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Abstract

A closed densely defined operator H, on a Banach space X, whose spec-

trum is contained in JR and satisfies the growth condition

II (Z-H)-l II:::; CII~~:l Vz E iJR for some a ~ 0 and C > 0 is of (00,00+1)

type R In studying spectral theory, the main interest has been finding

a criteria for an operator to be of scalar type. Different approaches have

been used so far, for example, Kantorovitz established a criteria using

boundedness of operators with real spectrum acting on a reflexive Ba-

nach space. He also characterized scalar type operators using semigroup

theory where it is shown that a bounded operator H is a scalar type if and

only if iH generates a definite group. The method uses Laplace transform

and mainly applies to bounded operators. Thus there is need to extend

this characterization to unbounded operators. If a > 0, fEU where U

is an algebra of smooth functions and H is of (a, a + 1) type JR, then the

integral f(H) := -~ Ie ~{(z - H)-ldxdy is norm convergent and defines

an operator in B(X) with II f(H) II:::; c II f Iln+l' The map f --t f(H) is a

U- functional calculus for H. Using this functional calculus and the semi-

group of (a, 00+1) type JR operators, we characterize scalar type operators

H satisfying the first inequality. We determine the necessary condition

for a densely defined closed linear operator H acting on a Hilbert space

1-l to be of scalar type for f in the algebra of smooth functions U. We

also characterize the scalar type operators using the semi group theory of

(a, 00+ 1) type JR operators and then give some applications of scalar type

operators in decomposability and abstract Cauchy problems with appro-

priate boundary conditions. This functional calculus is important since

it applies to both bounded and unbounded operators.

v



Chapter 1

Introduction

1.1 Background

Spectral theory generally deals with the study of spectral values and the

associated eigenvectors. One can study the spectral properties of opera-

tors on Banach spaces, for example the compact operators whose spec-

tral properties are similar to that of matrices. The richest functional

calculus occurs in the well known setting of self adjoint operators on a

Hilbert space, which by the spectral theorem, has a functional calculus

for any Borel measurable function on the spectrum of the operator. Let

f(z) be a holomorphic function where z is a complex number, then one

can construct the functional calculus f(T) where T is an operator. In

other words, f(T) a an extension from the complex function argument

to an operator argument. If T is an n x n matrix with complex entries,

then one can define f(T) depending on the nature of I, for example if

p( z) = 2:;;'0 a.z", then the associated polynomial functional calculus is

defined as p(T) = 2:;;'0 aiTi where TO = I (Identity matrix). It defines

a homomorphism from the ring of polynomial to the ring of n x ti of

1



CHAPTER 1. INTRODUCTION 2

matrices. Generally, for f(T) to make sense, f need to be defined on the

spectrum of T. In the case where the operator T denotes a matrix, then

the corresponding spectral values tells us more to what extent f(T) can

be defined, i.e f(A) must be defined for all spectral value A of T. For

a general bounded operator, f must be defined on the spectrum of T.

The functional calculus for bounded operators can be defined via Cauchy

integral formula, that is,

where (~. - T)-l is the resolvent of T at ~ and the mapping ~ -+ (~ -

Ttl is denoted by R(~, T) . The resolvent mapping is important in

determination of the properties required of a functional calculus.

Now, let X, Y denote Banach spaces. We shall also assume that the

underlying field is the complex field. Let C , lR. denote complex and real

fields respectively, while Z denotes the set of integers. We shall denote

arbitrary complex numbers by z := X + iy or w := U + iv x, y, u, v E lR.

and i := J=T. No := {O,1,2, ... } = NU {O} , will denote the non-negative

integers and B(X, Y) denotes the space of all bounded linear operators

from the linear space X to linear space Y and B(X) := B(X, X). An

operator H on X is said to be closed if its graph

G(H) := {(f,Hf) : f E D(H)}

is closed. The graph of H is a closed subspace of X x X or equivalently,

l« E D(H) , 9 E R(H) such that I; -+ f in X and H I« -+ 9 implies

f E D(H) and H f = g. An operator H on X is said to be densely defined
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if its domain D(H) is dense in X. Let H be an operator on X, then the

resolvent set of H is defined as

p(H) := {z E CC: zI - H : D(H) -+ X is invertible}

Equivalently, p( H) is the set of all z E CCsuch that zI - H is bijective

and (zI - Htl E B(X).

Theorem 1.1.1 (Closed Graph Theorem)

If H is a closed operator on X and domain D(H) is a closed subspace of

X, then H is bounded.

If H is closed, then we write z - H for zI - Hand R(z, H) := (z - nv>
is called the resolvent operator of H or simply the resolvent of H. The

set O"(H) := CC\ p(H) is called the spectrum of H.

R(z, H) is a norm holomorphic function of z and satisfies the resolvent

identities.

R(z, H) - R(w, H)

R(z, H)R(w, H)
dn

-d R(z,H)zn

-(z - w)R(z, H)R(w, H)

R(w, H)R(z, H)

(-ltR(z, Ht+1

(1.1)

(1.2)

(1.3)

In this thesis, we consider a closed densely defined operator H acting on

a Banach space X, and whose spectrum is contained in lR and there exists

a C > 0 such that inequality

(1.4)
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is satisfied for all z E iffi. and some a 2: 0, then H is referred to as (a, a+l)

type ffi. operator, see [29].

Here, (z) := Jl + 1 z 12 and Iz denotes the imaginary part of z. A special

case is a Hermitian operator on a Hilbert space. If X** is the second

dual of X, we define a mapping T : x ~ F(x) of X into X** where

Fx(f) = f(x), f E X*(dual of X). If this map is surjective, then X is

called reflexive, that is, if X is a reflexive Banach space, then an operator

T E B(X) is scalar type if it admits an integral representation with

respect to a countably additive projection measure or equivalently if it

admits a C(O"(T)) functional calculus where O"(T) denotes the spectrum

of T [8]. In particular, if T acts on a Hilbert space H, then T admits

C(ffi.) functional calculus if it is Hermitian. Generally, an operator T

acting on a reflexive Banach space is scalar type if and only if it has a

Co(ffi.) functional calculus [19]. Here the space Co(ffi.) denotes the space

of continuous functions with compact support. According to Kantorovitz

[20], if T is an operator with O"(T) C ffi. and acting on a reflexive Banach

space X, then T is scalar type if and only if its infinitesimal generator

generates a uniformly bounded strongly continuous group.

1.2 Statement of the Problem

Our interest is to apply the properties of (a, a + 1) type ffi. type operators,

the U - functional calculus, and the semigroup theory to characterize the

scalar type operators for some a 2: 0 and give some applications to de-

composability and abstract Cauchy problems with appropriate boundary

conditions.
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1.3 Objective of the study

The main objective of this study was to characterize the properties of

scalar type operators. The specific objectives of this study includes;

1. To determine necessary conditions for a densely defined closed linear

operator H acting on a Hilbert space space 1-l to be of scalar type

for f in the algebra of smooth functions U.

2. To Characterize the scalar type operators using the semi-group the-

ory and the functional calculus for (a, a + 1) type lR operators

3. To apply the theory of scalar type operators in decomposability

of operators and some abstract Cauchy problems with appropriate

boundary conditions.

1.4 Significance of the study

So far other approaches like Riez-Dunford functional calculus which relies

more on the resolution of the identity have been used to show that an

operator is of scalar type. Generally, their characterization have been

based mainly on boundedness of the resolution of the identity and the

growth of the resolvents. Our approach however is unique in that we have

used the properties of (a, a + 1) type lR operators and the U-functional

calculus to characterize the scalar type operator H and we have also given

some applications in decomposability and abstract Cauchy equations with

appropriate boundary conditions. This we believe has greatly contributed

knowledge in the field of scalar type operators.
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1.5 Research Methodology

We first reviewed the available literature on the spectral theory in gen-

eral. We then deeply surveyed the existing literature on the scalar type

operators and analyzed some of the methods which have so far been used

to characterize the scalar type operators. The general knowledge of the

holomorphic functional calculus, the semigroup theory of operator, the

U- functional calculus and the properties of (a, a + 1) type IR operators

for a 2 0 were also useful in solving our problems.

1.6 Organization of the study

In chapter one, we give the basic concepts and highlight some prelimi-

nary results necessary in facilitating the development of other chapters

Chapter two looks at the literature review on the fundamental results in

scalar type operators. The main items under consideration here includes

spectral theorem for self adjoint operators, almost analytic functional

calculus and applications of scalar type operators in decomposability and

some abstract Cauchy equations with appropriate boundary conditions.

