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ABSTRACT

Time series is a measured observation recorded with time. This statistical procedure

is applicable in many fields of study including engineering and economics. The process of

collecting data sometimes faces a lot of challenges that may arise due to defective working

tools, misplaced or lost records and errors that are prone to occur. These problems can be

addressed by estimating the missing values so as to enable one to proceed with the analysis

and forecasting. The most commonly used approaches include the use of autoregressive-

moving average models developed by Box Jenkins, use of extrapolation or interpolation

under regression analysis and use of state space models where data is considered as a

combination of level, trend and seasonal components. This project intends to use the most

appropriate method of estimating missing values by using the direct method of imputation.

Incomplete secondary data obtained from the Ministry of fisheries and Development,

together with the Kenya Marine and Fisheries Research Institute are to be used to estimate

the gap left just before, during and immediately after the post election violence of the

year 2007/2008, a time when data could not be obtained and/or recorded. The original

time series data when analysed produced a SARIMA model (0,1,1)(2,0, 0h2 as the best

candidate for the lower segment. SARIMA (0,1,2)(0,0,1)12 was produced for the upper

segment using autoarima function in R package. The missing data were estimated using

forecast from the lower segment which was extended to the in sample forecast in the upper

segment. The regression test between predicted and the original values in upper segment

proves strong positive relationship indicating high level of accuracy on predictability of

the model used.
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Chapter 1

Introduction

1.1 Background of the Study

Fishing industry is one of the major economic activities for the people living around Lake

Victoria. They harvest fish on daily basis and sell the catch to traders to export and / or

to the local consumers when fish is still fresh. Different fish species are harvested in the

lake with fishing of Nile perch (Lates 1 iloticus) leading in priority due to its market value

and nutrition standards. Data about the catch are usually recorded by the Government

of Kenya through the Ministry of Livestock and Fisheries Development at various beaches

around the lake shore together with the Kenya Marine and Fisheries Research Institute

(KMFRI). In the year 2007 ,just before 2007 general election there was noted general

laxity on fishing activity and data collection. This was followed by the post election

violence where no data could be collected and even in some areas the records were lost

to fire. This left a seasonal gap of missing observations for a period of three months, a

problem that forms the basis of this project work," Analysis of time series with missing

observations". The problem of missing values in time series is common in data collection.

One of the main objectives of time series analysis is to fill the missing observations so

as to enable analysis and forecasting be done. This can be possible if a suitable model

that fits the data available is used appropriately such that it can be extended to cover

the missing gaps. A lot of research work has been done in this area with the stochastic
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CHAPTER 1. INTRODUCTION 2

models developed by Box and Jenkins widely applied in adjusting the estimates both

directly and indirectly and eventual forecasting. This is because it provides a common

frame work for time series forecasting that can cope with non stationary series by use

of differencing technique. The technique derives forecast of time series on the basis of

historical behavior of the series itself hence can use the statistical concepts and principles

that can model a wide range of time series behavior. This project therefore intends to

identify the model that can fit the collected data prior and after the gap and then apply

the most appropriate method of adjusting the estimates and eventually forecast.

1.2 Statement of the problem

The economic activity of harvesting Nile perch in Lake Victoria and its impact on the

livelihood of people living around the lake can be well analyzed and appropriate inferences

made from the available data obtained from reliable sources. In this study the problem

to be addressed is to estimate the missing values and use the estimates to forecast with a

view to bridge the gap whose records were not captured in the time period stated earlier.

1.3 Objectives of the study

1.3.1 General objective

The general objective of the study is to fill the seasonal gap of four consecutive months

in the periods stated above.

1.3.2 Specific objectives

• To identify the nature of the data before and after the missing gap,so as to identify

a suitable model for the seasonal time series.
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• To use the Seasonal Autoregressive Integrated Moving Average SARIMA to estimate

the missing values through forecasting .

• To test whether the model so considered provide accurate estimate or otherwise.

1.4 Significance of the study

The study of seasonal variations enable one to understand effects of seasonal patterns on

the long term variations about fishing activity in Lake Victoria. Progressive economic

development requires more scientific knowledge of relationship between productions at

a given time intervals. More accurate predictions would therefore reduce the range of

uncertainty and make scientific analysis more valuable and near to reality. The proposed

study would therefore provide means to quantify the economic gains foregone in case of

calamities that are unpredictable not only in the fishing industry but also in other fields

of scientific research. The method used would act as extension to the existing models for

better predictions as reliable estimates can also help in economic and social planning for

future operations.

1.5 Basic concepts and definitions

1.5.1 Time series

A Time series is some sequence of observations proceeding through time where the actual

order in which the values occur has importance in that they may be related temporarily.

In this situation the observations are not assumed to be independent. Time series is

generally composed of the following components; trend, seasonal effect, cyclic effect and

random effect.
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CHAPTER 1. INTRODUCTION 4

1.5.2 Stationary and Stochastic process

A time series is said to be strictly stationary if the joint distribution of Xtl, Xt2 .... Xtn is

the same as the joint distribution of Xtl+h, Xt2+h, ",Xtn+h for all(ti E JR).

As a result the parameters such as the mean and variance if they exist do not change

over time.It refers to a flat looking series; without trend, with constant variation over

time,a constant autocorrelation structure over time and has no periodic fluctuations.

A time series is said to be covariance stationary in weak sense if its mean is constant

and autocovariance is independent of distance between the variables, i.e E(Xt) = f-.L <

00 for all t E JR

(1.1)

Where f-.L is a real number and 8(h) is the autocovariance function for lag of h.

