(vﬂ + ug)(oy + po) (W + é1 + pr)
- m a?Byopoyur Ay

(3.8.2)

We next evaluate the associated non-vanishing second order partial deriva-

tives of f so as to obtain a and b. At the DFE, these are given by

a = wa,w,a - (0 0)

kyi,j=2 .

b = Zukw,aaafﬂ* (0,0)

k,i=2




since v; = vg = 0.

L2

The functions that yield non-vanishing second order partial derivatives

are
afnTs T4+ Ts + KT
fa = f\ff, T — Alas Ni 6) — (o + pu)z2
o T T4+ T+ KT
_ M?(Nf{—xz—xs—m——%—xs)—ﬁ#H(4 5 6)$2_
Ay Ag
(om + pu)z2
af,(z3 + 0z
f7 = Au "ﬂv( 13Vc 6) llm.’L‘7
)
= a, - SLpnletiner_

These derivatives are

3%f, ___8%f 3f, _ 8 4L - Of

Oz20z9 ~  Ox90z2’ Oz38z9 ~ Oxgldz3’ dz30z7 ~  Oz70z3

where

.ifz_ _%ﬁﬂ. _L___am a’ndizf_

31233;9 = H ’ 8230.7:9 - A quam AH

) '
a= A”H (vawawoearBm + VewsweaBm + ViwswraBy) (3.8.3)
H

For b, the derivatives are 5}9% = axg, a—ﬂT% a. Thus

b = vqwgar > 0. (3.8.4)
Thus, piovided (3.8.3) and (3.8.4) hold, we have established the following

theorem

Theorem 3.9. The unique endemic equilibrium of the model (3.2.6) is
locally asymptotically stable when R,,.. < 1 and unstable when Kpm >

1. Furthermore, by Theorem 2.8, item (i), the model would undergo
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backward bifurcation when a > 0. This would be the case if |vywswrof,| >

(vowawya B, + VowsweaBm).

Tiv

. #%KngKa

o*B3 R,o% 0p*wivs

|vrwswr By (3.8.5)

From (3.8.5) it is evident that the occurrence of backward bifurcation
is favoured by a high mosquito biting rate, high probabilities of trans-
mission of malaria in both human and vectors and a high probability of
survival till the infectious stage. The latter is proportional to the rate of
progression from the exposed class to the infectious class. An individual
with a low level of immunity would progress to the infectious class faster.
Therefore efforts to control malaria infections among children must ad-
dress issues affecting immunity such as breastfeeding and nutrition among

other things.

3.9 Numerical simulations

To illustrate some of the theoretical results arrived at, simulations of the
model (3.2.6) are done using Maslab. Since the study targeted children
under the age of five years in Kenya, some of the parameters values used
in the simulation are specific to this age while others are allowed to vary
withia realistic limits. Table 1 below summarizes the parameter values

used i the simulations.



symbol

Parameter Value . Source
Recrnitment rate of humans Ay 9.6274 x 1075 day* [11]
Recruitment rate of mosquitoes A,  0.07lday™ [21]
Natural death rate of children pg  2.537 x 1075 day™! [11]
Natural death rate of mosquitoes ~ u,  0.1429day™ [12]
Malaria-induced death rate P 4.49312 x 10~*day™* [19]
Meningitis-induced death rate 6.8445 x 10~*day™! [20]
Transmission probabiiity Br  0.8333day’ (12]
for malaria in humans

Transmission probability By Variableday ™! Variable
for malaria 1n mosquitoes

Contact rate for B Variable day™! Variable
meningitis infection

Biting rate of mosquitoes a  (0.125,1)day™" [22]
Modification parameters 0,k 1.0005,1.05 Assumed
Modification parameters & p,d 1.0025,1.0025,0.80 Assumed
Modification parameters n, v 1.0005, 1.00025 Assumed
Recovery rate from malaria é1 0.00556 | [16]
Recovery rate from meningitis 2 0.00065 Estimate
Recovery rate from co-infeciion 3 0.00075 Estimate
Rate at which humans exposed to oy 0.08333 [12]
malaria develop symptoms

Rate at which vectors exposed to Oy 0.1 [12]

maiaria develop symptoms

Tablel: Parameter Values
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3.10 Discussion

In the absence of good nutrition, sanitation and affordable health care,
preventable infectious diseases such as malaria and meningitis continue
to thirive. These diseases are not only & threat to child survival but also
the acsociated economic burden is a major hindrance to poverty reduc-
tion. The applicability or importance oi an epidemiological model lies in
its ability to provide biologically meaningful interpretations and the pos-
sible disease control measures. Possible disease control strategies would
be to reduce or guard é,ga.inst incidences of co-infection by keeping the
prevalence of each disease at low levels or complete cradication of either
disease. This could be achieved through prompt recognition of symptoms,
correct diagnosis, effective treatmeat (and quarantine where possible) and

prevention as we illustrate here.

From R = 72—;%_’;;, w2 oould rightly claim that R is directly pro-
portional to the mean time spent in the infective class given by m
Clearly in the presence of prompt and effective tréatment of meningitis
infectives ¢ — 00 as v — 0. The implication of this is that R,,. — 0 and

thus 1.0 new meningitis infections, since — 0. Unfortunately, the

1
b2+v+un ‘
treatment costs for meningitis infection are relatively higher as observed
in the study conducted in Kenya Ly [2]. Besides, recent major advances in

vaccine developments may not benefit the poor due to high costs and poor
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3.9.1 The relationship between the reproduction

number and disease progression

a b
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Figure 3.9.1: Simulation of model (3.2.6), with « =. 0.125,8, =
0.125 and B = 0.0003, giving Rme = 0.318905, Rme = 0.22062, Ry, =
0.318505, with varying initial conditions.

Whenever the respective reproduction numbers are less than unity, the
infections reduce in time (Fig.3.9.1). However when the reproduction

numbers are greater than unity the infections become endemic (Fig.3.9.2).
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Figure 3.9.2: Simulation of model (3.2.6), with = 0.6,3, = 0.6 and 3 =
0.0015, giving Rmq = 3.35369, Rie = 1.1031, Ry, = 3.35369, with vary-
ing initial ccnditions.
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3.9.2 The effect of meningitis infection on malaria
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Figure 3.9.3: The effect of meningitis infection on malaria
This graph shows thet wherever the number of meningitis infection cases
reduce, the individuals’ mobility increase and can thus be infected with

malaria. Consequently the malaria infection cases go up.
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3.9.3 The effect of malaria cn co-infection

Co-infected Humans
i=]
® -

Figure 3.9.4: The effect of malaria on co-infection
When infection with malaria is not sever, the infected individual is mobile
and may come into contact with one infected with meningitis and thus

increase the number of co-infection cases as shown in Fig. 3.9.4.
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3.9.4 The effect of imneningitis on co-infection
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Figure 3.9.5: The effect of meningitis on co-infection
Infection with meningitis usually reduces the mobility of those infected,
for instance due to hospitalization. These individuals’ likelihood of in-
fection with malaria is thus reduced and consequently the number oi

co-infection cases reduce.
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3.9.5 The effect of varying mosquito biting rate, o
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Figure 3.9.6: The effect of varying the mosquito biting rate, «
We investigate the effect of varying the mosquito biting rate on the classes
I, and I.. From Fig.3.9.6(a, b), It is evident that a higher biting rate
results into increased malaria infections. Furthermore co-infection cases
also rise supporting the fact that maisria infection causes immunosup-
pression. Thus a reduction of the biting rate through such means as
use of insecticide treated nets and indoor residual spraying would reduce

infections in humans.