In chapter three, we state and prove some basic properties of scalar type

operators which will later helps us in the characterization of the (a, a+ 1)

type IR operators. In chapter four, tools developed in chapter two and

three are used to characterize (a, a + 1) type IR operators. In particular,

we characterize the scalar type operators using the U functional calculus

and semigroup theory of (a, a + 1) type IR operators. In chapter five,

we look at the applications of (a, a + 1) type IR operators in decompos-
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ability and to analyze some abstract Cauchy equations with appropriate

boundary conditions. Finally in chapter six, we give the summary and

recommendations for further research.
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1.7 Basic concepts

1.7.1 Scalar operators and scalar type operators

Let X be a Banach space and T E B(X), then T is a spectral operator if it

admits a representation of the form T = S + Q where Q E B(X) is quasi-

nilpotent operator commuting with T and S E B(X) is a scalar operator.

An operator S E B(X) is a scalar operator if it can be represented by

S = Ie Adp,( A) for some spectral measure A E C. Type lR operators are

those that have their spectrum in lR, for instance scalar type lR operators

are scalar operators whose spectrum is contained in R

1.7.2 The U functional Calculus

The U functional calculus for an operator H of (a, a + 1) type lR, is a

continuous map k : U ---t B(X) such that;

1. k(fg) = k(f)k(g) for all t,9 E U

2. If w E <C \ lR, then Tw E U and k(Tw) := (w - nv>

Here, k(f) = f(H)

The definition of f(H) for an operator H of (a, a + 1) type lR for fEU

comes from the version of Helffer and Sjostrand [17] integral formula

118f
-1f(H) := -- -=(z - H) dxdy,

1f c 8z
(1.5)

where J is an analytic extension of f. One ofthe interesting developments

in spectral theory recently has been the application of the new formula for
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a function f(H) of a self adjoint operator H by Helffer-Sjostrand [17J. For

unbounded self adjoint operators acting on a Hilbert space, it is proved in

[17J that (l.5), is an alternative characterization of Co-functional calcu-

lus. For our case, we shall apply the U functional calculus constructed on

more general Banach space in [28J. It is shown in [28J that if n > ex ;:: 0,

fEU and H is of (ex, ex + 1) type .lR, then the integral (l.5) is norm

convergent and defines an operator in B(X) with II f(H) II:::::Co: II f Iln+l
for some n ;::1 for some Co: > O. Well bounded operators are bounded

operators with a functional calculus for absolutely continuous functions.

Many differential operators, not necessarily on a Hilbert space, have well

bounded resolvents, in contrast to situation for spectral operators of scalar

type. However, most standard differential operators on Loo (.lR)or L1 (.lR)

of the real line or the unit interval are not well bounded. We therefore

resort to a more general functional calculus which in our case will be aU

functional calculus. In this thesis, a U functional calculus is defined for

a closed densely linear operator H on a Banach space X with CJ(H) ~ .lR

satisfying the resolvent estimate (1.4), and for functions from weighted

Sobolev spaces [6J. The calculus used here is based on almost analytic

extension to <C of infinitely differentiable functions defined on .lRand the

Helffer-Sjostrand formula [17J. One of the advantages of this formula is

that it allows one to pass easily and flexibly from resolvent estimates to

estimates of other functions. This fact has already been exploited in N-

body scattering theory. Such calculus defines an algebra homomorphism.

We now consider an intermediate topology C~(.lR) C U ~ C(.lR) such that

(ex, ex + 1) type .lRoperators admits U functional calculus. Here C~(.lR)

denotes the space of smooth functions of compact support. It is shown in

----------------------------------------



CHAPTER 1. INTRODUCTION 10

[27] that U is an algebra under pointwise multiplication.

Using this functional calculus and the abstract result from [28], we char-

acterize the scalar type operators by showing that a densely defined linear

operator H acting on a Hilbert space 1-l is scalar type if it is of (0, 1) type

lR and 1/f(H) 1/::;11f 1100for all f E C~(lR.).

1.7.3 The Semigroup theory of Operators

The theory of strongly continuous semigroup has been in existence for

long, with some fundamental results of Hille Yosida[31] dating back to

1948. Generally in semigroup theory, one may focus entirely on the semi-

group, and consider the generator as a derived concept or one may start

with the generator and view the semigroup as the Laplace transform of

the resolvent. More information on these can be found in [16].

Let X be a Banach space. A family T = {T(t) : 0 ::; t < oo} of linear

operators from X ----t X is called a strongly continuous semigroup or Co-

semigroup if the following conditions are satisfied;

• II T(t) 11<oo(ie sup{11 T(t)f II: f E X, II f II::; I})

• T(t + 8)f = T(t)T(8)f for all f E X and for all t, 8 2: 0

• T(O)f = f for all f E X

• t ----t T(t)f is continuous for t 2: 0 and for each f E X

T is called a Co contraction semi group if in addition to the conditions

above

II T(t)f 11::;11f II
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for all t ~ 0 and for all f E X, i.e II T(t) II:::; 1 for each t ~ 0 and II f II:::; 1.

Let T be a Co semigroup on X. The (infinitesimal) generator H of

{T(t) h,,:o is defined by

Hf = lim T(t)f - f = ~T(t)f It=o
HO+ t dt

The domain of H being the set of all f E X for which the above limit

exists. Consider a linear operator H acting on a Banach space X that

generates a uniformly bounded holomorphic semi group {e-.AH} Re(.Al2:0 ,

where Re( A) denotes the real part of A . It follows that in an equivalent

norm; H, iH and (-iH) generates a one parameter contraction g~oup if

and only if H is closed and densely defined and its spectrum contained in

[0,00), [9].

In this thesis therefore, we wish to characterize the scalar type operators

by applying the semi-group theory of (ex, ex+ 1) type lR.operators and the U

functional calculus which can also be found in for example ([27],[28]). One

of our major results would be to show that if a densely defined operator

H on a Hilbert space 7-L is a scalar type, then its dual H* is also of scalar

type and it admits a U functional calculus of scalar type.

1.7.4 Operators and Functionals

Definition 1.7.1

Let IF be a field. A vector space over IF is a non empty set denoted' by

V endowed with two operations called addition and scalar multiplication

such that for all x, y E V and any scalar ex E IF, we have that V is closed

under addition and scalar multiplication.
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Definition 1.7.2

A norm on the vector space V is a function

/I . II: V -t IR,

that satisfies the following axioms. For all x, y E V and a E IF,

1. II x 11= 0 if and only if x = 0

2. II ax 11=1 a III x II

3. II x+y 11:::;11x II + II y II

II . II is a semi norm if it satisfies the first two properties above.

Definition 1.7.3

A Banach space is a complete normed space (V, II . II)
Definition 1.7.4

An algebra is a vector space V over a field IF endowed with the mapping

(x, y) -t xy of V x V -t V satisfying the following conditions for all

x, y, z E V and a E IF.

1. x(yz) = (xy)z

2. x(y + z) = xy + xz; (y + z)a = ya + za

3. (ax)y = x(ay)

Definition 1.7.5

Let T : X -t Y be a mapping from a normed space X to a normed space

Y. We say that T is a bounded operator if there exist a c > 0 such that

II Tx II:::; c II x II, for all x E X
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Defini tion 1. 7.6

An operator T is continuous at a point Xo E X if given E > 0, there exist

a 0' > 0 such that II Tx - T'x; 11< E whenever II x - Xo 11< 0' for all x E X.

In other words, T is continuous on X if it is continuous at every point of

X.

Definition 1.7.7

Let X be a Hilbert space and T : X -7 X be a bounded linear operator

on X into itself. Then for all x, Y E X, the adjoint operator T* of T is

defined as (Tx, YI = (x, T*YI

We now state some properties of normal operators whose proofs can be

found in [31].

1. N(T) = N(T*) where N(T) denotes the nullspace of T.

2. R(T) is dense in T if and only if T is injective. Here, R(T) denotes

the range of T

3. T is invertible if and only if there exist c > 0 such that II Tx II ~ c II
x II for every x E X

4. If Tx = AX for all x E H and A E C, then T*x = AX.



Chapter 2

Literature Review

A fundamental problem in spectral theory involves finding a criteria for

an operator to be of scalar type. The theory of scalar type spectral opera-

tors was initiated by Dunfordjl.O]. His main interest was to generalize the

theory of self adjoint operators defined on general Banach spaces. These

are operators which admits an integral representation with respect to a

count ably additive spectral measure and hence has a functional calculus

for bounded measurable functions on their spectrum. In 1960, Foias in-

troduced a wider class of generalized spectral operators. Originally this

class was defined with the help of spectral distributions instead of spec-

tral measures. This class can be built up with real generalized spectral

operators, that is, operators H E B(X) such that II eitH 11= 0(1 t Ik) for

some k 2: 0 and for real k --7 00. This is equivalent to saying that there

exist C 2: 1 and k 2: 0 such that II eitH II< ell +it I·kfor every t E lR [26].