Note that the autocorrelation function also depends on lag h.Non stationary time series

is most commonly used in economic data and its raw data can be transformed to become

stationary. The transformation involves differencing the data with the given series X, to

create the new series

(1.2)

The differenced data will then contain less points than the original data. This can be

done continuously till a stationary series is obtained.

1.5.3 Autocovariance and Autocorrelation Function

Autocorrealtion function are values that fall between -1 and +1 calculated from time

series at different lags to measure the significance of correlations between present and

past observations and to determine how far back in time they are correlated.

For a stationary process X, we have the

MASENC'lNIVERSITV\
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CHAPTER 1. INTRODUCTION 5

mean

(1.3)

and variance

(1.4)

which are constants. Then

(1.5)

is called the autocovariance function which is the function of the time difference (t, t + h).

The function

8(h) 8(h)
8(0) . (1.6)

is referred to as Autocorrelation function (ACF) in time series analysis as they repre-

sent the covariance and correlation between X, and Xt+h from the same process separated

by the time lag h.

Note that for stationary time series the autocovariance and autocorrelation functions have

the following properties;

• for uncorrelated data the autocorrelation function is equal to zero i.e p(h) = 0

for allh i- 0

• 8(h) = 8( -h), p(h) = p( -h) hence positive half of the auto covariance is com-

monly plotted in correlogram.

• -1 ~ p(h) ~ 1

~------------------~-=~~~MASENO UNIVE ."~'"'ryf
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CHAPTER 1. INTRODUCTION 6

1.5.4 Partial Autocorrelation Function

Partial autocorrelation function values are the coefficients of linear regression of the time

series using its lagged values as independent variables. It is equally useful in making time

series models especially where there are large portions of correlations between X, and

Xt+h in which autocorrelation patterns are difficult to establish. The lag h for partial

autocorrelation is the partial regression coefficient <Phh in the rth order autoregression.

(1.7)

where et+h is normal error term.

Multiplying the equation above by Xt+h-j and taking the expectation the result is;

(1.8)

Dividing both sides by 8(0) we get

(1.9)

. > 1J-

These correlation functions can be applicable mostly in modelling of statistical depen-

dencies about evolution of time series X, and therefore can form the basis of rules for

interpolating values at points that are lacking data. They play an important role in data

analysis aimed at identifying the extent of the lag in autoregressive model. This was intro-

duced by Box-Jenkins (Chapter 3.2,2008) as a suitable approach to time series modelling

where partial autocorrelation function are plotted to determine the appropriate lags p in

an AR(p) models hence in an extended ARIMA models.

An approximate test that a given partial correlation is zero at a( 5% level of significance)

is given by comparing the sample auto correlations against the critical region within the

limits given by ±1.96/ In where n is the recorded number of points of the time series
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being analysed.

Note that computer software is available to do the production of ACF and PACF.

1.5.5 Correlogram

Is an important tool in time series analysis that can be used to describe the nature of

time series and also to identify an appropriate model for a given time series.

The autocorrelation rh = ~i~j where 5(h) = 2:~lh(x,-;)(x'+h-x) for h = 0,1,2 ... and

0(0) = 52 can be used to determine the correlograms.

When a graph of rh against h is plotted a correlogram is produced which can assess the

behaviour and properties of the time series.

A correlogram can be plotted for the original time series and/or for the differenced sta-

tionary series. When time series is stationary the correlograms provide estimates of the

theoretical autocorrelation functions but for non-stationary series they do not estimate

hence can be used to show that time series is non-stationary. Seasonal series have large

values of rh at the seasonal periods hence one can use the correlograms to observe if

seasonality is present.

1.5.6 Moving Average process

Suppose e(t) is a white noise with mean zero and variance 52 then the process X, is said

to be a moving average process of order q if

(1.10)

where 130,/31, {3q are moving average parameters.

The subscripts on the (3, s are called the orders of Moving average parameters. The highest

order q is referred to as the order of the model, hence can be abbreviated MA(q) which

means Moving Average of order q.

MASENO UNIVERS l'
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CHAPTER 1. INTRODUCTION 8

Basic model for the moving average is

(1.11)

which indicates that any given current observation is directly proportional to the random

error et-l from preceding period together with the current one e-, The Bs refer to the

order of the Moving Average parameters.

For MA(q) process

(1.12)

= E(Xt, Xt+h) - E(Xt)E(Xt+h)

= E(Xt, Xt+h) since E(Xt)E(Xt+h) = 0

But X, = 2:;=0 (}jet-j and Xt+h = 2:;=0 (}jet+h-j = 0

x., Xt+h = (2:;=0 Bjet-j)(2:;=o Bjet+h-j)

= 2:;=0 2:k=o BjBket_jet+(h-j)

If j = k - h,then et-j = et-(k-h)

E( et-jet-(k-h) = E( et_j)2 = var( e.) = (F

If j =I- k - h then et-j =I- et - (k - h) and E(et-jet-(k-h) = E(et_j)(E(et-(k-h)) = 0

Thus

q

(J"(h) = E(Xt, X; + h) = Cov(Xt, Xt+h) = 52 LBjBj+h h = 0, 1,2 ... q (1.13)
j=O

ACF for an MA(q) is

p(h) ~ (

1 if h=O
EJ;;:;~eA+h h=l,2, ... qE;=o e;
0 h>q

If a correlogram for ACF is plotted then the curve." cuts off" at lag q which is a special
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feature of MA process.