49




3.9.6 The effect of varying the contact rate, (3

x 107 a

g | = = = beta=0.0035

2 gl o B4 W W W om oD m—— heta=0.0025| ]

3 = s heta=0.0015

€ —

2 i

ES)

£

s 4

(]

=

10 15 20
Time(days)
b

0.2 . T T
@ = = = beta=0.0035]
g 0.15F mmmmmmn Heta=0.0025 3
33: s Heta=0.0015
% 0.1F
E o005} .
o
o

0 1 1 1
0 5 10 15 20
Time(days)

Figure 3.9.7: The effect of varying the contact rate, 8
Fig.3.9.7 (a) shows that the higher the contact rate the higher the nuin-
ber of meningitis cases. However, Fig.3.9.7 (b) shows that there is no
appreciable increase in the number of co-infection cases due to a higher
contact rate. This is probably due to the fact that meningitis attack
is usually sever leading to hospitalization. This reduces the chances of

malaria infectiog.
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infrastructure for their delivery. This translates to increased suSgeptibili ty
to meningitis infection. Since bacterial meningitis is highly infectious, the
situation is compounded by the fact thet in low socio-economic settings
people reside in crowded places such as slums thus increasing the contact
rates.

As noted earlier, a reduction of the vector biting rate through such means
as use of insecticide treated nets and indoor residual spraying would
reduce malaria infections in humans. However, a combination of op-
timal control strategies including both preventive and treatment mea-
sures would be most desirable. Therefore it is needful to scale up the
cost-effective interventions used in malaria-endemic areas such insecticide-
treated nets (I1TINs), intermittent preventive treatment in pregnancy (iPTp)
and infency (IPTi) and artemisinin-besed combination therapy (ACT)
[64].

People living in malaria-endemic areas ere exposed to other diseases typ-
ically affecting the poor. These diseases not only take advantage of the
compromised immunity due to the prolonged malaria exposure, counled
with iimited and untimely chemotherapy but also present with malaria-
like symptoms. This means that“ for an acute febrile patient that is iu-
fected with malaria, laboratory diagnosis for infections such as meningitis,
pneumonia and diarrhea should be done so as to rule out or confirm co-
infectizn. Failure to diagnose other co-infections means a delay in the ini-
tiation of their therapy and possibly ensuing sever complications to the
patient [24]. As noted above malaris i3 endemic in low socio-economic
settings. We also observe that in such settings the health facilities are

usually few and inadequate in terms of equipment and personnel. Thiz
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could possibly lead to non performance of comprehensive laboratory tests.

Consequently, most patients with fever resort to buying cheap and inef-

fective over-the-counter drugs, thus fueling the spread of disease.
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Chapter 4

Modelling the dynamics of
Malaria-Pneumonia

co-infection among children

A study carried out in Uganda showed that 27 (19%) out of the 139 chil-
dren enroﬁed in an urban hospital were co-infected with both malaria and
pneumonia [26]. Another study carried out in Uganda also showed that
out of 2,944 malaria cases in under-fives at 14 health centres, 37% had
pneumonia [30]. The most common causes of deaths in Kenyan children
after the neonatal period are pneumonia, diarrhoea, measles, malaria, sind
malnutrition or a cowbinatica of these conditions [40]. In this chapter,
beginning with an overview of pneumo:ia, we explore the co-dynamics
of malaria and pneumoﬁia by formulating and analysing a co-infection

model.
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4.1 Overview of Pneumonia g

Ppeumonia is an air-bone respiratory disease caused by infection inside
the lungs. It may be contracted by breaﬁhing in droplets containing dis-
ease causing organisms, released into air when an infected person coughs
or sneezes. Pneumonia may also be contracted when bacteria or viruses
that are normally present in the mouth, throat, or nose inadvertently en-
ter the lung. The most common cause cf bacterial pneumonia is S. pneu-
moniae. The symptoms of pneumonia include: cough, difficult breathing,
fever, muscle aches, loss of appetite and lethargy. The risk factors for
pneumonia include smoking and second-hand smoke, alcohol and drug
abuse, crowded living conditions and certain medical conditions. These
include conditions that interfere with the gag reflex, weaken the immune
system and organ transplant. Children have a higher risk of developing

pneumonia if they have weakened immune systems.

Statistics shew that of all children outpatients suffering from respiratory
complications, 25 percent of the cases are confirmed to be pneumonia.
The Kenyan case is no different the pércentage being 18. Pneumcnia
mortality in children is very high especially in the developing world, with
an estimate of 5,500 deaths per day [58, 64].

4.2 Model Description and Formulation

The total human populatioa size Ny at any time is subdivided into the

classes: suscentible Sy, infectious with malaria I3, infectious with pneu-
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monia Ip and symptomatically infectious with malaria and pneumonia
Iyp - The human population is not assumed to be constant since birth,
migration, emigration and death occur. However we assume that the
probability of survival till the infectious state for individuals exposed to
malaria as well as those expoced to pneunionia is unity and therefore
exclude the class of individuals exposed to these diseases. The constant
per capita recruitment rate into the susceptible human population is Ag.
The vector population Ny is subdivided into the susceptible Sy and in-
fectious Iy, classes. The per capita recruitment rate into the susceptible
vector population is Ay and is assumed to be density dependent. Let
wg and py be per capita natural death rates of the human and mosquito

populations respectively.

Due to malaria related immunodeficiency we include the modification pa-
rameter ¥ to account for the increased susceptibility to infection with
pneumonia. The human population suffer disease induced mortality at
the rate . The expectcd decrease in contact due to ill health as a result
of pneumoria disease is accounted for by the parameter 0 < € < 1. Move-
ment back to the susceptible class upbn vecovery from the class Ij/p is at
the rate . Let the :ate of recovery frea I to Sy be 7, while that from

Iy to Sy be .

The rates of infection of suscepti:le humans with malaria and pneumo-
nia are A\jp; and Ap respectively while that of susceptible vectors is Ay.
Define o as the number of bites per human per mosquito, 3,, as the

transm:ssion probability of malaria in huinans, 3, as the probability that

[
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a mosquito becomes infected with malaria from any infected human, 3,
as the protability that one individual is being irfected with pneuronia
by one infectious individual and c is the per capita coutact rate. This

yields the following forces of inf:ction

pog = oy (4.2.1)
Ny
 (Far + 81
5, = 2B s mr) (4.2.2)
-Ji{
T
Ap = Declp + Klur) (4.2.3)
Ny

where ¢ and & are modification parameters accounting for the relative
infectiousness of the cdinfecte_d individual as compared to their countei-
parts. Irom the above definitions and variables we have the foliowing

model with nonnegative initial conditions

éjTH = Ag — A\uSu — oSy — puSu +why + vIp + ¢lyp
% = AuSu = O\pIy = oalas — 7l — pr g
%I_t’_’. = AipSu—é€Aulp—cplp—7lp — pulp
d{éfp = elylp+IpIy — (om + 01; +omp+ ¢+ pu)lup
B g e st T 42
d(i" S T— Y
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Since Ny = Sy + Iy + Ip + Ipmp and Ny = Sy + Iy, we ha,vg

diVNg

- = Ay — g Ny — oIy — oplp — (oM + 0p + omp)Imp
dN
_dtl = (Av — pv)Ny (4.2.5)

From (4.2.5) we ncte that in the absence of infection ‘i—gfl = Ay —
i Ng, so that Ny would approach the carrying capacity %ﬁ The vecior
population, on the other hand, would zrow exponentially for Ay > uy,

be constant for Ay = py ard deciine for Ay < py.

Model (4.2.4) describes the human and mosquito populations and
therefore it can be shown that the associated state variables are non-
negative for all time ¢ > 0 and that the solutions of the model (4.2.4) with
positive initial data remains positive fc: zll time ¢ > 0 and are uniformly-
bounded. We assume the associatea parameters as non-negative for all
time ¢ > 0. Thus (4.2.4) is mathematically well posed and its dynamics

can ue considered in a proper subset 2.