Other notable approaches come from, for example Kantorovitz [20]., who

established this using the boundedness of operators with real spectrum

acting on a reflexive Banach space. Wermer [34] has shown that the scalar

type operators in Hilbert space are those operators similar to normal op-

14
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erators. The similarity being implemented by a boundedly invertible self

adjoint operator B such that BHiB-l i = 1, ... , k are all normal. In [13],

Foguel has shown that in any space, the sum (product) of two commuting

spectral operators is a spectral operator if and only if the sum (product)

of their scalar part is scalar type operator. This result has been extended

by many authors for example, McCathy [4] considered operators acting

on LP spaces for 1 < p < 00. More recently, Gillepssie [15] obtained that

the sum and product of two commuting scalar-type spectral operators on

a weakly complete Banach lattice are scalar type spectral. A counterex-

ample to this can be given on the von Neumann-Schatten classes Cp, for

1 < p =1= 2 < 00. One wonders under what conditions is the sum of two

commuting scalar type spectral operators bounded. Well bounded opera-

tors have been introduced by Smart [32]. These operators have functional

calculus for the absolutely continuous functions on some compact interval.

Bade[2] has also given answers to the following questions. If T is a family

of commuting scalar type spectral operators, when are all the operators

in the weakly closed algebra generated by T also scalar type spectral, and

what are operators in this weakly closed algebra generated by T. Oleche

[29] has defined the roots and exponentials of (ex, ex + 1) type IR operators

with CJ(H) ~ IR where H is a closed densely defined operator. We there-

fore wish to characterize the scalar type operators using the U functional

calculus constructed in [28], and the semigroup theory of (ex, ex + 1) type

IR operators. Finally, we shall give applications in decomposability and

some abstract Cauchy problems with appropriate boundary conditions.
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2.1 Scalar type spectral operators

Scalar type spectral operator posses a larger functional calculus and give

rise to spectral expansion. These operators can be represented as an

integral with respect to the spectral measure. If T E B(X) is a scalar

type spectral operator, then there exist a unique equicontinuous spectral

measure P in B(X) and an integrable function j such that T := In jdP.

If X is a Banach space then this definition agrees with the well known

definition due to .Dunford [10].

2.2 Resolution of the Identity

Let I]J be a o algebra in a set D and 'H be a Hilbert space. A resolution

of the identity on I]J is a mapping

E : 1IJ ~ B(1-l)

satisfying the following properties for all w, ui", ui" E I]J

1. E(0) = 0, E(D) = I

2. Each E( w) is a self adjoint projection

3. E(wl n wI!) = E(wl)E(wl!)

4. If Wi n ui" = (/)then E(Wi U wI!) = E( Wi) + E( wI!)
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5. For every x E 1-l and y E 1-l the set function Ex,y defined by

Ex,y(w) = (E(w)x, y) is a complex measure on W.

If W is the algebra of all Borel sets on a compact or locally compact

Hausdorff space then Ex,y is regular.

For the proof of the above properties, See [31J.

The following are the consequences of the above properties;

Now since each E(w) is a self adjoint projection, we have

Ex,x(w) = (E(w)x, x) ~II E(w)x 112

for all x E 1-l. Property 4 implies that E is finitely additive. The

main interest is whether E is countably additive, i.e whether the series

l:~=1 E(wn) converges in the norm topology of B(1-l) , to E(w) where w

is the union of the disjoint. sets Wn E W. For a fixed x E 1-l and since

E(wn)E(wm) = 0 when ti -=I m we have E(wn)x and E(wm)x are orthog-

onal to each other. From the property 5, we have

00

I)E(wn)x, y) = (E(w)x, y)
n=l

for every y E H. This implies that

00

I)E(wn)x) = (E(w)x)
n=l

i.e the series converges in the norm topology of 'H
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2.3 Spectral Mapping Theorems

For a comprehensive theory on spectral mapping theorems we refer to

[11].

Theorem 2.3.1 (Spectral mapping theorem for resolvents)

Let H be a closed operator on a Banach space X and A E p(H). Then

the following assertions hold:

1. a-(R(\ H)) \ {O}= (A - a-(H)tl = {A~," : f-L E a-(H)}

2. a-j(R(A, H)) \ {O} = (A - a-j(H))-l for j = p, ap, SU, r

3. r(R(A, H)) = dist(A~C7(H»

4. If H is unbounded, then 0 E a-(R(\ H))

Theorem 2.3.2 (Spectral mapping theorem for Semigroups)

Let {T( t) h::::o be a strongly continuous semigroup and let r be its in-

finitesimal generator. Then;

Moreover, if {T( t) h::::o is strongly continuous semigroup of normal opera-

tors on a Hilbert space and r denotes its generator, then a-(T(t)) = etC7(r)

where etC7(r) is the complex conjugate of etC7(r).
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2.4 Self adjoint Operators

Let Co(JR) denote the space of bounded continuous functions on lR which

vanish as x -7 00 and H denote a Hilbert space. Also let B(H) denote

the space of bounded operators on the Hilbert space H.

We now state the following theorem due to E.B Davies and which is a

version of spectral theorem.

Theorem 2.4.1 ([7])

Let H be a self adjoint operator on the Hilbert space H. There exist a

unique linear map f -7 f(H) from Co(lR) to B(H) such that;

• The map f -7 f(H) is an algebra homomorphism.

• ](H) = f(H)* for all f E Co(lR).

• II f(H) 11::;11 f 1100 for all f E Co(lR)

• Ifw tJ.lR and r(w, s) := (w - S)-l then R(w, H) := (w - H)-l

• If f E Co(lR) has support disjoint from O"(H) then f(H) = O.

2.5 Almost analytic functional calculus and

the semigroup theory of (a, a + 1) type

~ operators

In this section, we look at the main features of the functional calculi which

can also be found in [28] and [3] and the semi group theory of (ct, ct + 1)
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type JR. operators.

Definition 2.5.1

For /3 E JR., we define C(3 to be the space of smooth functions j : JR. --t C

such that for each r 2: 0 there exist c; > 0 such that

I j(r)(x) 1:=1 d~rj(x) I::; c; (x)(3-r

for all x E IR.and (x) = (1+ I x 12)~

We now show that the space U := U(3<oC(3 is an algebra under pointwise

multiplication. VYefirst show that Uis linear.

Suppose j,9 E U, then i.e E C~(JR.), and there exist C1and C2in (0,00)

such that I d:~J(x) I::; (x);'! /3! and I d:nn9(x) I::; (x);,2/32 for some /31,/32 E IR..

Now

dn

dxn aU + 9)(X) I

where /3 = max{/31, /32}. This implies that U is linear.

Next, we show that if j and 9 are functions of class U then their product

is also of class U.

Let j,9 E U then j and 9 are n-times differentiable functions. It follows
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from Leibnitz rule that the nth derivative of the product is given by;

n I
(fg)(n) = '" n. jkg(n-k)

Z:: k!(n - k)!
k=O

00

:S Lo, (X)(31-k (x)(32-(n-k)

k=l

for en > 0 and Di; = k!(:~k)!' This implies that j 9 E U.

The algebra U contains the subalgebra C~(lR) of all smooth functions

with compact support.

The norm on U or C~(lR) is therefore defined as

For j E U, let J denote the following particular almost analytic extension

of j to C of degree n defined by;

(2.2)

where T is a C~(IR) function is non negative such that T(S) = 1 if \ S \< 1

and T(S) = 0 if \ S \> 2.
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and (J(x,y) = T C;») from which it follows that I tzf(x,y) 1= 0(1 y In)
as I y 1-+ 0 for each x ERIn particular ~, = 0 for every z E JR and

which is why we call f an almost analytic extension of f. Note also that

we can find c' E JR such that

(2.3)

asz-+xER

If /'1, is a map such that /'1, : U -+ B(X) then f -+ f(H) satisfy (1.5) and

it is proved in [28], that for n > a 2: 0

• f(H) is norm convergent with II f(H) II::; CU II f Iln+l for some

Cu > 0 and doesn't depend on T;

• the mapping extends to a bounded algebra homomorphism;

• if fEU and f = 0 on a neighbourhood of (J(H) then f(H) = 0;

• if z E iJR then z!H E U and fC!H) = (z - H)-l

For an operator H of (a, a + 1)-type JR, we associate each element fEU

with an operator f(H) E B(X) given by (1.5)

Theorem 2.5.2 ([29])

If H is a bounded operator with (J(H) ~ JR and if z (j. JR then;
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Theorem 2.5.3 (Hille- Yosida Theorem)

Let X be a Banach space. Then H is a generator of a Co- contraction

semi-group if an only if H is closed, densely defined and for each A > 0,

A E p(H) and II (A - H)-l II:::; A-I

PROOF. Let H be a generator of a Co-contraction semi group, then

T(t) = etH is its semigroup and T(t) < 1. Now for each A > 0 and

A E p(H), one has,

II (A - H)-1 II lim rn e->'tT(t)dt
n---+oo io

< lim rn e->.tdt
n---+oo io

in 1
lim Mdt = A-I

n---+oo 0 e

Next, we show that the generator H belongs to B(X), i.e II T(t) - I II~ 0

as r++fl .