1.5.7 Autoregressive process

Let (et) be a purely random process with mean zero and variance CT2 , then the process

X; is said to be an autoregressive process of order p if

(1.14)

where Qh,¢2, ¢p are parameters of autoregressive and the subscripts 1,2, ... are the orders

of the autoregressive parameters which increase with increase in Xt.

The basic model of AR is

(1.15)

where ets is a sequence of independent identically distributed normal random variables

with mean zero and variance CT2

It indicates that the value X, depends directly on previous value of Xt-1 plus random

error et.

And as the number of AR parameters increase.X, becomes directly related to increased

past values leading to an expression in (1.15) above and the model looks like a regression

model,hence the term autoregression.

The values of ¢ which would make the process to be stationary are such that the roots of

¢(B) = 0 lie outside the unit circle in the complex plane. B is the backward shift operator

such that tvx, = Xt-j and ¢B = 1 - ¢lB ... ¢pBP (Chartfield 1989 p.4l)

1.5.8 Autoregressive Moving Average

This is a combination of Autoregressive and Moving average models to build a stochastic

model that can represent a stationary time series. The order of ARMA are expressed as
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p and q respectively and they relate to what happen in period t to the past values and

random errors that occurred in the past periods.

The model is
p q

x, = L<PiXt-i + e, - L ejet-j
i=I j=I

(1.16)

Thus Xt = <PI + <P2Xt-2 + ... + <PpXt-p - eIet-I + e2et-2 + ... + eqet_q

When simplified using backward shift operator

BJXt = Xt-j

we get

(1.17)

where B(B) = 1 - BIB ... BqBq and

<p(B) = 1 - <pIB ... <ppBP are polynomials of degree p and q in B and the process is

ARMA(p,q)

To attain stationarity for this model the equation <p(B) has its roots lying outside the

unit circle and B(B) = 0 must lie outside the unit circle for the process to be invertible.

1.5.9 Autoregressive Integrated Moving Average

If the observed series is non stationary in the trend then we can difference the series to

obtain stationarity. In ARIMA models the term integrated, which is acronym for summed

is used because the differencing process can be reversed to obtain the original time series

values by summing the successive values of the differenced series(Hoff,1983,p.126).

Consider the Autoregressive Moving Average of order (p, q) given by

(1.18)

Suppose X, is non-stationary but \7X; is stationary

Let Wt = \7d Xt, Wt is stationary while X; is non-stationary. where

MASENO UNIVERSITyl
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CHAPTER 1. INTRODUCTION 11

Wt = IhWl + ... rPpWt-p + et + /31el + ... + /3qet - q. we can write using backward shift

operator

(1.19)

This implies

Note \j = 1 - B,

(1 - B)Xt = X, - (B)Xt.

Thus

(1.20)

which is autoregressive integrated moving average of order (p, d, q).

1.5.10 Seasonal Autoregressive Integrated Moving Average

Most of the economic time series do show seasonal fluctuations with some characteristics

of homogeneity within given periods of the year. The pattern developed can be at intervals

of monthly (8 = l),quarterly (8 = 4) or yearlyf s = 12). When these data are arranged

in tabulated form then some relationships can be noted between observations among the

same months and also among the successive months of the year. This scenario can be

expressed by a model

(1.21)

where the subscripts rPpiI>pf}q8Q are polynomials of the corresponding order p, P, q, Q

respectively.

And \jd is the simple differencing operator of order p and \jD is the seasonal differencing

operator of order D.

Thus the final differenced stationary time series is not only from simple differencing to

MASENO UN VERSITY
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remove the trend but also seasonal \7 s to remove seasonality.



Chapter 2

Literature Review

2.1 Introduction

In this chapter related research about time series with missing observations are discussed.

It is noted that there have been more revelations on the study of time series with linear

observations than non-linear time series.However most of the time series processes are

non-stationary which implies that they have mean,variance and autocovariance of the

process that are variant under time translations.

2.2 Literature review

In order to remove non-stationary sources of variation and fit stationary models Box and

Jenkins in 1976 [5] recommended the extension to Autoregressive Moving Average process

which deals with stationary process through differencing.

Richard H. Jones in 1980[19] came up with a method that involved calculating ex-

act likelihood function of stationary Autoregressive Moving Average based on Akaike's

Markovian[2] representation combined with Kalman recursive estimation. This approach

involved use of matrices and vectors with dimensions equal to max(p,q) where p is the

order of autoregressive and q is the order of moving average. His article also mentions

13



CHAPTER 2. LITERATURE REVIEW 14

some more discussions on observational error in the model and the extension to missing

observations.In the same year A.C.Harvey and G.D. A Phillips came up with an algorithm

that enables the exact likelihood function of a stationary autoregressive moving average

process to be calculated by use of Kalman filter. This involved two procedures; The first

one translates autoregressive moving average process model into" state space" form which

is necessary for Kalman filtering and the second computes the covariance matrix related

with initial values of the state vector.

Priestly in 1981 discussed stationary process as a sum of deterministic and non-

deterministic processes. Where deterministic refers to a situation in which the forecast is

done by linear regression on past values without necessarily involving recent values. And

if the future values are considered to be a realisation from probability distribution which is

conditioned by knowledge of past values then the process is non-deterministic(stochastic).

In 1984, A.C.Harvey and R.G. Pierce[8] discussed related problems about time series

with missing data. The problems were about use of maximum likelihood estimation of

missing observations. They suggested setting up of the model in the state space form and

applying Kalman filter.