4.3 Equilibria Foints of the Model

The steady states of the model (424) are investigated, conveniently, by
first reducing the number of the variables. This is achieved by normalizing
each ciass of the human and vector populations. Define s, = '1%%’ S =
7':;’*;‘1-, ip = 7{,%, Imp = %{,‘:, Sy = %“’7 a-nd Ty = % as the proportions of

the classes Sy, In, Ip, Imp, Sy and I+ respectively. Let p = %, which is

cn
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regarded as a constant since & mosquito takes a constant number of blood
meals per unit time independer:; of the population density of the human

host[60]. Then we have the normalised system given by the equations

below:
dsh A A . : :
E; = N—I};—[TV—I:;—O'M'Lm_UPZp—(U.M+‘7P+0'MP)1mp
Faffapiv - Bpclip + Kimp)lsy + Tip + Tiy + Gimp
di ) A : . .
—Etnl = afmpPiySy — [FH' + 9Bpc(ip + Kimp) + (0ar + ) — 0piy
—OMim — (O'M +op+ O'MP)imp]im
di ) . . A
——f = Byclip + Kimp)Sh — €0fmpiyiy — [—N-Ii + (op+17)
¢ , H
—0 Mim — G'Pip - (O_'M +op+ UMP>?:mP]iP
dimp - . . Ay
5 €fBm piyip + ¥Bpc(ip + Kimp)im — [FH— + (o +op+oyup+9)
—G'Mim == Up’ip = (O'M + op+ O'Mp)’l;mp]'l:mp
ds . .
—d—t" = Av(1—sy) — aBy(im + 8imp)su (4.3.1)
di
—"LE = aﬁv(im == 57:mp)sv - AV’i'u
dt _
and
dNg

Ay 5 . -
—dt &= {N—H — MH — OMlpn — OPlp — (’J'M +op+ UMP)Zmp}NH (4'3'2)
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We may reduce (4.3.1) to a four dimensional system by eliminating sy,

and s,, since s, = 1 — iy — ip — imp a0d Sy = 1 — i,. This yields

dip, : A . . .
Sm . aBmpivsh — (=2 4+ 9B,clip + Kimp) + (op + ) — opip
dt Ny

—0pim — (M + 0P + OMP)implim
di,

dt N,

=0 Mim — Upip - (O'M +op+ O'Mp)imp]ip

. . i A
= Bpc(ip + Kimp)Sh — EQPmpPivip — [-—I;— + (op+7)

iy, . ) . R A
_dt—p = £aPfmpivip + IBpe(ip + Kimp)im — [TV% + (om+op+omp+ )
—OMin — O'Pip - (O'M +op+ O'MP)imp]imp
di, . - .
o = By (Em + Gimp)Sy — Aviy (4.3.3)

with the feasible region Q={(im, ip, émp,iv) € RE : i > 0,ip > 0,imp >
0y + i + imp < 1,0 <4, < 1}

The equilibrium points of (4.3.2) and (4.3.3) are obtained by equating
the derivatives to zero and solvig for the variables. Thus solving (4.3.2)

at an equilibrium point yields

_’\TI-I— = WH+ Orim + 0pip+ {opm +op+ O'Mp)imp (4.3.4)

Upon substituting (4.3.4) int< (4.3.3) afic: setting the derivatives to zero,




we obtain ‘o

0 = aBmpiv(l — b — ip — imp) — [9Bpclip + Kimp) + oM + T + pr)im
0 = Bty + Kimp)(l — tm — tp — tmp) — EAPmpPiviy — [op + 7+ pali,
0 = gaBnpivip +9BpClip + Kimp)i s — [oM -+ 0p + Omp + ¢+ pirrlimp

0

aﬂv(im + dimp)(l - ":v) i AV?:v (435)

Sclving the last equation of (4.3.5), we have

. aBy(iy, + Giny)

W= af,(i5, + 0i%,) + Ay

(4.3.6)

Suppose i, = ipyp = 0, so that only malaria is present in the popula-

tion. Then, substituting (4.3.6) into the first equation in (4.3.5) yields

0=- {azﬁmﬁvp+aﬁv (O'M +77":"I‘H) } (’::;1)2' :"{O‘Z,Bm Bup—Av (0'M+7T+NH) }Z:n
(4.3.7)

Solviug for ¢}, from (4.3.7) gives either i}, = 0, which corresponds to a

disease-free equilibrium or

it = 0-’2,37:'.,61)[7 = AV(O'M + 7T+ ,U-H)
m 0‘2,Bm,BuP - a,Bv(o'M + 7+ HH)

(4.3.8)

From (4.2.5), it is evident that at a stationary point Ay = uy, which

upon substitution in (4.3.8) yields

e (an Bl 1)#”0

T = R T ad, (4.3.9)
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where

. / alen'B'v/iHAu
Ho = \/A;-:'M?;(UM + 7+ L)

is the basic reproduction number for malaria.

We state this result in the following lemma

Lemma 4.1. An endemic equilibrium %, > 0, for malaria-only case ezists

provided Ry, > 1

Suppose imy = imp = 0, so that only pneumonia is present in the pop-

ulation, then the second equation in (4.3.5) becomes

{Bociy — Bec+(op + 7+ p) }ip = 0

from which either i; = 0, which corresponds to the disease free equi-

libriuzm: or

5 (4.3.10)

where

R, = €0, .
T+6++ HE

is the basic reproduction zumber for pneumonia. We state this result in

the following lemma

Lemma 4.2. An endemic equilibrium iy > 0, for pneumonia-only case

exists provided R, > 1
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Solving for 4;,, from the third equation in (4.3.5) yields '

o Eaﬂmpi;‘i; + :9,chi;i; L
g (CTM +op+oup+ ¢+ IJ'H) — 19K,,chi;‘n

(4.3.11)

Since the state variables are taken as greater or equal to zero for t > 0,
from (4.3.10) iy, = 0 if and only if ¢} = 4;, = i; = 0, which would be a
disease-free equilibrium. However, iy, > 0 if ¢} > 0,175, > 0,4; > 0, which

would be an endemic equilibrium. Thus

Lemma 4.3. An endemic equilibrium iy, > 0 ezists provided Ry, > 1

where R, is the number of secondary malaria (or pneumonia) infec-
tions due to a single malaria (or a single pneumonia-infective) individual.

The basic reproduction number R, is given by

Ry = max{R,, R,}. (4.3.12)

4.4 Local Stability of the disease-free equi-

librivm

Theorem 4.4. The disease-free equilitrium of (4.3.3) is locally stable
provided Ry, < 1 and R, < 1. This implies Rpp < 1 since Ry, =
maz{ R, By}, | |

Proof. The local stability of the d:sease-free equilibrium of (4.3.3) can be
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studied from its Jacobian at the disease-iree equilibrium. The Jacobian

of (4.3.3) at the disease-free equilibrium, denoted J(E°), is given by

_Kl 0 0 a/BmpSh
0 K: KBycs 0
J(E) = . 0‘ ‘ FK " . (4.4.1)
— K3

\ aﬁvs‘u 0 6aﬂv$v —Hv

where K; = (,%% +om+7), Ko = Ppesp, — (op+ 7+ %‘:) and K3 =
(om+op+omp+o+ 7/:,11‘;) This Jacobian has & distinct negative eigenvalue
given by —(op +0p+oyp + ¢+ 1—1\‘};) To obtain the other eigenvalues

we reduce (4.4.1) to the 3 x 3 block matrix A defined by

/ -K1 0 oafnpsh
A = 0 K, 0 (4.4.2)
.aﬂvsv 0 — oy

The matrix A has an eigenvalue given by K, = Bpcsp — (op + 7+ 7\,4;)
From the condition of boundedness of solutions i.e. 0 < Ny < %g, K,
may be expressed as R,s, — 1. 'This eigen\}alue is negative if and only
if R, < 1. The local stability is studied by examining the trace and
determinant of of the 2 x 2 block matrix B defined by

—(om + 7+ Brn
B - ( (s + 7+ par) oBmpsh (4.4.3)
aﬁus'u — My
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Clearly the trace of B is negative and its determinant is given by
detB = 1 — R2 sps,. This determinant is positive if and only if R, < 1.
This ends the proof. O

4.5 Global Stability of the disease-free equi-

librium

If we consider malaria as having a higher steady state i.e R, = Ry, then

Theorem 4.5. Tke disease-free equilibium of (4.8.8) is globally stable
provided R,, < 1.