Now

II T(t) - I II II ~ t
n

Hn _ I II
L n!
n=O

00 r II H Iin
< L n!

n=1

et\\H\\ - 1 ~ 0 as t ~ 0

o



---_.,--- ..,---
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Corollary 2.5.4 ([29])

IfiH is a generator of a group ofisometries {T(t)h::::o, then for all A E C,

with R(A) -# 0, A E p(iH);

{

rOO T(t) ->'tdt if Re(A) > 0,'(A _ iH)-1 = Jo e ,

- JoooT(t)e->'tdt, if Re(A) < O.
(2.4)

Theorem 2.5.5 ([26])

Let H be a densely defined linear operator on a Banach space X, then

the following two statement are equivalent.

(i) H generates integrated semigroup.

(ii) There exist real constants wand C and kENo such that I R(A, H) I::;
C(l+ I u I)k for all u E C with Re(A) > w.

Theorem 2.5.6 ([27])

If f : [0,00) --+ <C is such that

for some f3 < a and for all r 2: a and for all x 2: a and H is of (ex, ex + 1)

type lR with (J(H) ~ [0,00), then f(H) is uniquely determined and

II f(H) 11::;11 f Iln+1

for k > a whenever n > ex

Theorem 2.5.7 ([28])

Let H be an operator of (ex, ex + 1) type lR for some ex 2: O. If w E <C \ lR and

rw(x) := (w - X)-I for all x E lR, then rw E U and rw(H) = (w - H)-I.
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Theorem 2.5.8 ([28])

If fEU and H is self adjoint on a Hilbert space 1i, then

II f(H) II::::: II f 1100 .

Definition 2.5.9

If fEU and H is self adjoint, on a Hilbert space 1i, then the functional

calculus

k : U 3 f --+ f(H) E B(H)

can be extended to a unique map

k : Co(lR) 3 f --+ f(H) E B(H)

such that;

1. f --+ f(H) is an algebra homomorphism.

2. /(H) = f(H)*

3. II f(H) 11:::::11 f 1100

4. If wEe \ lR and r-» := (w - 8)-1 then Tw(H) = (w - Ht1

Moreover the functional calculus is unique subject to these conditions.

Note that for information on the above you can See[28]

Theorem 2.5.10 ([28])

If H is of (a, a + 1) type lR for some a > 0, then H admits C~(lR.)

functional calculus.
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Definition 2.5.11

Let H E B(X), then the semi group etH is said to be bounded if there

exist a constant C ~ 1 and "y ~ 0 such that

(2.5)

for all t .> O.

Theorem 2.5.12 ([29])

Let H be a bounded operator with O'(H) ~ lR, and II eiHt II::; C(l+ I t I)a
where ex is a non negative integer. Then H is of (ex, ex + 1) type lR

REMARK 2.5.13

The above theorem is consistent with theorem 2.4.5 hence one can deduce

that if Theorem 2.4.12 holds then H generates an integrated semigroup.

The following are two immediate consequences arising from the above

theorem;

Corollary 2.5.14

If ex ~ 0 is the minimal constant such that inequality in Theorem 2.4.12

holds, then T(t) = eiHt is ex contractive

Corollary 2.5.15

If {T(t) h:::o is 0 contractive and C = 1, then H is of (0, l)-type lR and

the inequality in Theorem 2.4.12 reduces to a contraction 'semi-group and

(0,00) ~ p(H)

We now state another version of Hille Yosida theorem given below;
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Theorem 2.5.16 (Hille Yosida[31])

A closed densely defined linear operator H on a Banach space X is the

infinitesimal generator of a semigroup T(t) if and only if there exist a

constant C and "I such that for every A > "I, (AI - H) is invertible with

(2.6)

VmEN

The following is an immediate consequence of the above theorem.

Corollary 2.5.17

If m = 1 (2.6) reduces to

(2.7)

Theorem 2.5.18 (Stones theorem[31])

Everyone parameter group of unitary transformation is of the form eiHt

with H self adjoint.

Definition 2.5.19

If "I is a rectifiable Jordan curve and nb :c) denotes the winding number

for c E C \ "I and nb :c) = 1, then "I is said to be positively oriented. A

positive Jordan system is a collection I' := {'Y1, ... , "1m} of pairwise disjoint

rectifiable Jordan curves such that for all c t/. "Ii, for all i,

m

n(f: c):=Lnbi: c) = Oor1
i=l

The inside(ins) of I' is the set insf := {c E C : n(f : c) = 1}
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Theorem 2.5.20 (Green's theorem)

Iff is a smooth positive Jordan system with G := insf, J E C(G)nC1(G)

and ~, is integrable over G then

r . r 8Jl,J(z)dz = 2~JG 8-zdxdy (2.8)

Corollary 2.5.21 ([21])

Let H be an operator on X with G c p(H) and

g(z) := J(z)(z - H)-l is such that 9 E C(G) nC1(G) and ~iis integrable

over G then

2.6 Distributive derivatives

Let C~(D) denote the space of smooth functions with compact support

contained in D. One can define a distribution to be a continuous linear

functional ¢ : C~(D) -t C where the underlying space is given the usual

topology. If J E Loc1(D) then J may be identified with a distribution ¢f

given by the formula

Given a multiindex a, the week derivative DQ¢ of the distribution ¢ is

given by (DQ¢)(g) = (-l)IQI¢(DQg) This is in line with the usual notation

of differentiation if we associate ¢ with differentiable function on D and

therefore allows us to extend differentiation to a wider class of functions.
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2.7 Asymptotic analysis and Notations

A symptotic analysis is a method of classifying limiting behavior by con-

centrating on some trend. The notations provide a convenient language

for handling statements pertaining to the order of growth. Asymptotic

expansion of the function f (x) is an expression of that function in terms

of infinite series, the partial sum of which do not necessarily converge

but such that taking any initial sum provides an asymptotic function for

f. The successive terms provide a more and more accurate description

of the order of the growth. Let f(x) and g(x) be two functions defined

on some subset of real numbers. We say f(x) is O(g(x)) as x -7 00 if

and only if there exist numbers Xo and M such that I f(x) I::; Mg(x) for

I x - Xo 1< 6. Note, in mathematics, both asymptotic behaviours near 00

and near a constant a are considered. In computational complexity, only

asymptotic near infinity are considered.

2.8 Basic LP Theory

Let 0 be lebesque measurable subset of ]RN. For P E [0,00), let LP(O)

denote the space of measurable functions f : 0 -7 CCwhich have finite

norm denoted by

II f 11=(11 f(x) I" dNx) l

if P E [1,(0) otherwise, II f 1100= min{.\ : meas{x :1 f(x) I> .\} = O.

Identifying functions which are equal excepts on the set of measure zero,

the LP(O) becomes a Banach space. In particular L2 (0) is a Hilbert space
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when equipped with the inner product

(1, g) =1f(x)g(x)dN
X

Let p, q, r E [1, (0) and let f E LP(D), 9 E Lq(D), then from Holders

inequality, we have that if
1 1 1-=-+-r p q

then

From Young's inequality, we have that if

1 . 1 11+-=-+-r p q

and
1 1 1-=-+-r p q

then for functions f E LP(JRN), 9 E Lq(JRN), the convolution f * 9 is

defined as follows

(f * g)(y) = ( f(y - x)g(x)dN X
JIRN

and II f * 9 Ilr:::;11filii 9 Ilq· Let f E Ll(JRN) n L2(JRN) then the Fourier

transform of f denoted by j is defined by
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for 1 < p < 2, and if p is conjugate to q, we've

II j Ilq~ (27f)N/2-N/P II flip

for all such p. This means that the map F: f -+ j can be extended to a

bounded linear operator from LP(JRN) -+ Lq (JRN) for all such p.

2.9 Application to Decomposability and Cauchy

Problems

If H is a bounded operator on a complex Banach space X, then H is

decomposable if whenever {U1, U2, ... , Un} forms an open cover of X, there

exists a closed T- invariant subspaces Yk such that X can be expressed

as X = Y1 + Y2 + ...,+Yn and O"(H I Yk) ~ Uk for k = 1,2 ... ,. Since this

class comprises of normal operators on a Hilbert space, it follows that the

class is of (0;,0; + 1) type JRoperators. In our study, we shall show that

if H, is of (0;, 0; + 1) type JR operators and that it generates a strongly

continuous group on a Banach space, then its resolvent is decomposable

whenever A E p(H, X).

For. application to Cauchy problems, we consider the general abstract

Cauchy equation given by;

{
u'(t)=-Hu(t),

u(O)=x,

t > O'- ,
(2.10)

xEX.

It is well known that a function u(.) : [0, (0) -+ D(H) with u(.) E

([0, (0); X) and u(O) = x which satisfies (2.10) is a solution of (2.10).