F.C Ansley and Robert Kohn in the year 1986[3] showed how to define and compute

efficiently the marginal likelihood of autoregressive moving average model with missing

data using modified Kalman filtering process they developed earlier. They also showed

how to predict and interpolate missing observations and to obtain mean squared error of

the estimate.

In 1989 Greta M. Lyung[25] came up with the expression for the likelihood function of

parameters in Autoregressive intergrated Moving Average model when there are missing

values within time series data.

In 1991 Daniel Rena and George C Tiao demonstrated that missing values in the time

series can be treated as unknown parameters and estimated by maximum likelihood or as

random variables and predicted by the expectation of the unknown values given the data.
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In 1996 Fabio H. Nieto and J. Martinez demonstrated a linear recursive technique that

could be used to estimate missing observations in a univariate time series without use of

Kalman filter. It focusses on forecasting approach and the recursive linear estimators

obtained when the minimum mean square error are optimal.

In 1997 Albert Luceno extended Lyung's method of estimating the corresponding

likelihood function in scalar time series to the vector cases. Here the series assume no

particular pattern of missing data existed. It does not require the series to be differenced

hence avoiding the complications that could arise by over differencing. The estimators

of the missing data are provided by the normal equations of an appropriate regression

technique.

In the year 2003 Chris Chatfieldj IO] in his article entitled" Analysis of time series

an introduction" gave various approaches for linear time series most of which involved

curve fittings. From the above literature it is noted that a lot of methods have been

developed that could be applied to address the problem of estimating missing values in

a time series. However our problem would require use of the most relevant approach that

could be used to convert non-stationary time series to stationary model by use of seasonal

autoregressive moving average.

.....------:-:-:-:=:::-=-::=-- •.)
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CHAPTER 2. LITERATURE REVIEW 16

2.3 Research Methodology

The preliminary stages of this study focuses on the use of Box-Jenkins Autoregressive

Integrated Moving Average model to identify the most suitable model for the data ob-

tained.This is because Box-Jenkin's models are able to handle varieties of non-stationary

time series by differencing to attain stationarity.It can effectively deal with time series

that have historical behaviour, which is common with economic time series such as fish

harvesting.It develops the model in a systematic form that is easy to follow and the model

so developed can be systematically tested. This study focuses on the seasonal data anal-

ysis. It will involve observing the nature of the time series from the plotted graph. It

will be tested for stationarity and linearity using a suitable test. Once confirmed the

appropriate model that can fit the data would be identified. Parameters of the identified

model is to be determined and a diagnostic model checking be done to ensure that it can

be adequately applied in the obtained time series data.

Using the model forecast will be done on the lower segment of the observed values and

the level of accuracy noted before the forecast is applied to the actual missing values i.e

between the months of December 2007 and March2008. forecasting would be prolonged

past the gap and through regression analysis the level of accuracy be noted. With test of

accuracy done conclusion to be made will highlight on the performance of the model and

its applicability in forecasting to periods outside the observed data.It is hoped that the

results obtained and the consequent suggestions would be useful to both short term and

long term research activities whose outcome would have greater certainty.

MASENO UN'VERS'TYI
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Chapter 3

Modelling of the time series

3.1 Introduction

A model is a mathematical expression representing reality. The model can be used to

describe the time series data. It can be used to determine theoretical relationships between

different sets of data. And it can also be used to predict the unobserved variations. The

process of analysing and forecasting time series requires that a model for a suitable set

of data is identified and used. Many models can be produced from a given set of data.

This chapter therefore tries to address this important aspect of analysis by identifying

the most appropriate model that suits the data set and use it to predict missing values.

Fitting a model of time series takes place in stages.

These include;

• Model identification

• Estimation of the model parameters

• Diagnostic checking of the model.

However before identification is done it is important to show the nature of the data i.e

whether the distribution pattern of the data shows linearity or non linearity. After this

then the model that can fit the pattern is possible to identify.

17
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3.2 Linear and non-linear time series model

Generally a linear time series model takes the expression of the form

00

LhiXt-i = et
i=O

(3.1)

Where et is the white noise.

Using backward shift operator Bj X; = Xt-i

then equation above becomes

H(B)Xt = et·· .

Thus

(3.2)
00

x, = Lmiet-i
i=l

(3.3)

The above equation gives a general linear model where by the X, is expressed in terms

of the present and past values of the white noise process. These types of models can be

fitted for AR, MA and ARMA.

For non-linear models, according to Priestly(1980,1988) is of the general form

CXJ 00 00 00 00 00

x, = I-l + L miet-i + L L mijet-iet-j + L L L mijket-iet-jet-k + ... (3.4)
i=O i=O j=O j k

where I-l = 1(0) m = 6~Lwhere X, = 1(etl et-11 et-3· .. )

From the above equation non-linearity exists if the higher order coefficients (mij)(mijk)

are non zero.Our data forms linear time series that is non stationary.

MASEN(" UNIVERSrT,;(i
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CHAPTER 3. MODELLING OF THE TIME SERIES 19

3.3 Linear non-stationary time series model

Many economic activities do form time series patterns which,although are non-stationary,do

exhibit some homogeneity with predictable repeated patterns which if differenced to an

appropriate degree can be converted to stationarity. The key requirement is that time se-

ries is either stationary or can be transformed to into one. A plot of the data is usually

enough to verify if the data is stationary or not. However in practice few time series meet

this condition hence the need to transform the data into stationary series.