Proof. We may study the global stability of (4.3.3) by using the following

LaSalle-Lyapunov function. Consider the function defined by

L(i'mviv) = aﬂvim + (O'M + T+ P'H)iv- (451)



The time derivative of (4.5.1) along the solutions of (4.3.3} is given by

L = ﬂ,, +(aM+7r+uH\dt

— aﬂu{aﬁmmvsh - [—— + 9Byc(ip + Kimp) + (Om + ) — 0Pl
—0Mim — (OM + 0P + TyP)imp|im}

+(om + 7+ pu)[aBy(im + Oimp) Sy — Aviy)

IA

a2ﬁv,3mpivsh - (o'M + 7+ :U'H)y'viv

2 A
9&7\_‘2’_"@”3,‘ — (oM + 7+ pg)poly
HoAH

IA

2 :
« IBv m,b'HA _ 1}1'1)
pilg(om + 7+ pr )
(op + 7+ up)p LR s — 1}, (4.5.2)

(AN

(oM + 7+ pr)pof -

IA

Thus R,, < 1 ensures that L' <0V tm,y %y > 0. Furthermore L'=0
whenever R,, = 1 and/or %, = 0. LeSa,lle’s‘ invariance principle then
implies that the disease-free equilibrium is globally stable in the interior
of Q. This completes the proof of the theorem. O

If we consider pneumonia as having a higher steady state i.e Ry, = Rp,

then

Theoram 4.6. The disease-free equilibrium of (4.3.3) is globally stable
provided R, < 1.

Proof. Consider the Lyapuncv candidate

L(ip) = (% +0p + pp)ip. (4.5.3)
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The time derivative of (4.5.4) along the solutions of (4.3.3) is given by

<

!

di
L' = (r+or+pm)7;

. e .. A
= (r+op+ I‘H){:ch(zp i m'mp)sh — eafmpivip — [N% +(op+7)

. . , ey
—OMim — Oplp — (OM + 0p + TMP)implip}

IA

(r+ oo+ ) fyesn — (r-+ oo+ )l

< (7' +op+ MH)[RpSn - l]ip (4~5-4)

Thus R, < 1 ensures that L' < 0V i, > 0. Furthermore L' = 0 whenever
R, = 1 and/or i, = 0. LaSalle’s invariance principle then implies that
the disease-free equilibrium is gicbally stable in the interior of 2. This
completes the proof of the theorem. O

4.6 Effect of Treatment on the dynamics of

the co-infection

Intervention efforts employed in malaria~endemic countries include insecticide-
treated nets (ITNs), intermittent prevertive treatment in pregnancy (IPTp)
and infancy (IPTi) and artemisinin-based combination therapy (ACT)
(64]. However, the treatment of malaria in poor resource settings, espe-
cially in the developing world, still remains a challenge. This is because of
the high cost, poor disease surveillance, lack of effective diagnostic equip-
ment, the quality of antimalarial drugs and parasite-drug resistance, poor
supply and distribution chain among other reasons. There are global ef-

forts wimed at reducing malaria mortality and burden. For example, the
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United States government’s six-year comprehensive effort, with an in-
vestment of 63 billion US dollars, to reduce the burden of disease and
promote healthy communities and families around the world called the

Global Heelth Initiative (GHI), aanonced in 2009.

To investigate the potential impact of treatment on disease progression,
we carry out sensitivity analysis of the reproduction numbers.

Since children under the age of five years have not developed sufficient
immuniiy, we consider the malaria recovery rate 7 as a function of treat-

ment. Differentiating R,, partially with respect to 7 yields

3 ofm 7-'
R, 0 2lom+7+ ug)

(4.6.1)

The negative sign in (4.6.1) indicates that there is an expected decline in
the rate of new malaria infections when malaria treatment is scaled up.
Similarly, if the pneumonia recovery rate 7 is considered as a function of

treatment, then
T OR, T
R, ot (op + 7+ pa)

which zlso suggests an expected decline in the rate of new pneumonia

(4.6.2)

infections when pneumonia treatment is scaled up. In addition, an effec-
tive pneumonia vaccine would ensure that during contact of a vaccinated

susceptible with an infective 8, — 0 and hence R, — 0.

-
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4.7 Numerical Simulations

4.7.1 The effect of pneumonia on malaria

>

Pneumonia Infectives
o0

/

-
T

./
/

Figure 4.7.1: The effect of malaria on pneumonia
We observe from this graph that a decrease in pneumonia cases would

lead to an increase in malaria cases probably due to increased mobiliiy.
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4.7.2 The effect of varying the co-infection recovery

rate, ¢

Figure 4.7.2: The effect of varying the co-infection recovery rate, ¢
This grarh shows that a higher co-infection recovery rate would lead to
a reduction in co-infection cases. This makes the case for comprehensive
laboratory diagnosis to rule out or confirm co-infection so that the right

treatment is initiated on time.



4.8 Discussion

We formulated a co-infection model for malaria and pneumonia and es-
tablished the existence of its discase-free and endemic states. The local
and global stability of the normalised model were then analysed. It was
shown that if either disease is at a higher prevalence then the disease-
free equilibrium is locally stable provided the co-infection reproduction
number is less than unity. Suitable Lyapunov functions were constructed
to investigate the globsal stability of the disease-free equilibrium. We es-
tablished that it is globally stable whenever the co-infection reproduction
number is less than or equal to unity. Biologically speaking, this suggests
that the invasion aud spread cf disease ia a population of susceptibles can
be kept under check by ensuring that the basic reproduction number of

either infection is under unity.

The potential impact of treatment on the dynamics of the co-infection
was investigated by carrying out sensitivity analysis of the reproduction
numbers. Considering recovery rate as a function of treatment, the anal-
ysis shows an expected decline in the rate of new infections when treat-
ment is scaled up. From the numerical simulation,ii.e. Fig 4.7.2, we also
observe that if the co-infection recovery rate is high then the number of
co-infection cases reduce significantly. Tflerefore in regions where malaria
is endemic, it would be advisable to conduct laboratory tcsts to rule out
or confirm co-infection. This wou'd ensure that infections such as pneu-
monia, which have a symptom ovérlap with malaria are timely identified

and treated.
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Chapter 5

Modelling the dynamics of
Malaria-Rotavirus co-infection

among children

Mathematical models for the co-infection of P. falciparum and rotavirus
in children are rare, yet review shows = number of reported cases where
the two coexist. In a study carried cut in Ghana , it was observed that
11.8% of the 243 children examined were co-infected with P. falciparum
and enteropathogens, where rotavirus was also found to be common cz-

teropathogens present in more than half of the patients [46].

5.1 Overview of Rotavirus

Rotavirus is a pathogen of the gastrointestinal tract that causes severe
acute gastroenteritis and diarrhea in infants and young children less than

five years of age worldwide |62]. Severe rotavirus infections occur most



commonly in infants and children between 6 and 24 months pf age. Its
symptoms include vomiting, watery diarrhoea, and low-grade fe:/er. There
are seven species of rotavirus, referred to as A, B, C, D, E, F and G.
Humans are primarily infected by species A, B and C, most commonly
by species A. The diagnosis of a rotavirus infection is commonly made
ciinically, although a rapid antigen stool test is available. Rotavirus is
primarily transmitted by the faecal-oral route, via contact with contam-
inated hands, surfaces and objects [7] and possibly by the respiratory
route [14]. The incubation period is abcut two days [27]. Reinfection does
occur, however, with each infection, immunity develops, subsequent in-
fections are less severe [36]. Indeed, it has been observed in the study [61]
that children who experienced two natural rotavirus infection had com-
plete protection against moderate-to-severe diarrhea compared to children
without a previous infection. It has also been established that both symp-

tomatic and asymptomatic infections confer similar degree of protection

61].

It is estimated that about 95% of childrer worldwide will have experiencéd
a rotavirns infecticz by age five [44] v-ith an annual mortality in excess
of 600,000 among children |45]. Rotavirus-related hospitalizations cen
account for as many as 2.5% of all hospitalizations of children. Some
review analyses show that rotavirvs accounted for 6% of diarrhea episodes
and 20% of deaths caused by diarrhea in children less than five years of
age in developing countries [43]. In Kenya, rotavirus causes more than
7,502 <eaths each year. The reéults of a study on rotavirus infections

among HIV-infected children in Nairobi, Kenya, indicate that rotavirus is



an important viral etiological agent causing diarrhea in HIV-seropositive

children [33].