CHAPTER 2. LITERATURE REVIEW 32

In studying (2.10), the notion of integrated semigroups comes in handy.

This is a class which comprises of the one parameter semi-group and

the cosine families. However, it is also important to note that some

classes of abstract Cauchy equations exist where the elements of e-tH

is not bounded operators, for example the Schrodinger operators acting

on LP(~n), 1 < p ::::;CXJ for P i= 2. To deal with such problems, one needs

to find larger sets of functions f giving rise to bounded operators in form

of e-tH f(H) such that the solution of (2.10) exist. In [18] it had been

realized that (1.5) can be used to study Schrodinger operators on LP (~n) ,

1 ::::;P ::::; CXJ for P i= 2, in which case the general solution u(t) = e-itH

of the Schrodinger equation is unbounded. This means that in (2.10)
I

one must look for a suitable functional calculus involving Hand «!",
and so the notion of U functional calculus comes in handy. In our study

therefore, we shall apply the U functional calculus for (ex, ex + 1) type ~

operator H satisfying (1.5) to study some abstract Cauchy equations of

the form given by (2.10) where the solution denoted by u(t) is unbounded.
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Scalar type operators

3.1 Basic properties of scalar type opera-

tors

In this section, we highlight some basic properties of the scalar type oper-

ators relevant to our study area. In particular, we emphasize on the basic

properties of the semigroups whose generators are scalar type operators

and which forms an integral part in the characterization of scalar type

operators. Let X be a Banach space and X* be its dual. An operator on

X will be a linear operator which is not necessarily bounded and whose

domain and range are subset of X. We now state and prove some of the

properties of scalar type operators.

Our first result relates self adjoint operators and (0,1) type lR operators.

Theorem 3.1.1 ([29])

Let H be a self adjoint operator on a Hilbert space H, then H is of (0,1)

type lR

33
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Our next three theorems give a characterization of a strongly continuous

positive scalar type operators acting on a Hilbert space 'H. The proofs of

the theorems can be found in [33].

Theorem 3.1.2

Let {T( t) h:::o be a strongly continuous semigroup of positive scalar type

operators on 'H. Then the infinitesimal generator H, is scalar type with

spectrum contained in some interval (-00, c], and there exist a resolution

of identity F(.) defined on the Borel set such that T(t) = J~ooeAtdF(A)

where F(.) is the resolution of the identity for H.

Theorem 3.1.3

Let {T(t) h~o be a strongly continuous semigroup of positive scalar type

operators on a Hilbert space 'H, then T(t) is self adjoint.

Theorem 3.1.4

Let {T(t)}t~o be a strongly uniformly continuous semigroup of positive

scalar type operators on a Hilbert space 'H, then the infinitesimal gener-

ator H is a scalar type operator.

The following is a consequence of Theorem 3.1.3 and Theorem 3.1.4

Corollary 3.1.5

If H satisfy (1.4) and {T(t)}t~o is a strongly continuous semigroup of

positive scalar type operators on a Hilbert space 'H, then T(t) is self

adjoint and H is of (0,1) type lR and hence a scalar type operator.

PROOF. The first part of the Corollary follows from Theorems 3.1.4 and

2.4.18, and the last part follows from Theorem 3.1.1. 0
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3.2 Pseudo Hermitian and scalar type op-

erators

In [14], Foias proved that if {T(t) h::::o is a strongly continuous semigroup

of scalar type operators on a Hilbert space H, with a uniformly bounded

resolution of identity, then T(t) is similar to a semigroup of normal oper-

ators. That is a normal operator on a bounded Banach space is normal,

if it is a scalar type operator with all the projections in the range of its

resolution of the identity hermitian.

We now give the characterization of a bounded spectral operator called
i

Pseudo-hermitian (p.h) operators. These are scalar type spectral opera-

tors with real spectrum. This terminology is motivated by the fact that

a pseudo-hermitian operator S on Hilbert space is similar to a hermitian

operator. This is due to Mackey's [24] result on the existence of a non

singular operator P such that the resolution of the identity E(.) of H

satisfies E (6) = P E (6)p-1 where 6 are Borel sets defined on the complex

plane, and E( 15) is self adjoint. Thus the Pseudo-hermitian operators play

the same role in Banach space as hermitian operators play in a Hilbert

space. If H is a spectral scalar type operator, with a resolution of identity,

then H can be defined as H := A + iB where A, B are pseudo-hermitian

operators. The operators A and B commute and any operator commuting

with H, must also commute with A and B.

We now state and prove the sufficient condition for a bounded operator

to be a pseudo hermitian operator.

Theorem 3.2.1

Let H be a bounded linear operator on a Hilbert space H, then H is
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pseudo-hermitian operator, if and only if the group {e-27riAH} is uniformly

bounded for all A E JR

PROOF. We only need to prove the sufficient condition. If {e-27riAH} is

uniformly bounded, then there exist M > ° such that II e-27riAH II::::: M.

Since H is Hermitian, it follows from [24] that there exist of a non singular

operator P such that p-1eiAH P for A E JR forms a group of unitary opera-

tors. This group generates a self conjugate operator S since is generates

a strongly continuous group of isometries. It follows from Stones theorem

and Theorem 3.1.1 that S is of (0, 1) type JR hence a scalar type operator.

Now S = p-l H P and hence it is bounded. Hence S is hermitian and

H = PSp-l implies that H is Hermitian, ie Pseudo-hermitian operator

and it is also of (0,1) type R

The following is an immediate consequence of Theorem 2.4.12;

o

Corollary 3.2.2

If a = 0, then H is of (0,1) type JR and II eiHt II::::: C < 00. In particular,

H is a pseudo hermitian operator, and so it is a scalar type operator.

PROOF. The proof follows from the fact that (0,1) type JR operators are

self adjoint operators and so they generate a semi-group which is also self

adjoint, and therefore by Stones Theorem H is self adjoint and therefore

it is a pseudo-hermitian operator, hence a scalar type operator. 0

We now state and prove a theorem relating the pseudo Hermitian opera-

tor and the space Ll(JR).
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Theorem 3.2.3

If H is a bounded linear operator on a Hilbert space, then the following

two statements are equivalent.

(i) H is a Pseudo-hermitian operator.

(ii) For every f E Ll(JR),

111 f(>-.)e-27riAHd>-' II::; M II j II,

where the norm on the left is of the operator norm, f is the Fourier

transform of f and II . II is the supnorm.

PROOF. (i) implies (ii) follows from the definition of Pseudo-hermitian

operator H for f E Ll(JR) and so we only need to prove that (ii) implies (i).

Now since (ii) is uniformly bounded, it implies that II e-27riAH II::; M < 00

by Corollary 3.2.2. Also H hermitian, and so it follows from [24], that

p-1eiAH P forms a group of unitary operators where P is non singular. It

now follows from Stones Theorem that H is self adjoint and by Theorem

3.1.1 that H is (0,1) type JR operator. Finally invoking Corollary 3.2.2

gives the required result. D



Chapter 4

Characterization of scalar

type operators

4.1 Introduction

In this chapter, we give the characterization of (ex, ex + 1) type IR. operator

H acting on a Hilbert space 1{ for the case when ex = 0. This is given

comprehensively in the next section.

4.2 Characterization of scalar type opera-

tors of (O,1)-type ffi.

Our first result relates the (0,1) type IR. operator and its generator.

Theorem 4.2.1

H is of (0, I)-type IR. with the constant C = 1 in equation (1.4) if and

only if iH is a generator of a one parameter group of isometries on X.

38
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PROOF. Suppose H is of (0, I)-type IR with C = 1, then it follows from

Corollary 3.2.2 that H is a Pseudo-Hermitian operator, and hence a scalar

type operator. Also the resolvent of H is bounded and its semigroup

T(t) = eitH is also uniformly bounded by Theorem 2.4.12. Also from

Theorem 3.1.4, the semigroup is self adjoint, hence it follows by Theorem

2.4.18 that H is self adjoint. Further, applying Theorem 3.1.5 implies

that H, is indeed a scalar type operator. Now, iH also generates Laplace

transform defined by

where T(t) = eitH for all A E rc with A E p(H). Since iH generates a

group of isometries, it follows that H is densely defined. Now for A > 0;

(A - iH)-l f is the Laplace transform of T(t)f = eitH f given for f in

the domain of H which isa bounded operator. Conversely suppose H

is densely defined and Theorem 2.4.12 holds, then T(t) is a semigroup.

From the uniform boundedness principle, T(t) is uniformly bounded on

compact intervals. From Corollary 2.4.4 and density of D(H), implies

that T(t) is strongly continuous. It follows that iH is a generator of one

parameter group T(t) and this completes our proof. 0

The next result relates (0, I)-type IR operators with scalar type operators.