The models for the stationary series are of the general form

(3.5)

Where for time interval T,Xt(tET) is a sequence of random variables,B is the backward

shift differencing operator.

Bh X, = Xt-h (h is non-negative integer),

(1 - B)d X, = \JdX; is stationary,

¢(B)and B(B) are linear filters defined as

¢(B) = 1 - (hB - ¢2B2 - - ¢pBP and

B(B) = 1+ BIB + B2B2 + + BqBq

and et(tET) is a sequence of uncorrelated random variables with mean zero and variance

()2 (white noise).

In case the series show some seasonal fluctuations within the year together with trend

then the above model is modified appropriately. Box-Jenkins came up with a general

model that covers seasonality as given

(3.6)
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referred to as Seasonal Autoregressive Integrated Moving Average(SARIMA) ,where Xt, et, ¢(B)ar

B(B) are defined as above.

(1 - B)d(l - Bs)D X, = \7~\7? X, is stationary and <I>(BS)and8(BS) are seasonal linear

filters defined as

<I>(BS) = 1 - <I>lBs - <I>2B2s - - <I>pBPSand

8(BS) = 1+ 81Bs + 82B2s + + 8QBQs.

P defines the seasonal autoregressive component of the model and Q defines the sea-

sonal moving average component of the model and s represents the seasonal period and

D is the degree of seasonal differencing. Note that both Sand D account for seasonal

non-stationarity in Xt.

It is noted that SARIMA model is an extension of ARIMA model and its modelling

follows the same procedures of identification,estimation and checking.

3.4 Identification of the model(p,d,q)

This is a procedure meant to select a model that is more suitable for the data obtained.

It should be noted however that this stage may not give the exact model but can provide

a class of model which could be verified further.

Use of correlogram of the data indicates whether the series is stationary or non-stationary

as non-stationary data has the correlogram that fails to decay to zero.

A correlogram of a time seriesf X, : t = 1,2, ... n) is a graph of the sample autocorrelation

coefficient Th against the corresponding lags h.Each Th is defined as

(3.7)

The level of individual departure of Th is checked within the limits of ±2/ In. Also the

pattern formed by Th can be used to determine the nature of time series by examining

the points at which the Th " cuts off" the point zero within the limits.
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For all Th where h > q = 0 indicates that MA(q) is a suitable model and for AR

process the auto correlations decaying exponentially is observed by partial autocorrelation

function which has a cut off for an underlying process at <Phh = 0 Vh > p

According to Chartfield (1975) the seasonal time series should be differenced (d times

to remove trend and D times to remove seasonality) so as to reduce it to stationarity. The

general SARIMA model is of the form

(3.8)

Wt is the result of differencing X, till when its autocorrelation function dies out quickly.

d usually takes values 0,1,2. The values p, P, q, Q are determined from the patterns from

SACF and SPACF of the differenced series. P and Q are examined from Th = 5,25 where

5 is the periods. This identified model can then be compared with theoretical patterns of

known models as shown in the appendix.

In summary the data is AR(p) if its ACF will decline steadily, or follow a damped cycle

and PACF will cut suddenly after p lags. It is a MA(q) if its ACF will cut off suddenly

after q lags and PACF will decline steadily or follow a damped cycle.

It should be noted that model identification by Box-Jenkins method is considered

subjective due to the fact that it primarily relies on graphical interpretation of ACF jPACF

estimates from a single sample. The minimum sample size generally recommended for the

SARIMA model fitting is 50 observations(Pancratz 1983;Chatfield 1996). And as the

sample size become larger ACF jPACF estimates tend to lower variability hence better

approximation of the underlying process. However when the sample size is small then the

interpretation of ACF jPACF patterns will acquire larger variances leading to subjectivity

of the model identification.

To reduce this subjectivity, a model selection criteria referred to as Akaike Information

Criterion(Akaike,1974)and the small sample bias corrected equivalent AICc(Hurvich and

Tsai,1989)is used. Bayesian Information Criterion (BIC)can as well be used.
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AI C/AI C; selection of the model involves estimation by maximum likelihood methods of

a set of model candidates. The model candidates will then have their AI C / AI Cc values

determined and the model candidates with minimum AI C / AI Cc is then selected as the

model that is closest to the statistical process generating the data.

AIC is calculated as AIC = -2ln(L) + 2r where In(L)is the loglikelihood of the model

and r = p + q + P + Q + 1

AICc = -2ln(L) + 2r + 2r(r + l)/(n - r - 1) where n = N - D - d is the number of

observations used to fit the model.

And BIC= -2ln(L) + r + rlnN

Both AIC and BIC involves objective approach with adequate penalty terms to models

with excessive model parameters. It thus encourages a model with fewer parameters.

3.5 Model estimation

After identifying the model its parameters are estimated. The following discussion tries

to estimate the model parameters for ARMA model.

Consider an AR process of order 1 given as

(3.9)

We wish to estimate f.L and ex from the observed series.

We can give maximum likelihood approach so as to estimate the above parameters.

We note that from the above equation:

• f.L represents the mean value of each X, hence we estimate Ii = x the sample mean

of the data .