<

5.2 Model Description

Although it is possible to have some level of immunity to rotavirus due
to bicastfeeding [5], in this model we shall assume that all the malaria-
negative and rotavirus-negative children are susceptible. We subdivide
the totai human population Ny into the classes: susceptible Sy, infectious
with malaria I, latently infected with rotavirus Ly, symptomatically in-
fected with rotavirus Ig, infectious with malaria and latently infected with
rotavirus Ipr, and symptomatically iniected with both malaria and ro-
tavirus Ipsg. The latent stage of the rotavirus disease has been considered
because of the fact that exposed ind‘ividuals can transmit the disease be-
fore and after they develop symptozas [44]. The total mosquito population

Ny is subdivided into the susceptible Sy and infectious Iy classes.

This means that

NH=rs’H+—'r;’-£+LR+IR+IMLR+IMR (521)

Ny =8y + Iy (522)

The rates of infection of susceptible humans with malaria and ro-
tavirus are Ay and \g respectively while that of susceptible vectors is ),

. The constant per capita recruitinent rate into the susceptible humax
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and vector populations are Ay and A, respectively. The rate at: Which hu-
mans progress from the Ly ciass to the I class is ¢ and let ¥ =vz9 M-+Or
be the disease induced mortality in humazns. Further, natural death occur
in all human and vector sub-populations at the rates pyand pu,. Malarial
infection has a depressant effect on the immune system. Acute malarial
parasitemia has a profound immunosuppressant effect, probably through
the activation of suppressor 7" cells. In an malaria endemic area, young
children may suffer from severe infections (bacterial or protozoal diseases)
as either super-infections or co-infections due to this immunosuppression.
We thus define the parameter 6 to account for the increased susceptibility
to infection with rotavirus for individuals infected with malaria. The ex-
pected decrease it contact due to ill health as a result of rotavirus disease
is accounted for by the parameter 0 < » < 1. The individuals displaying
symptoms of both malaria and rotavirus suffer malaria-induced mortality
at the rate d9,,, where the parameter § accounts for the assumed increase
in malaria-related izortality due to the dual infection with rotavirus and
also suffer rotavirus-induced mortality at the rate ki, where the parame-
ter k accounts for the assumed increase in rotavirus-related mortality due
to the dual infection with malaria. The rates of recovery back into the
susceptible class from malaria, symptomatic rotavirus and symptomatic

dual infections are given by i, 2 and -ys respectively.

The force of infection asscciated with malaria infection in humans is

;87:: bm I \{
N;»

Ay = (5.2.3)

where (,, is the transmission probability of malaria in humans and b,, is
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the per capita biting rate of mosquitoes. L

()

The force of infection associated with malaria infection in vectors is

(IM + IMLR ‘Jr“OéIMR)
Ny

Ao = Bobm (5.2.4)

where £, is the transmission probability of malaria in vectors, b, is the
per capita biting rate of mosguitoes and « is a modification parameter ac-
counting for the assumed increased likelthood of infection of vectors from
humans with dual malaria-rctavirus infection as compared to acquiring

infection from humans with malaria only.

The force of infection associated with rotavirus infection is

Lr+Iyr, + ¢(Ir+ Iur)

Ar = Br N

(5.2.5)

where 3 is the effective contact rate for rotavirus infection and the mod-
ification parameter ¢ accounts for the the fact that individuals displaying
rotavirus symptoms are more infectious than individuals latently infected

with rotavirus. From the above definitions and variables we have the
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following model

dSy

= i Ag — MiSe — ArSu — paSH +1Im + Y2 Ir +v3lur

‘Z_;W = XS = Balae = ulns = Paglyr — pialne

%Lt_R = ArSw — AmLr—9%Lr —puLlr

%tﬁ = YLrp—pAulr—IrIr —volr — pulr (5.2.6)
i%%a = AL +0ArDn — e¥lyr, — (Ous + i) Inaie

d’(;.tm = pAule+ePlvp, — (09m + kO + 3 + pr)IMmr

d_“jtl = Ay = A\Sy — Sy

LY = My - mly

Model (5.2.6) describes the human population and therefore it cai: be
shown that the associated state variables are non-negative for all time
t > 0 and that the solutions cf the model (5.2.6) with positive initial data
remain positive for all time ¢ > 0 and are uniformly-bounded. We assume
the associated parameters as non-negative for all time ¢ > 0. Thus (5.2.6)

is mathematically well posed and its dynamics can be considered in the

region W = ¥y x U,, where

Ay

Yy = {(Su,Im, Lr, Ir, ImLg, IMR) : Nu < prom (5.2.7)
and
i A,
¥y ={(Sv.Iv): Ny < #—} (5.2.8)
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5.3 Disease-free equilibrium point

We denoie the disease-free equilibriura {DFE) point by E° and define the
“diseased” classes as the human or mosquito populations that are either
exposed or infectious. Define the positive orthant in R8 by Ri and the

boundary of RS by dR.

Lemma 5.1. For all equilibrium points on U N 3R§_, Ins =Lg=1Ig =

Ivpg =Iur=1Iv =0

The positive DFE for human and mosquito populations for the model

(5.2.6) are

A A
Ny == and Ny = =2, (5.3.1)
HH Moy
Lemmz 5.2. The model (5.2.6) has ezactly one DFE, E° = (ﬁg,o, 0,0,
. .
0,0,¢,0)

Proof. The proof of the proposition requires that we show that DFE is
the only equilibrium point of (5.2.6) on ¥ N ORY. Substituting E° into
(5.2.8) shows all derivatives equal to zero, hence DFE is an equilibrium
point. From Lemma 5.1, the only equilibrium point for Ny is %}’f and the
only equilibrium point for Ny is -ﬁf}* Thus the only equilibrium point for

¥ NJRE is DFE. ‘ O

5.3.1 Local stability of the disease-free equilibrium

We investigate the disease-fiee equilibrium for the model using the ba-

sic reproduction number. We define the basic reproduction number here.

b



R, as the number of secondary malaria (or rotavirus) infections due to
a single malaria (or a single rotavirus-infective) individual. We determine
R, using the next generation operator approach [59]. The associated

next generation matrices are
7/

0 0 0 0 0 Bmlm
0 B b B 0r 0
0 0 0 0 0 0
F=
o 0 0 ¢ 0 0
0O 0 0 0 0 0
\ Bbmn 0 0 Bbun afbun O
and
/hy 0 0 0 0 0 )
0 h, 0 0 0 0
0 — hy 0 0 O
e Y hs
0 0 0 hy 0 0
0 0 0 —ep hg O
\ 0 0 ¢ 0 0 p)

where h] = ')'1+'l9]\4+/JH’ h,2 = 1/).‘_#1_1, h3 o 72+19R+/—LH, h4 =
6"/)+'19M+”Ha h5 = 73+619M +K,’l9R-|—p,H and n = L——Af{ﬁ:
The basic reproduction number R,,, is the spectral radius of the matrix

FV~1. The non-zero eigenvalues of the matrix FV ! are

- __Pj__ o8- =3 bzmﬂm.BVHHAu L
By $tum T (2 +Ir+em)[W+un) and Ry, = V/AH#3(71+19M+;LH)' Therefore

R, is given by
R, = max{R,, R,,}. (5.3.2)

R, is a measure of the average number of secondary malaria infections

in human or mosquito population caused by a single infective human or
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mosquito introduced into an entirely susceptible population. The expres-
sion R,, is biologically meaningful. It comprises of the term % which
represents the number of secondary malaria infections in uman caused

H 3 1 =1hiie ﬁmbm HAu
by a single infected mosquito, whiie the term —&—AHIJW o) represents

the number of secondary malaria infections in mosquitoes caused by a

single infected human. Similarly, in R,, the term EEF‘— is a measure of

+urr
the average number of secondary rotavirus infections in humans caused

: : : $Br :
by a single latently infected human, while the term T ntan) e 18 8
measure of the average number of secondary rotavirus infections in hu-
mans caused by & single symptomaticelly infected human introduced into
an entirely susceptible popuiation. The following lemma follows from

Theorem 2 of [59].

Lemma 5.3. The the disease-free equilibrium E° of the model (5.2.6) is

locally asymptoticaily stable whenever R,,. < 1 and wnstable when R,,, >
1.

5.3.2 Global stability of the disease-free equilibrium

We investigate the global asymptotic stability (GAS) of the disease-free
equilibrium of the medel using the theorem by Castillo-Chavez et.al [10].