Theorem 4.2.2

A densely defined linear operator H acting on a Hilbert space 1-£, is scalar

type if it is of (0, 1) -type IR and II f(H) IISII f 1100 for each f in the

algebra of smooth functions U
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PROOF. Let H be an operator acting on Hilbert space 7-l and O'(H) ~ IR

then H is a Pseudo Hermitian operator and it follows from Corollary 3.2.2

that it is a scalar type operator. Since iH generates a one parameter group

which is of scalar type, and H is of (a, a + 1) type IR operator, then H

admits a functional calculus given by (1.5) for all J E U. Now, (1.5)

is continuous by (1.4) and (2.3). From Theorem 2.4.8 we see that the

functional calculus (1.5) converges absolutely. Since H is Hermitian, it

follows from Riesz Representation Theorem that for J E U there exist a

complex Borel measure p, on O'(H) such that

J(H) =1 J(z)p,dz.
a(H)

This implies that H is a scalar type operator, hence the proof. D

The next result gives the relationship between a closed densely defined

operator Hand iH,

Theorem 4.2.3

Let H be a closed densely defined operator on a Hilbert space 7-l. Then

iH is a scalar type operator if H is also a scalar type operator.

PROOF. Let H be a closed densely defined operator on a Hilbert space

7-l satisfying (1.4), and O'(H) ~ R It follows from Theorem 2.4.16 that

II (AI - iH)-m II:::; C(A - ,)-m for all mEN and C > O. Also from

Laplace transform and for A > 0 and x E X one has;

(4.1)

Using standard properties of Laplace transform and semigroup Theory
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we have, By integration by parts

1 100

II Rr;.:x II (_ )1 tm-1e->.t II T(t)x II dt where m = 1,2,3 ...
mI. 0

1 100

tm-1e->.t II eiHtx II dt
(m - I)! 0

C 100

< II x II tm-1e->.t(l+ It I)Udt
(m - I)! 0

C 100

< tm-1e(u->.)t(l+ It Itdt with II x 11= 1
(m - I)! 0

Applying corollary (2.4.15) and taking m = 1, we have;

This implies that iH generates a contraction semi-group given by T(t) =

eiHt. Since T(t) is self adjoint, it follows that the resolvent set (AI -inv>
is also self adjoint and so (AI - iH) is also self adjoint. If (AI - iH) is

self adjoint then H is also self adjoint and so it is of (0, I)-type IR. and

hence by Corollary 3.2.2 it is a scalar type operator. Now since eiHt is

a scalar type operator with bounded resolution of the identity, then it

follows from spectral theorem that a unique projection valued measure

E(.) from the Borel o-field on IR.exist such that the generator iH of T(t)

is also a scalar type operator with the same bounded resolution of the

identity E such that

iH = 1(iA)E(dA)

and this completes our proof. o
The next theorem relates an operator H and its adjoint H* on the Hilbert

space.
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Theorem 4.2.4

IfH is a Hilbert space and H is a bounded scalar type operator on H, then

H* is also a scalar type operator and it admits a U functional calculus.

PROOF. Let H be a scalar type operator and U denote algebra of smooth

functions. Also let C~(IR) be the sub algebra of U generated by {gJ.L :

gJ.L(>') = (/-1- >.)-1, /-1rf-lR}. It follows from theorem 2.4.7 that gJ.L(>') E U

and gJ.L(H) = (/-1- H)-I.

For J E C~(lR), and for all z rf-lR, the U functional calculus (1.5) yields;

118- 11- (J(H) := -- 8-J(z)(z - Ht1dxdy = --2' J(z)(z - H)-ldz.
tt G z m r

It follows from Theorem 2.4.8 that II J(H) II is bounded for each J E

C~ (lR). Since C~ (lR) is dense in U, hence the homomorphism J -7 J (H)

extends to a continuous homomorphism h : C~(lR) -7 B(X).

It follows that h(gJ.L) = (/-1 - Htl for /-1 rf- lR and its dual

(4.2)

Now;

J(H) : 11 8 - 1-- -=J(z)(z - H)- dxdy
7r G 8z

-~ r J(z)[(z - H)-I]dz
27r~ I-

-~ r J(z)[(z - H)-I]*dz
27r~ l-

-~ r J(z)[(z - H)*t1dz
27r~ ir
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and so

(J(H))* = -~ r f(z)[(z - H)*t1dz Vf E U
2m, l-

Since D (H) is dense. By [11], there exist a spectral measure G of class

X* defined on the Borel sets with values in L(X*) such that

(J(H))* = J f(>..)G(d>..) Vf E U

Hence H* is a scalar type operator and this completes our proof. 0



Chapter 5

Some application of scalar

type operators

5.1 Application to Decomposability

Definition 5.1.1 (Decomposable Operator)

A bounded operator H on a complex Banach space X is decomposable

provided that whenever {U1, U2, ... Un} is an open cover of C, there exists

closed, H-invariant subspaces Yk such that X = Y1, +Y2 + ...,Yn and

O"(H I Yk) s:;;; Uk, k = 1,2, ... , n.

This class of operators contains all normal operators on a Hilbert space

and compact Banach space operators hence they are of (a, a + 1) type

lR operators. We now state the following Theorem due to Albrecht and

Eschmier [1] and which gives the necessary and sufficient condition for a

bounded operator H E B(X) to be decomposable.

Theorem 5.1.2 ([1])

A bounded operator H E B(X) is decomposable if and only if H has

44
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Bishop's property (f3) and the decomposition property (8).

We now define these properties.

Definition 5.1.3 (Bishop's Property (f3))

Let X be a Banach space and 0 an open subset of the plane. Let

Hol(O, X) denote the space of analytic functions from 0 to X. Then

H ol(O, X) is a Fretchet space with respect to uniform convergence on

the compact subsets of O. The operator H E B(X) is said to pos-

sess Bishop's property (fJ), provided that for every open subset 0 c C,

Hn : Hol(O, X) --+ Hol(O,X), Hnf(z) = (z - H)f(z) is injective with

closed range.

Definition 5.1.4 (Decomposition Property (8))

If F is a closed subspace of ee, then the glocal analytic spectral subspace

XH(F) is XH(F) = X n ranHC\F, that is x E XH(F) if there exist an

analytic function f : ee \ F --+ X so that (H - >.)f(>.) = x for all >. E ee \ F

A bounded linear operator H E B(X) has the decomposition property

(6) if X = XH(U) + XH(V) for every open cover {U, V} of C.

Albrecht and Escheneier [1] established the remarkable fact that the prop-

erties (f3) and (8) are dual to each other. Indeed, H E B(X) has property

(fJ) (resp (8) ) if and only if H* has (8) (resp.(f3)).

We shall greatly use the following formulation by Laursen and Neumann

[23]

Theorem 5.1.5 ([23])

Let H E B(X) and D be a closed disk that contains (J(H), and let V be an

open neighborhood of D. Suppose that there exist a totally disconnected
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compact subset E of the boundary of D, a locally bounded function w :

V \ E ----+ (0,00) and an increasing function, : (0,00) ----+ (0,00) such that

log of, has an integrable singularity at zero and ,(dist(A,3D)) II x \Is;
W(A) \I (H - A)X \I for all x E X and A E V \ 3D, then H has property

((3)

In particular, the Theorem provide sufficient conditions in terms of the

norms of resolvents for bishop's property ((3).

Lemma 5.1.6

Let H be generator of arbitrarily continuous semigroup on a Banach space

X and let A, u E p(H), then R(A, H)R(f-L, H) = R(f-L, H)R(A, H)

PROOF. The proof follows immediately from the well known resolvent

identity;

R(A, H) - R(/J" H) = -(p, - A)R(A, H)R(p, H) for all A, p E p(H). 0

Lemma 5.1.7

Let H be as in Lemma 5.1.6 and let T = R(A, H). Then f1.E p(T) if and

only if A - l E p(T). In this case, we have
I-i

-1 1 1 ( 1(f-L- T) = - I + - R A - -, H)
f-L u2 f-L

(5.1)

PROOF. From equation (5.1), R(A-~, H)-T = [A-(A-~)lTR(A-~, H)

which implies f-LT = (f-L-T)R(A-l, H) = R(A-l, H)(f-L-T). Multiplying
I-i I-i

by (A - H) and dividing through by f-Lyields

1 1 1 1
I = -(A - - - H + -)R(A - -,H)(f-L - T)

f-L f-L f-L f-L
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1 1 1= -(1 + -R(A - -, H))(p, - T)p, p, p,

Thus

( )
-1 1 1 ( 1p, - T = - I + -R A - -, H).P, p,2 P,

o
The next theorem which is a major result in this section indicates that

the kind of resolvent we are dealing with here are decomposable.

Theorem 5.1.8

If H is a generator of arbitrarily strongly continuous semigroup on B~nach

Space X with O"(H, X) c {z : Re(z) :::;c} on a Banach space X, then the

resolvent operator R( A, H) is decomposable for all A E p( H, X).