• ex represents the first autocorrelation of (Xt). S6 we estimate it by a = 71, the first

sample autocorrelation coefficient.
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• Given ji and a we can construct residuals et = (Xt-J...L)-a(Xt-1-ji) t = 2,3 ... n

and the estimate a2 = var(et) by the residual mean square '£l=:"'21e
; S (J...L,a) +

l:~=2(Xt - J...L)- a(Xt-1 - J...L)2

to obtain least /1. and a squares we differentiate S (/L, a)

~~= 22:~=2(Xt - J...L)- a(Xt-1 - J...L)(a-1) = 2(a -1)[2:~=2(Xt - aXt-l) + (a -l)(n -1)fl.]

and

~~(fl., a) = -22:~=2(Xt - /1.) - a(Xtl - j1,)(Xt-l - I),)

= -2[2:~_2(Xt - fl.) (Xt-l - fl.) - a l:(Xt-l - J...L)2]

for least squares

(3.10)

(3.11)

(3.12)

For moving average ~ is approximated by the solution of the following recursive equations

in the form:

(3.13)

(3.14)

(3.15)

(3.16)

el = Xl - f1

e2 = X2 - f1 - ~el

Thenl:~=l e; may be calculated for the initial values of f1 and ~ a procedure that could

be repeated for other values of fl. and fJ and the sum of squares 2: e; computed for a grid

of points in the (fl., fJ) plane.
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. " \nVERSITY'j
S.G. S. Ll8RARY



CHAPTER 3. MODELLING OF THE TIME SERIES 24

The parameters can be estimated using statistical package.

3.6 Model checking

Before fitting the model to the data it must be checked and modified accordingly to ensure

that it is consistent with background knowledge and characteristics of the given data.

With residual analysis done

(3.17)

a good model provides the random series and its autocorrelation function if examined fall

within the bounds of (2/ IN) in absolute magnitude.

Note that inadequate model will fail to provide optimal forecast which is essential for

an out of sample predictions. It is therefore important to check the fit of the data by

calculating the residuals and then plotting them against time as well as calculating their

correlograms.

For serially correlated residuals in ARMA(p,q) Ljung-Box (1978) proposed use of the

statistic
m

Q = n(n + 2) 2:)n - h)-l(rf0 rv x2(m - p - q)
h=l

(3.18)

where n is the number of terms in the differenced series, m is the sample size which is

usually chosen in the range of 15 to 30. For SARIMA (p,d,q)(P,D,Q) the above statistic

remains valid with little adjustment X2 having m-p-q-P-Q degrees of freedom. Thus,

m

Q = n(n + 2) 2.)n - h)(rf0 rv x2(m - p - q - P - Q)
h=l

(3.19)

If Qcomputed > Qtable then reject the fitted model.

3.7 Forecasting
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3.7.1 Introduction

Here we discuss how the current observed time series can be used to predict future values.

This can be done by following the forecasting procedures. The process can be achieved

by interpolation of the missing gaps falling between the two sections of the known data.

The challenges to this process are:

• whether the historical data can continue to the future predictions

• whether the most appropriate model that can sustain the future predictions accu-

rately

• whether the level of errors that are carried forward may increase in future predictions

thereby losing the vital accuracy required.

According to P.Diggle (1990, p.194), Box and Jenkins (1970) built a general forecasting

methodology from the assumption that the time series in question possibly after transfor-

mation and differencing is generated by stationary autoregressive moving average process.

Forecasting procedure therefore involves finding a suitable model, fitting and checking it

to examine trend and seasonality. This can be done by use of correlogram and sam-

ple autocorrelation function to determine the appropriate model that describes the data

adequately.

3.7.2 Imputation method

This is method of filling the missing gaps by putting reasonable values whose character-

istics are similar to the observed values. Imputation can be direct or indirect and for

ARIMA models,indirect regression imputation method is commonly used. It involves re-

placing missing observations with predicted values from a model through extrapolation.

Abraham(1981) suggested interpolation of adjusted missing value based on the known

segments of ARIMA (p.d.q). This can be approached in two ways.
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• Eventual forecast from a model

This involves fitting the model to each segment of the known data and extrapolating

the missing values from eventual forecast. In this case forecast would be done to the

lower segment and back cast to the upper segment. The two estimates if combined

should give more accurate estimate .

• Holt-winter forecasting procedure

This procedure is most suitable for linear seasonal time series. In this procedure

future observations are made based on the weight of the most recent observations

known.

Thus current observation is estimated as

n-l
x; = Lwtxn-t

t=O

(3.20)

where (wt) is a set of weights which sum up to unity.

According to Abraham and Ledolter (1983) k step ahead forecast made at n can be

calculated from
n-l

X(n,k) = CLwt
Xn-1

t=O

(3.21)

where w is a discount coefficient such that w < 1 and c = l-w is a factor needed tol-wn

normalise the sum of weights to 1

Since
n-l 1_ wn",wt - _
6 l-w
t=O

(3.22)

it follows that

(3.23)

If n is large then the term wn in C goes to zero and exponentially weighted l-step ahead

forecast can be written

Xn,l = (1- w) LwjXn-j
j=O

(3.24)

i
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The coefficient a = 1 - w is referred to as smoothing constant and is usually chosen

between 0.05 to 0.3(See Abraham and Ledolter(1983)section 3.3)The above equation can

be written as

Xn,l = a(Xn + (1 - a)Xn-1 + (1 - a)2 Xn-2 + ...) (3.25)

a(l + (1- a)B + (1- a)2B2 + ... (1- a)jBj + .. ,)Xn (3.26)

But (1 + (1- a)B + (1- a)2B2 + ...) = (1- (1- a)B)-l

So that equation above becomes

~ 1
X(n,l) = ([1 _ (1 _ a)Bl )aXn (3.27)

This implies [1 - (1 - a)B1Xn-1 = aXn

(3.28)

From the equation above X(n,l) is weighted average of current observation Xn and the

previous forecast X(n-l,l) We can rewrite it

(3.29)

an equation which can be used to update the smoothed statistics any time t.