We rewrite the model as

X i

= = HX2),

az .

= = 6(X,2),6(X,0)=0 (5.3.3)
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where X = (Su,Sy) and Z = (Ip, L, IR, InLgy IMry 1), with the compo-
nents of X € R? densting the uninfected population and the cBmponents
of Z € R denoting the infecied population.

The disease-free equilibrium is now dencted as

E® = (X*,0),X* = (ﬂ, ﬁ)_ (5.3.4)
HH  Hy

The conditions in (5.3.5) must be met to guarantee a local asymptotic

stability:
d;f = H(X,0), X" is globally asymptotically stable (GAS)
G(X,2) = PZ-G(X,2),G(X,%)>0for(X,Z) € (5.3.5)

where P = D,G(X*,0) is an M-matrix (the off-diagonal elements of P
are non-negative) and I is the region where the model makes biological
sense. If the system (5.3.3) satisfies the conditions of (5.3.5) then the
theorem below holds.

Theorem 5.4. The fized point E° = (X*,0) is a globally asymptotically
stable equilibrium of system (5.3.8) prom'déd that R, < 1 and the as-

sumptions in (5.3.5) are satisfied.

Proof. From the model system (5.2.6) and (5.3.3), we have

Ay — uyS

H(X,0) = H — HHPH
Ay — Sy
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G(X,

where

0
0 0
\ Bobm O

and

&1(x,2) \
Ga(X, 2)
sl X, %)
GdX.7)
(X, 2)
\ Gs(x,2)

G(X,2) =

0 Br—h: ¥z Br 9Br 0

Z)=PZ - G(X,Z)

0 0 0  Pubn )

—hz O 0 0
0 ~~hy 0 0
0 ey —hs 0

O ,81; bm aﬁv bm — M

BrbmI(1 — $) + OApIy
Ba{Lr+ Iy + ¢ + Inr) (1 — ‘1%‘:;)
pAu IR
—(AmLg + 0rIy)

—pIm IR

\\ Bubm{(Ins + Insrg + aInr) }(1 = %ﬁ)

Gu(X,Z) <0, G5(X, Z) < 0 and so the conditions in (5.3.5) are not

met so E° may not be globally asymptotically stable when R, < 1. [

However, if maximum protection is provided against co-infection dur-

ing an outbreak of rotavirus infection in a malaria-endemic region, then

global stability of the disease-free equilibrium may be achieved. This is

because with such protection G4(X, Z) = G5(X, Z) = 0. In other words,

the fight against malaria and persistent infections such as rotavirus may

be wor if co-infection cases are kept at a bare minimum.
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5.4 Endemic equilibrium of the Model

The endemic equilibrium of the model is studied using the Centre Mani-
fold Theorem (8, 9]. To apply this theorem we make the following change
of variables. Let Sy = 1, Iy = %2, Lr = %3, g = %4, IML, = T5, MR =
T, Sy = T7, Iy = xg so that Ny = 21 + 29 + 23 + 24 + 25 + 26 and N, =
27+ 5. The model (5.2.6) can be rewritten in the form 4 = F(x) where

X = (z1, 2,23, T4, Ts, T, 7, 2s) and F = (f1, fo, f3, fa, f5, fo f1, fs) as

dx
El' = fi=Ag— A1 — ArT1 — pET) + N1T2 + Y2Ts + Y3T6
dz
dtz = fa=AmZ1 — 0ApTy — 1123 — FMT2 — pHT:
dzx :
’Zﬁg = f3 = ArT1— AMT3 — YZ3 — UyT3
dz
'Ef = fo=9x4 — pANT4 — VRT; — Yoy — LHT4 (5.4.1)
d.’175 .
T - fs = Amx3 + 0Arzs — x5 — (O + par)zs
dSCs
ol fo = PAmTs + epzs — (000 + K9R + 73 + pn)T6
d:E'(
-Zi—t— = f7=Av_)\u-T7_p'vx7
dCL‘g
W = fs = A7 — HyTg

where \§, = %:{m‘, Al = ﬂvbmgﬂ%g—m—“l and \§ = ﬁnw\}%ﬂﬂ.
'The jacobian, J(E°) of (5.4.1) at the DFE E° is given by
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( —pr  —N  —Br 2—@r —Br 13— 9Br

0 —Bmbm
0 —K; 0 0 0 0 0 Bmbm
0 0 K, ®Br Br ®Br 0 0
0 0 0 Ky 0 0 0 0
0 0 0 0 K, 0 0 0
0 0 0 0 e —K; 0 0
0 —Bbmp 0 0 —Bvbmp —aPubmy —py 0
0  Bbmp O C Bubmp  afBybmp 0 )

where K1 = m+9m+un, K2 = Br—(Y+upn), K3 = Y—(9r+v2+1m)
Ky =€+ 9Oy + pu, Ks = 09y + k9r + 73 + p, and p = ‘/ﬁ
To anaiyze the dynamics of (5.4.1), we compute the eigenvectors of the
jacobian of (5.4.1) at the DFE. It can be shown that this jacobian has a

right eigenvector given by
W = (w T wher
= (w1, w2, w3, We, W5, We, Wr, Ws)" , Where

(1+K1) -
wy = wyg = 0,ws = 0,wg =0 and w; = — 7‘2; 22wy = —MZ’" 2 wg =
v

Kjw _
F’Jﬁ-,'lﬂz—’lﬂz>0

and a left eigenvector given by V = (vy, v, vs, v4, vs, Vs, U7, vg) T where

/
v1=v3=v4=v7—=Oa.ndv5=—’ﬁ—€”ﬁ,v2=v2>0,v6=___ﬂ_°‘ﬂvf<*: 8

K4
vbrmv2

Vg = e
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Consider the case when R, = 1 (assuming that R, < R,,) and Qhoose the
transmission probability of malaria in humans §,, = (3}, as a bifurcation

parameter. Solving for 8, from R, = R, =1 gives

" m b?rnﬂvliHAv

(5.4.2)

It can be shown after some manipulation involving the evaluation of the
associated non-vanishing partial derivatives of f that
2pH
st = _Al—tfkv2w1w8ﬁmbm iz U8w2w7,ﬁvbm) and

r* = wvowgby, > 0. (543)

Note that s* < 0 since w; < 0 and wy < 0. Thus we have established

the following theorem

Theorem 5.5. Whenever (5.4.8) holds, the model may undergo a forward

byjurcation.

This implies that disease transmission in a population of susceptibles

may be contained by a reproduction nuinber less than unity.

5.5 Discussion

We formulated a co-infection model for malaria and rotavirus. The disease-

free eqﬁilibrium is shown to be locally stable provided the co-infection
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reproduction number is less than unity. This equilibrium is not globally
stable due to co-infection. However, we observe that m-aximurﬁ protec-
tion against co-infection during an outbreak of rctavirus infection in a
malaria-endemic region may help achieve this stability. Iu other words,
the fight against malaria and persistent infections such as rotavirus may
be won if co-infection cases are kept at a bare minimum. Analysis of the
endemic equilibrium, using the Centre manifold theorem, indicates that
the model may undergo a forward bifurcaiion. This suggests that at the
endemic state, disease spread may be kept under check if the reproduction

number can be brought below unity.
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Chapter 6

Conclusiocn and

Recommendations

6.1 Conclusion

In this work, we developed and analvsed three co-infection models to
study the dynamics of the interaction ¢f ineningitis, pneumonia and ro-
tavirus with malaria.

Specifically, in chapter three, we formulated a malaria-meningitis model
and analysed vhe local stability of the disease-free equilibrium in terms
of the basic reproduction number of the model. We assumed the malaria
basic reproduction number to be greater than the meningitis reproduc-
tion number, and consequently used it as the reproduction number for
the co-infection model. The analysis shows that the disease-free equilib-
rium is lecally asymptotically stable whenever the reproduction number
is less than unity and unstable otherwise. The global asymptotic stabiiity
(GAS) of the disease-frze state of the :nodel was investigated using the

theorem by Castillo-Chavez ct.al. We showed that it may not be globally
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stable indicating the possibility of future disease outbreaks when condi-
tions favouring the same are prevailing. The public health impiication is
that disease surveillance is an important integral component of the fight
against infections. We also established that maximum protection against
a second infection may help achieve global stability of the disease-free
equilibrium.