PROOF. Let H be the generator of strongly continuous semigroup with

O"(H, X) c {z: Re(z) :::;c} on a Banach space X. Let A,p, E p(H) and

T = R(A, H). By the Hille Yosida Theorem 2.4.16, we have

1 M
II R(A - M,H) II:::; Re(A _1.) - c

/.L

where M > 0 is a constant.

Now, by the spectral mapping theorem, we get

O"(T)
1

O"(R(A, H)) = {-,-. : t E IR} U {O}
/\ - it .
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Let

w -
1 1

-.\ - it Re(.\) + i(Im(.\) - t)
Re(.\) - i(Im(.\) - t)

(R(.\))2 + (Im(.\) - t)2

where .\ = Re(.\) + iIm(.\)

Now

1
w - 2Re(.\) -

Re(.\) - i(Im(.\) - t) 1
(R(.\))2 + (Im(.\) - t)2 2Re(.\)
2Re(.\)(Re(.\) - i(Im(.\) - t)) - (Re(.\))2 - (Im(.\) - t)2

2Re('\)((Re(.\))2 + (Im(.\) - t)2) I

Therefore

_ 1 (Re(.\))2 - (Im(.\) - t)2 - i2Re(.\) (Im(.\) - t) 12

2Re(.\)((Re(.\))2 + (Im(.\) - t)2)
((Re(.\))2 - (1m(.\) - t)2? + 4(Re(.\) )2(I m(.\) - t)2

4(Re (x ) )2 ( ( Re (x ))2 + (I m(.\) - t) 2 ) 2

((Re(.\))2 + (Im(.\) - t)2)2
4(Re(.\))2 (( Re(.\))2 + (Im(.\) - t )2)2

1
4(Re(.\) )2

Thus

J(T) = {Iw - 2R~('\) 1 = 2R~('\) : Re(.\) > 0 } .

For any f-L E p(T), we have 1 f-L - 2\ I> 2\ which implies Re(.\ - t) > 0
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and thus dist(p" O"(T)) = Re(A - t). Consequently,

1 AI
II R( A - -;;,'H) II< dist(p" O"(T))

And from Lemma 5.1.7, we obtain

It therefore follows from Theorem 5.1.5 that T has Bishop property ((3).

Moreover, the adjoint operator T* satisfies O"(T*) = O"(T) and thus

11.II R(p" T*) II< - + -2 dzst(p" O"(T))p, P,

which indicates that T* has Bishop's property ((3). This implies that T has

property (J). Thus by Theorem 5.1.2 it follows that T is decomposable.

o

5.1.1 Hardy Spaces

Let lIJ) = {z E C :I z 1< 1} denote the unit disk of the complex plane

and H(lIJ)) denote the Fretchet space of functions analytic on lIJ). For

o < p < 00, the hardy spaces on the unit disk, HP(lIJ)) are defined as

HP(lIJ)) = {f E H(lIJ)) :11 f IIHP(IIJ))= sUPO<r<l 2~ J~7r I f(rei8) IP de < oo}.

We refer to [12] for the basic and comprehensive theory of Hardy spaces.

In particular, it is important to note that every f E HP(lIJ)) , 0 < p < 00,
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has non tangential boundary values almost everywhere on 8JD)and

Where we regard the boundary function as an extension of f. Moreover

the growth condition for the functions in HP(JD)) is given by

We consider the following self analytic map CPt : JD)-7 JD)given by

for all z E JD),t > O. We define the corresponding weighted composition

operators on HP (JD))by

Td(z)

for all f E HP(JD)), r = 1.
. P

The following theorem gives both the semigroup and spectral properties

of this group {Tt} of composition operators.

Theorem 5.1.9

Let HP (JD)),1 ::; p ::; 00 be hardy space of the unit disk JD).Define a self

analytic map CPt : Jl}) -7 Jl}) by CPt (z) = e-ct z and the corresponding weighted

composition operator T; : HP(JD)) -7 HP(JD)) by Td(z) = e-ct-yf(e-ctz)

where c E te, t ~ 0 and ry = ~. Then the following hold:
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(a) (Tt)tEIR is a group of isometries on HP(JI)))

(b) (Tt)tEIR is strongly continuous.

(c) The infinitesimal generator H oi T; is given by Hf(z) = -cHf(z)-

czJ'(z) with the domain dom(H) = {f E HP(JI))) : zJ'(z) E HP(JI)))}

(d) O"(H) = O"p(H) = {-c(n +~) : n = 0, 1,2, ... }

(e) If Re( c) = 0, then R( c, H) is compact, decomposable and a scalar

type operator.

PROOF. By definition and change of variables argument, we have

127f I f(w) IP dw

II f II~p(][}) .

This means that Tt is an isometry. Moreover, TtoTs = Tt+s for all s, t E IR

and To = I where I is the identity operator. So {TdtEIR is a group of

isometries as desired.

To show that {(Tt) h2:o is strongly continuous, it suffices to show that

limHO II Ti] - f IIP= ° for every f E HP (JI))). . Let X (JI))) be the set

containing all functions in HP(JI))) that are continuous on JI)). Then X(JI)))

is dense in HP(JI))). Thus for f E HP and arbitrary E > 0, there exists

-
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9 E X(lDJ) such that II J - 9 IIp< E, then

= 2 II J - 9 lip + II Ttg - 9 lip

Now for all 9 E X(lDJ), Ttg(z) -t g(z) for all 9 E aD and by isometry of

(Tt), we have II Ttg IIp-t II 9 lip Fatous lemma then gives II Ttg - 9 IIp-t O.

Thus II Ti] - J lip:::;2E, and hence (Tt) is strongly continuous.

By definition, the infinitesimal generator H of Tt is given by

H(f) _ lim Td - J, J E D( H)
t-tO t .
. e-ct'Y J(e-ctz) - J(z)

- lim ---'------'----'---'-
t=voo t
a- at (e-ct'YJ(e-ctz)) It=o

_ _cye-ct'Y J(e-ctz) + e-ct'Y - (ce-ctz1'(e-ctz)) It=o

- - c"( J (z) - cz l' (z ) ,

which implies that D(H) ~ {J E HP(lDJ) : z1'(z) E HP(lDJ). Conversely,

let J E HP (lDJ)such that z l' (z) E HP (lDJ).Then for z E lDJ,we have

ta
Td(z) - J(z) - Jo as (e-cs'YJ(<ps(z))) ds

- it (_c,,(e-ctH J(<Ps(z)) - cze1'(e-ctz))

- it Ts(F)ds

where F(z) = -c"( J(z)-cz1'(z). Thus limHo Tt~- f = limHO t J: Ts(F)ds

Now for F E HP(lDJ) the limit exist and equal to F. Thus D(H) 2 {J E
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HP(D) : zj'(z) E HP(D)}, as claimed.

To obtain the point spectrum of H, let A be an eigenvalue and J be

the corresponding eigenvector. Then the eigenvalue equation H J = AJ

reduces to the differential equation

-cHJ(z) - czj'(z) = AJ(Z)

which is equivalent to

-czj'(z) = (A + cH)J(z).

To solve the above ODE, we continue as follows;

dJ(z) = -~(A + cH) dz.
J(z) c z

Therefore
1

In J (z) = - - (A + cH) In z + C
c

and thus

for c #- 0. Since z-~(A+C-Y) E H(JI))) if and only if -~(A+CY) E Z+. That is

-b+ ~)= n, n = 0,1,2, .... Hence O"p(H) = {-c(n +,) :n = 0,1,2, ...}

Clearly, if Re(c) = 0, then c E p(H) and therefore, the resolvent operator
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(c - H)-l reduces to

1 lz
R(c, H)f(z) = - f(()d~.

cz 0

As remarked by Cowen and Macluer [5], such resolvents are compact and

therefore

ow by Theorem 5.1.8, R(c, H) is decomposable and hence of scalar type.

o

5.2 Application to Cauchy problems

In this section, we investigate some questions related to abstract Cauchy

equations. Our interest is to apply the (a, a + 1) type lR operators to

analyze such equations.

Let H be a densely defined linear operator satisfying (1.4) such that

(2.10) admits a unique exponentially bounded solutions u(t) for every

initial value x E D(H), then u(t) belongs to the class of one parameter

semi-group and the cosine families. An operator H on a Banach space X

is the generator of k times integrated semigroup (where kENo) if there

exist w ;:::0 and S(.) : [0, (0) --+ B(E) a strongly continuous group such

that (w, (0) is contained in the resolvent set of Hand

(5.2)
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for all x E X and >. > w. The function S(.) is called k-times integrated

semigroup. It follows from the Hille Yosida theorem that one can charac-

terize the operators H satisfying (1.4) for which (2.10) admits a unique

solution given by a strongly continuous Co semi group of (a, a+ 1) type lR

operators acting on the Banach space X. The solution of (2.10) is given by

u(t, x) = T(t)x where T(t) = e-tH for t 2': 0 and x E X. It follows that H

is the infinitesimal generator of u(t). On the other hand, some classes of

Cauchy equations exist where the elements of T(t) is not bounded opera-

tors, for example the Schrodinger operators acting on LP(lRn), 1 :s; p :s; 00

for p =I 2. To deal with such problems, one needs to find larger sets of

functions f giving rise to bounded operators in form of e-tH f(H) which

is also a bounded solution of (2.10). This means that one must look for a

suitable functional calculus involving Hand e-tH. We therefore resort to

U functional calculus for (a, a+ 1) type lR operators given by (1.5). More

generally, f(H) make sense if f E C~(lR) ~ U and H satisfy inequality

in Theorem 2.4.12 for some a 2': O.