This algorithm due to C. Holt is referred to as exponential smoothing.



Chapter 4

Data analysis and Discussion

4.1 Introduction

In this chapter analysis is done based on what was discussed in the preceding chapter.

This chapter intends to identify the model for both the lower and the upper segment of

the time series data.Both would be useful in imputation by forecasting to estimate the

four missing observations.

4.2 Data analysis on segment1

Here we examine the plots of the entire data from January 2001 to December 2012 in-

cluding the missing values. We also examine their ACF and PACF which is useful in

determining stationarity/non-stationarity. the results would provide good base to convert

it to stationarity for the lower segment with a view to obtain the appropriate model.

28
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Figure 4.2: Time plot between Jan2001-Nov2007(with ACF and PACF).
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4.2.1 Stationarity

2005 2006 2007

The above time plot for the data for the period January 2001 to November 2007 which is

a subset of the entire data set for January 2001 to December 2012. The window function

in statistical package R was used to get this subset of the data. There seems to be an

increasing trend and seasonal variations in the time series data as shown by the above

time plot,plotted along with an ACF and PACF.
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From these plots, we see that the fish landing data are seasonal and trending upwards.

This means that the mean of the data will change over time. The ACF decreases slowly

and they are large and positive. Therefore this series is not stationaryand should be dif-

ferenced.
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Figure 4.3: Decomposed series of data for (Jan2001-Nov2007)
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The aim of decomposition is to separate( estimate) the time series into its three compo-

nents: seasonal component, trend and irregular(random)component.
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We use the multiplicative model since the seasonal and random fluctuations do not seem

to be roughly constant over time. To convert it to additive series, we take logs first. The

decomposed series is as shown above.The decomposed series shows an overall increasing

trend and presence of seasonal variations.

Figure 4.4: Plot of differenced series of segment1(to remove trend component) with ACF

and PACF
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Stationary test takes the null hypothesis that the time series is trend stationary.
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4.2.2 SARIMA Model

The first difference has achieved stationarity in the series. The ACF shows that the differ-

enced series is stationary. This means that the order of non-seasonal differencing shall be

1(d=l). Consequently, we shall have that d=l in the model to be proposed. This means

that the seasonal ARIMA model shall be of the form ARIMA(p, 1, q) * (P, D, Q)s. Where

S is the number of observations per period. In this case it is 12 since we have 12 observa-

tions per year. Thus we have zero order autoregressive component of the model,AR(O).

Therefore so far we have a model of the form SARIMA(O, 1, 1) * (P, D, Qh2

4.2.3 Seasonal Differencing

A useful Rfunction ndiffsf ) is used to determine whether seasonal differencing is required.

Results from R:

ndiffs (fishdatal ts)

[1]0

This result means that no seasonal differencing is required. This is also seen in the time

plot of the differenced series, which is already stationary. Consequently D shall be equal

to zero(O) in the model that shall be proposed.

The model shall then be of the form SARIMA(O, 1, 1) * (P, 0, Qh2.

Next, we determine the values of P and Q so as to have a complete SARIMA model. The

characteristics of the ACF and PACF of the differenced series tend to show a strong peak

at h = Is, 2s in the ACF, with smaller peaks appearing at h = 2s, . Upon the inspection

of the ACF and PACF of the differenced series, we find that either:

• The PACF tail off in the seasonal lags. This suggests an SMA of order Q = 1

• The PACF has two spikes. This suggests an SAR of order 2 i.e p = 2
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We therefore have two candidate models:

• (i)SARIMA (0,1,1) * (0,0, 1h2

• (ii)SARIMA(O, 1, 1) * (2,0, Oh2

Model[lJ:SARIMA(O, 1, 1) * (0,0, 1h2

fishdataL, - sarima1

Series:fishdata1 - ts

ARIMA(O, 1, 1) * (0,0, 1)[12J

mal coefficient= -0.4602 and s.e = 0.1410

sma1 coefficient= 0.4584 and s.e = 0.0966

a2 estimated as 31.87 Log likelihood= -259.81

AIC= 525.63 BIC = 532.85

Model[2J:SARIMA(0, 1, 1) * (2,0, Oh2

fishdata.l.j-sarimaz

Series.fishdata L,

ARIMA(O, 1, 1) * (2,0, 0)l2

mal coefficient= -0.5620 and s.e= 0.1076

sar l coefficient= 0.4914 and s.e = 0.1098

sar2 coefficient= 0.2388 and s.e= 0.1233

a2 estimated as 25.08 loglikelihood= -252.58

AIC= 513.16 BIC = 522.79

35
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4.2.4 Decision

Based on the results shown above, we entertain the second model; SARIMA(O, 1, 1) *
(2,0, 0h2 since it has smaller AlC and BIC values compared to the first SARIMA(O, 1, 1)*

(0,0,lh2
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4.2.5 Diagnostic test

Figure 4.5: Diagnostic test for model adequacy of segment 1
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The statistical significance of the derived model must be checked for adequacy. This is

done by considering the properties of the residuals from SARIMA model to be normally

and randomly distributed. The diagnostic test shows that the model is good. The visual

assessment indicate that ACF plot shows none of the sample autocorrelations for lags

1 - 15 exceed the significance bounds and the Q-Q plot also shows normality.
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We can conclude that there is very little evidence for non-zero auto correlations in the

model residuals at lags 1 - 15. We can therefore proceed to forecasting using the model.