We also derived conditions under which the endemic equilibrium of the
medel would be locally stable. Wher an endemic equilibrium point is
stable, then we would expect manageable levels of disease, with mini-
mal deaths and interventions, at peak times of the re-occurrences. We
have alsc shown the possibility of back:vard bifurcation occurring for this
model. The occurrence of backward bifurcation implies the co-existence
of a stable endemic equilibrium with the disease-free equilibrium.

In chapter four we developed a malaria-pneumonia co-infection model.
For purposes of convenience, the steady states of the model were anal-
ysed after normalizing the variables in the model. We established the
existerice of the endemic equilibrium when either only malaria or pneu-
monia is present in the population. The endemic equilibrium for the
cc-infection model is shown to exist so long as both diseases are present
in the population. Tc investigate the potential impact of treatment on
disease dynamics, we carried out ‘svensiti'vity analysis of the reproduction
numbers. The analysis shows that there is an expected decline iii new
infections when treatment is scaled up.

In chapter five we developed and analysed a malaria-rotavirus co-infection
model. The disease-free equilibriu;n is shown to be locally but not glob-

ally stable. Once again protection against a second infection is shown to



result in the attainmenu of the globai stability of the diseaseTffee equi-
librium. The analysis of the endemic equilibrium suggests the possibility
of occurrence of forward bifurcation. This suggests that at the endemic
state, disease spread may be kept unde: check if the reproduction number

can be brought below unity.

6.2 Recommendations

(i) Since pecple living in malaria-endemic areas are exposed to other
diseases which huve a sy:aptom overlap with malaria, we recommend
comprehensive laboratery diagnesic so as to rule out or confirm co-

infection.

(ii) We also recommend that local and global efforts be stepped up to
improve access to afiordable curative and prevontive measures cuch

as medication, vaccines and insecticide-treated nets.

(iii) Due to the possibility of backward bifurcation, we recommend that

disease surveillance should be done regularly.

(iv) We also recommend that this research. be extended to explore the
dynamics of co-infection of HIV/AIDS with these persistent child-

hood infections.

88




[1]

2]

[5]

References

Abu-Raddad L.J. and Kublin J.G., Dual infection with HIV and
malaria fuels the spread of both diseases in sub-Saharan Africa, Sci-

ence 314, (2006), 1603-1606.

Ayieko P., Akumu A.O., Crifiiths U.K. and English M. The economic
burden of inpatient paediatric care in Kenya: household and provider

costs for treatment of pneumonia, malaria and meningitis, Cost Eff

Resour Alloc. 7,(2009), 13-23.

Berkley J.A., Mwangi I., Mellington F., Mwarumba S., and Marsh
K., Cerebral malaria versus bacterial meningitis in children with im-
paired consciousness, International Journal of Medicine 92, (1999),

151-157.

Birkhoff G. and Rota G.C., Ordinary Differential Equations, 4
Edition, John Wiley and Sons; Inc., New York, (1989).

Bishop R.F, Davidson G.P, Holmez LH and Ruck B.J. Virus parti-
cles in epithelial cells of duodenal mucosa from children with viral

gastroenteritis. Lancet 1(1973),1281-1283.

Bryce J., Boschi-Pinto C., Shibuya K. and Black R. W.H.O estimates
of the cause: of death in children. Lancet 365,(2005), 1147-115%.

89



[7]

[10]

1)

[12]

[13]

Rutz A.M,, Fosarelli P., Dick J., Cusack T, and Yolken R. Prevalence
of rotavirus on high-risk fomites in day-care facilities, Pediatrics 92

(2),(1993), 202-205.

Carr J., Applications of Centre Manifold Theory, Springer-Verlag,
New York, (1981).

Castillo-Chavez C. and Sorg B., Dynamical models of tuberculosis

and their applications, Mathematical Biosciences and Engineering,

1(2004), 361-404.

Castillo-Chavez C., Feng Z., and Hrzang W., On the computation of
R, and its role on global stability i:i: Castillo-Chavez C., Blower S.,
van den Driessche P., Krirschner D. and Yakubu A.A.(Eds), Math-
ematical Approaches for Emerging and Reemerging Infectious Dis-
eases: An Introduction. The TMA Volumes in Mathematics and its

Applications. Springer-Verlag, New York, 125(2002), 229-250.

Central Intelligence Agency-The World
Factbook.http://www.cia.gov/library/publications/the-world-
factbook.(Accessed on August 10, 2010)

Chitnis N., Cushing J.M. and Hyman J.M., Birfucation analysis of a
mathematical model for malaria transmission, STAM J.Appl.Math.,
67(1), (2006), 24-45. ’

Chiyaka C., Tchuenche J.M., Garira W. and Dube S., A Mathemai-
ical Analysis of the effects of control strategies on the transmission

dynamics of malaria, Applied Mathematics and Computation, 195

(2008) 641-662.

g0



[14]

[15]

[16]

17

[18]

[19]

[20]

Dernehy P. H . Transmission of rotavirus and other enteric pathogens

in the home Pediatr. Infect. Dis. J. 19,(2000), 103-105.

Diekmann O., Heesterbeck J.A.P. and Metz J.A., On the Definition
and Computation of the Basic Reproductive Ratio, Ry in Modeis of
Infectious Diseases in Heterogeneous Populations. Journal of Math-

ematical Biology, 28,(1990), 365-382

Drakeley C., Sutherland C., Bouserna J.T., Sauerwein R.W. and
Targett G.A.T., The epidemiolegy of Plasmodium falciparum ga-
metocytes: weapons of mass dispersion. Trends in Parasitology 22

(2006), 424-430.

Dushoff J., Huang W. and Castillo-Chavez C., Backwards bifurca-
tions and catastrophe in simple models of fatal diseases, Journal of

Mathematical Biology, 36,(1998), 227-248.

English M, Berkley J, Mwangi I, et al. Hypothetical performance of
syndrome-based management of acute paediatric admissions of chil-
dren aged more than 60 days in o Kenyan district hospital. Bull

WHO. 81,(2003), 166-173.

Francesco C., et al. Malaria Epidemics and intervention, Kenya, Bu-
rundi, Southern Sudan and Ethiopia-1999-2004. Emerging Infectious
Diseases, 12(2006), 1477-1485.

Feikin D.R., et al. Rapid Assessmei.t Tool for Haemophilus Influenza
type b Diseases in Developing countries. Emerging Infectious Dis-

eases, 10(7)(2004), 1270-1276.

91



[21]

[23]

[24]

[25]

[26]

[27]

Gemperli A., Vounatsou P., Sogoba N. and Smith T, Malaria map-
ping using transmission models:application to survey data. American

Journal of Epidemiology, 163(2006), 289-297.

Gu W.D., Mbogo C.M., Githure J.I., Regens J.L., Killeen G.F. et
al Low recovery rates stabilize malaria endemicity in areas of low

transmission in coastal Kenya. Acta Tropica 86 (2003), 71-81.

Gurarie D and King C.H. Age- and Risk-Targeted Control of Schisto-
somiasisAssociated Morbidity Among Children and Adult Age Groups
. The Open Tropical Medicine Journal 1,(2008), 21-30.

Gwer S., Newton C.R. and Berkley J.A., Owver-diagnosis and co-
morbidity of severe malaria-in African children: A guide for clin-
icians, American Journal of Tropical Medicine and Hygiene 77,

{2007), 6-13.

Hethcote H.W., The Mzthematics of Infectious Diseases, SIAM Re-
view 42,(2006), 599-652.

Hildenwall H., Lindkvist J., Tumwiine J. K., Bergqvist Y., Pariyo G.,
Tomson G., and Peterson S., Low validity of caretakers’ reporis on
use cf selected antimalarials and antibiotics in children with severc

pneumonia at an urban hospital in Uganda, Transactions of the Royal

Society of Tropical Medicine and Hygiene 103, (2009), 95-101.

Hochwald C. and Kivela L. Rotavirus vaccine, live, oral, tetravalent

(RotaShield). Pediatr. Nurs. 25,(1999), 203-207.