We now consider the abstract Cauchy equation given by (2.10). If a closed

densely defined operator H has a resolvent in the half right plane and if

u(.) is an exponential bounded solution of (2.10) with u(O) = x, then the

resolvent R(>., H)x is the Laplace transform of u(.) i.e

(5.3)

The following two theorems are consistent with the (a, a + 1) type lR op-

erators discussed in this thesis and their proofs can be found in [26].
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Theorem 5.2.1

Let H be a linear operator on a Banach space X. If there exist constants

wand C such that R(A, H) exist and satisfy

for some -1 ::; k and for all u E C with R(A) > w then (2.10) has a

unique solution u(.) for every x E D(H) such that I u(t) I::; Cept II x II for

p>w

Theorem 5.2.2

Let H be a linear operator with nonempty resolvent set. If (2.10) has a

solution u(.), with u(O) = x such that I u(t) I::; Cept for some constants

C,p then for every A E p(H) with R(A) > p we've

(5.5)

The following is an immediate consequence of Theorem 5.2.1

Corollary 5.2.3

If H is of (0,1) type lR with C = 1, then (5.4) reduces to

I R(A,H) I::; 1 (5.6)

for k = 0 and (2.10) has a unique solution u(t) which is bounded above

by 1 for II x 11= 1. In that case

1= 1= 1R(A, H)x = 0 e-Atu(t)xdt::; 0 e-Atdt::; ~ (5.7)

-
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in particular, if u(t) is a contraction then the solution u(t) satisfying

(2.10) is bounded above by 1.

Definition 5.2.4

The Schwartz space S(JRn ) of rapidly decreasing smooth functions con-

sists of all f E Coo (JRn) satisfying

for each polynomial P and each partial derivative as indicated above and

(aI, ... , an E {O, 1,2, ... })

REMARK 5.2.5

We note that C~(IR) c S(JRn). Here, f E C~(JR) if and only if f E COO(JR)

and f has compact support. Also C~(IR) is dense in LP(JRn), 1 ::;:p < 00,

and in Co (JRn) , the continuous functions on JRn that vanish at infinity;

hence S(JRn) is also dense in these spaces.

We now define the following family S(13), 13 E JR found in [18J as follows:

Definition 5.2.6

f E S (13) if f E C~ (JR) and f ()..)has an asymptotic expansion in )..-1 as

)..-7 00 in the following sense. For any N > 0

N

f()..) = L ak)..-.B-k + IN()..)
K=Q

(5.8)

).. 2: 1 and where IN()..) satisfy

(5.9)
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for all A 2 1 k = 0, 1,2 ... ,

If (3= 0 then (5.8) reduces to

N

f(A) = L akA -k + IN(A)
K=O

(5.10)

and IN(A) satisfy

(5.11)

for all A 2 1 k = 0, 1, 2... ,

We now state the following theorems. whose proofs can be found in [18].

Theorem 5.2.7

Let 1::;p < 00 and let f E S(oo). Then e-itH f(H) is bounded in LP(JRN)

for t E R Moreover, for (3 > N I lip - 112 I,

II e-itH f(H) II::; C(l+ I t 1),6, t E JR (5.12)

Theorem 5.2.8

Suppose N::; 3 and let 1 < p::; 00. If f E S((3) for some (3 > 2 + NI4

then

II e-itH f(H) II::; C(l+ I t I)N1l/p-l/2, t E JR (5.13)

Theorem 5.2.9

Let H be a schrodinger operator on LP(JRN) then H is of (a, a + 1)' type

JR for a := N I lip - 112 I·

REMARK 5.2.10

Theorem 5.2.9 holds whenever we replace 0 by II in (1.4) and it is stronger
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than (1.4) since 1 z 1:::;< z > for all z E C Therefore (a, a + 1)' type JR.

implies (a, a + 1) type R

REMARK 5.2.11

The definitions above and theorems are consistent with those of (a, a+ 1)

type JR. discussed in this thesis.

We now consider the abstract Cauchy equation given by;

{
u/(t) = -iHu(t), t ~ 0; 00

u(O) - x, x E Cc (JR.).
(5.14)

where H satisfies (1.4). Our first result is given by the following theorem.

Theorem 5.2.12

Let H be (a, a + 1) type JR. operator, then u(t) E C~(JR.) is a solution of

(5.14) provided that u(t) satisfies theorem 2.4.12

PROOF. Let u(t) E C~(JR.) such that u(t) = e-iHt for t E JR. and H

is of (a, a + 1) type JR., then u(t) satisfies Theorem 2.4.12. It follows

that u/(t) = -iHu(t) satisfies (5.14) and u(O)x = x f?r each x E JR. and

therefore, u(t) is a solution of (5.14). Now since H has a resolvent lying

onthe right half plane, and u(t) is a solution of (5.14) with u(O) = x and

u(t) satisfying Theorem 2.4.12, we have that

R(>.., -iH)x 100

eAtu( t )xdt

100

eAte-iHtxdt

< C(l+ 1 t I)ct

rr
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for all t E lR and some ex ~ 0. It follows that u(t) is the unique solution

of (5.14) and that R(A, -iH) is the inverse Laplace transform of u(t). 0

Our second result is given via the following theorem.

Theorem 5.2.13

Let H be (ex, ex + 1) type lR operator, and u(t) E C~(lR) be a convergent

solution of (5.14) then u(t)f(H) is also a convergent solution of (5.14) for

every f E C~ (lR)

PROOF. Suppose that Theorem 5.2.7 holds and f E C~(lR), then f(H)

can be extended to the space LP(lR) for 1 ::; P ::; 00. Letting ex = 0, it

is also shown in [18], that if 1 ::; P ::; 00 and ex -+ 00 then u(t)f(H) is

bounded in LP(lR) for t E lR and satisfy inequality in theorem 2.4.12. In

particular, if ex = N I lip - 112 I, then

II u(t)f(H) II::; C(l+ It I)N1l/p-l/21, t E lR (5.15)

Since (5.15) and inequality of Theorem 2.4.12 have the same bound, and

u(t) is a convergent solution of (5.14), it follows that u(t)f(H) is also a

convergent a solution of (5.14) and this completes our proof. 0



Chapter 6

Summary and

Recommendations

6.1 Summary

In this thesis, we applied the properties of scalar type operators to give

our characterization. We used two major aspects in our characterization,

that is the U functional calculus and semi group theory of (0:,0: + 1) type

lR operators. Our contributions in the Characterization of scalar type

operators using functional calculus is given by Theorem 4.2.2 in which

we applied the properties of the semi-group theory and the U functional

calculus to show that a linear operator H acting on a Hilbert space 'H

is scalar type if it is of (0,1) type lR and it admits a bounded functional

calculus. In Theorem 4.2.4, we have applied the properties of the resolvent

in Theorem 2.4.7 and the properties of self adjoint operators to show that

if H is a scalar type operator on a Hilbert space 1-l, then its adjoint H*

is also a scalar type operator on 1-l and that H* admits a U functional

calculus. In application of scalar type operators to decomposability, we

61
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have shown using Theorem 5.1.9, that if T(t) is a group of symmetries

on a Hardy space HP(lOl) and c E CC, such that Re(c) = a and R(c, H) is

decomposable, then H is scalar type. In Theorem 5.2.12 we have shown

that if an operator H is of a, a + 1 type lR, then u(t) is a solution of

(5.14) if and only if u(t) satisfy Theorem 2.4.2. In Theorem 5.2.13, we

have shown that if Theorem 5.2.12 holds, then u(t)f(H) is also a solution

of (5.14).

6.2 Recommendations

From the results of this study, we recommend the following for further

research;

1. Extension of our characterization to two commuting scalar type

operators.

2. Application of scalar type operators to decomposability can be ex-

tended to other spaces of analytic functions like Dirichlet spaces,

Bergman spaces, Bloch spaces among others.

3. It would also be interesting to consider the study of groups of isorne-

tries and the resulting integral operators on other Hardy spaces

apart from Hardy spaces of the unit disk lOl that has been consid-

ered in this study. For example, Hardy spaces of the upper half of

the complex plane. subsequently an investigation of the decompos-

ability of the resulting resolvents will be necessary.
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