4.3 Segment2

4.3.1 Observed data

Figure 4.6: Plot of segment2(Apr2008-Dec2012)with ACF and PACF
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In the above time series data we use auto.arima in R to get a suitable SARIMA model

for this series.

Figure 4.7: Decomposed data into its components(Apr2008-Dec2012)
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The series is decomposed into its three components:trend component,seasonal component

and random component.



CHAPTER 4. DATA ANALYSIS AND DISCUSSION 40

4.3.2 SARIMA Model

The suitable model identified by the automatic procedure was ARIMA(O, 1,2) * (1, 0, 0)12.

The results from R are as follows:

auto.arima/fishdataz.,)

Series: fishdataz.,

ARIMA(O,l ,2) * (1 ,0,0)- [12]

mal coefficients= -0.3314 s.e= 0.1360

ma2 coefficients= -0.4915 s.e= 0.1203

sa1 coefficients= 0.4978 s.e= 0.1324

(J"2 estimated 48.65 loglikelihood= -190.37

AIC= 388.74 and BIC= 397.12



CHAPTER 4. DATA ANALYSIS AND DISCUSSION 41

4.3.3 diagnostic test

Figure 4.8: Diagnostic test for model adequacy(segment2)
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The model seems to suit the above time series data very well as the p-values are almost

near the zero autocorrelations hence within significance bounds.
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4.4 Forecast

4.4.1 forecasted values

42

Values forecasted from the lower segment of the time series data include:54.1, 53.7, 52.S

and 49.9. The lower segment was used to forecast since it had a lot of observed data

hence had a longer history of the time series which is a prerequisite for good forecast.

Figure 4.9: Plot of forecasted values (Jan2007-Dec200S)
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Figure 4.10: Plot of complete fish landings including forecasted values (J an200l-Dec2012)
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Figure 4.11: Plot of actual versus forecasted values( Apr2008-Nov2009)
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The above forecasted values were superimposed on the actual values on the upper segment

with a view to compare and determine the level of accuracy between the actual and

predicted values obtained from the model.
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4.4.2 Linear regression of the actual versus forecast

The regression analysis done using R gave the following results:

i.,lmI-1m (fishdata2Actual f is hdata2F orecast)

> lm

Call :

lm(Jormula = fishdata2 Forecast)

Coefficients: (Intercept)=-17.324 fishdata2Forecast = l.284

Residuals: min = -10.739 1Q = -3.045 median = l.074 3Q = 2.336 Max =

8.520

Coef ficients :

Estimated std error(t)value pr(> Itl)
(Intercept) - 17.3236 10.0299 - l.727 - 0.101

fishdata2Forecast l.2845 0l.902 6.752 2.51e-06***

signif.codes: 0'***'0.001 '**'0.01 '*'0.05'. '0.1" 1

Residual standard error:4.833 on 18 degrees of freedom

Multiple R-squared: 0.7169,

Adjusted R-squared: 0.7012

F-statistic: 45.59 on 1 and 18 degrees of freedom,

p-value: 2.507e-06.

N ate: the high value of adjusted R-squared shows that the fitted values are closer to the

actual ones.
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Research findings and

Recomendations

5.1 Introduction

This chapter presents the research findings, conclusions and recommendations based on

the objectives.

5.2 Conclusion

The purpose of this research was to estimate the missing values of the seasonal time

series using a suitable model, we have identified the model,estimated its parameters and

used it to fill the gap through forecast of the lower segment of the data. We graphed

the raw data indicating the missing gaps. The autocorrelation function and the partial

autocorrelation functions when plotted for the lower and upper segments indicated the

SARIMA models: SARIMA(O, 1, 1)(2,0,0)12 and(O, 1,2)(0,0, 1h2 respectively were most

suitable for the data. Forecast done from the lower segment estimated the values for

• Dec-07 54.1

46
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• Jan-08 53.7

• Feb-08 52.8

• Mar-08 49.9

Further forecast values were obtained beyond the gap upto November-09 which were used

to test the level of accuracy between the actual and predicted values. Regression analysis

between the actual and the forecasted values done indicates that the predicted values

are closer to the actual values signifying that the missing values estimated are better

estimates.

Our research has therefore indicated that SARIMA interpolation which was developed by

Box-Jenkins has provided the most suitable methods for estimating missing data.

When the missing values are quantified it is noted that about 210.4 tonnes worth of the

Nile perch were not harvested due to the chaos that lasted for about four months. This

had a negative impact on the economy of the region in which fishing is a major economic

activity.

5.3 Suggestions

In our project we have examined time series of univariate case only. This project would

have as well addressed the multivariate cases especially harvesting of other species of fish.

Our project is limited to a consecutively missing values only. We suggest that non-

consecutive cases are also prone to occur and should be investigated.

Our model obtained was restricted to relatively fewer observations this could have con-

tributed to greater variability leading to a subjective model.We recommend that larger

amount of data be used to enhance accuracy in modelling time series and hence use the

model to make better estimates.

The project discussed the data obtained by the fishermen and recorded by the authority

b ·f . ""1
\,JwiVERSITY I

LIBRARY .JG '.... . s.



CHAPTER 5. RESEARCH FINDINGS AND RECOMENDATIONS 48

but did not account for unrecorded harvests i.e the quantities that were locally con-

sumed.We therefore recommend that better mechanisms to be examined so as to take

care of this significant error of omission.

~..
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