92




(28]

[29]

30

[31]

[32]

[33]

[34]

Hui W. and Jiag-an C. 4 Mode! for the transmission of Malaria,
Discrete and Contintous Dynamical Systems Series B, 117, (2009),
479-496.

Irving T., Blyuss K., Colijn C. and Trotter C. "Does Resonance
Account for the Epidemiology of Meningococcal Meningitis in the
African Meningitis Belt?” University of Bristol, Bristol Centre for

Complexity Sciences,(2009).

Kallander K., Nsungwa-Sabiiti J. =nd Peterson S., Symptom overlap
for malaria and pneumoniapolicy implications for home management

strategies, Acta Tropica 90,(2004), 211-214.

Kazembe L.N., Muula A.S., Christopher C.A. and Kleinschmidt I.,
Modeling the effect of malaiia endemicity on spatial variations in
childhood fever, diarrhea and pneumonia in Malawi, International

Journal of Health Geographics 6,(2007), 33-39.

Kenya. Ministry of Health. National Guidelines for Diagnosis, Treat-
mznt and Prevention of Malaria for health workers in Kenya.Division

of Malaria Control, Ministry of Health (2008).

Kiulia N.M., Nyaundi J.K., Peenze I., Nyachieco A, Musoke R.N.,
Steele A.D. and Mweada J.M., Rotovirus Infections among HIV-
Infected Children in Nairobi, K enya; J. Trop Pediatr 55,(2009), 318-
328.

Lawi G.O., Mugisha J.Y.T. and Omolo-Ongati N., Mathematical
Model for Malaria and Menir.zitis Co-infection among Children, Ap-

plied Mathematical Sciences, 5 (2011), 2337-2359.

93



[35]

[36]

[37]

38]

[39]

[40]

[41]

[42]

Jia L., A malaria model with Partial Immunity in Humans Mathe-

matical Biosciences and Engineering 5 (2008), 789-801.

Linhares A.C, Gabbay Y.B, Mascarenhas J.D, Freitas R.B, Flewett
T.H. and Beards G.M . Epidemiology of rotavirus subgroups and
serotypes in BeLemma, Brazil: o three-year study. Ann. Inst. Pas-

teur Virol. 139,(1988), 89-96.

Liu W.M., Hethcote H-W. wad Levin S.A. Dynamical behavior of
epidemiological models with nonlinear incidence rates, J. Math. Biol.

25 (1987), 359-380.

Liu W.M., Levin S.A. and Iwasa Y., Influence of nonlinear incidence
rates upon the behavicr of SIRS epidemiological models , J. Math.
Biol. 23 (1986), 187-204.

Maia M. and Gloria C.,The transmission of meningococcal infection:
A mathematical study, Journal of Mathematical Analysis and Appli-
cation 283 (2003), 251-275.

Ministry of Health. Republic of Kenya. Health management informa-
tion systems. Report for the 1996 to 1999 period, (2001).

Molyneux E., Walsh A., Phiri A. and Molyneux M. Acute bacte-
rial meningitis in children admsitted to the Queen Elizabeth Central
Hospital, Biantyre, Malawi in 1996-97. Tropical Medicine and Inter-
national Health, 3,{1998), 610-612.

Mukandavire Z., Gumel A.B., Garira W. and Tchuenche J.M., Math-
ematical analysis of a model for HIV-malaria co-infection, Mathe-

matical Biosciences and Engineeriag 8 (2009), 333-3€2.

9




[43]

[45]

[46]

[47]

[48]

[49]

[50]

Parashar U.D., Hummelman E.G., Bresee J.S., Miller M. A and Glass
R.L.,, Global illness and death caused by rotavirus disease in children,

Emerging Infectious Diseases 9 (2003), 565-572.

Parashar U.D., Bresee J.S., Gentsch J.R. and Glass R.I., Rotavirus,

Emeiging Infectoius Diseases 4 (1798), 561-570.

Perez N., Rotavirus gastroenteritis: Why to back up the development
of new vaccines, Comparative Immunology, Microbiology and Infec-

tious Diseases 31 (2008), 253-269.

Reither K., Ingatius R., Weitzel t., Seidu-Korkor A., Anyidoho L.,
Saad E., Djie-Maletz A., Ziniel P., Amooso-Sakyi F., D Anikuu F ,
Danour S., Otchwemah R.N., Schreier E., Bienzel U., Stark K., and
Mockenhaupt F.P., Acute childhood diarrhea in northern Ghana: epi-
demiological, clinical and microbiological k:hamcterz'stics, B.M.C In-

fectious Diseases 7,(2007), 234-240.

Roberts L. An Ill Wind Bringing Meningitis. Science, 320, (2008),
1710.

Ross R., The Frevention of Malariz, John Murray, London, (1911).

Rudan 1, Tomaskovic L, Boschi-Pinto C, Campbell H. Global esii-
mate of the incidence of clinical pneumonta among children under

five years of age. Bull World Health Organ. 82,(2004), 895-903.

Rwezaura H. and Tchuenche J.M, A Mathemalical Analysis of
Malaria and Tuberculosis Cov-dynamics, Discrete and Continuous Dy-

namical Sysiems Series B, 12, (2009), 827-864.

95



[51]

[52]

(53]

[54]

Shim E, Banks H.T. and Castillo-Chavez C., Seasonality of Ro-
tavirus Infection with its Vaccinafion,Statistical and AppYied Math-
ematical Sciences Institute, Technical Report 2005-9 November 4,

(2005)[Available www.samsi.info]

Shim E., Feng Z., Martcheva M. and Castillo-Chavez C., An Age-
Structured Epidemic Model of Rotavirus with Vaccination. J Math
Riol. 53,(2006), 719-746.

Snyder R.D. Bacterial Meningitis: Diagnosis and Treatment, Current
Neurology and Neuroscience Reports 3, (2003), 461-469.

Taylor T.E., Fu W.J., Carr R.A., Whitten R.O., Mueller J.G., Fosiko
N.G., Lewallez S., liomba N.G. and Molyneux M.E., Defferenting

- the pathologies of cerebral malaria by post-mortem parasite counts.

[55]

Nature Medicine 10, (2004), 143-145.

Tumwine J., Mugisha J .Y.T. and Luboobi L.S., A host-vector model
for malaria with infective immigrants, Journal of Mathematical Anal-

ysis and Application 361 (2010), 139-149.

Tumwine J., Mugisha J.Y.T. and Luboobi L.S., On global stability oy
the intra-hcst dynemics of malaric and the immune system, Journal

of Mathematical Analysis and Appiucation 341 (2008), 855-869.

United Nations Children’s Fund, Malaria in children: Progress in

intervention coverage, (2007).

United Nations Children’s Fuad (UNICEF), 2008. Tracking progress

in maternal, newborn and ckild survival: The 2008 report.

96



[59]

[62]

[63]

[64]

[65]

van den Driessche P. and Watmough J., Reproduction numbers and
the sub-threshold endemic equilibria for compartmental models of

disease transmission. Math. Biosci., 180(2002), 29-48.

Vandermeer J.H. and Goldberg D.E.,Population Ecology: First Prin-

ciples, Princeton University Press, New Jersy, 2003.

Velaquez F.R., Matson D.O., Calva J.J., et al, Rotavirus infection

iu infants as protection against subsequent infections, N Engl J Med

335 (1996), 1022-1028.

White L.J., Buttery J., Cooper B.. Nokes D.J. and Medley G.F., Ro-

tavirus within day care centers sn Ozfordshire, UK: characterization

' of partial immunity, J.R.Soc. Interface 5,(2008), 1481-1490.

White L.J., Cox M.J. and Medley G.F.,Cross Immunity end Var-
cination Against Multiple Microporasite Strains. ; IMA Journal of
Mathematics Applied in Medicine and Biology 15,(1998), 211-233.

World Health Organization, World Malaria Report 2008,
WHO/HTM/GMP (2008).1.

Xiao Y. and Tang S., Dynamics of infection with nonlinear incidence
in & simple vaccination model, [¥unlinear Analysis: Real World Ap-

plications 11(2010), 4154-4163.



