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------------------Abstract

Analysing Kenya Certificate of Secondary Education (KCSE) exam results is vital to

inform the design of interventions to improve teaching and learning of Mathematics in Kenyan

schools. Here, further analysis of the 2011 Kenya Certificate of Secondary Education results

explores patterns in the results and factors that affected the grades scored in Mathematics by

students. KCSE results for 699 schools with a total of 50,584 candidates in Western Kenya

region were collected and further analysis was done. Descriptive analysis of the data involved

calculation and presentation of summary statistics using tables and graphs produced using R.

This study demonstrates the application of two approaches to analyse the clustered data to

compare mathematics scores between the different school types and between genders. The first

approach, Analysis of Variance (ANOY A), assumes independence of observations while the

second approach, Residual Maximum likelihood (REML) recognises dependency of

observations. Analysis of the data revealed that Mathematics was generally poorly performed by

students. The results indicated that students in single gender schools performed better in

Mathematics than those in mixed schools while boys performed better than girls. The type of

school and gender of the student were found to have a significant effect on the candidate's

Mathematics score. The parameter estimates are observed to be lower when the random term is

included in the Linear mixed model that uses Residual Maximum Likelihood. The interpretation

and significance of fixed and random effects in the model is discussed and areas for further

research are highlighted.
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Chapter 1: Introduction

1.1: Overview

Public examinations in Kenyan schools like Kenya Certificate of Secondary Education

(KCSE) exam are used as a selection instrument for further education and training (Lucas, 1993).

The analysis of KCSE exam marks from the recent years forms a baseline, through which we

should be able to assess the value of interventions to improve teaching and learning in schools.

For' example, to know whether action plans to improve learning had an effect on the various

school types and whether the effect varies with gender of schools.

As initiatives are put in place to improve teaching and learning of mathematics, there is a

need to understand the many factors that are associated with the performance of the subject in

schools. Some of the factors could be the type of school or the characteristics of the students.

This will contribute highly to the improvement of the design of project interventions like

Strengthening of Mathematics and Science in Secondary Education (SMASSE) (Japan

International Cooperation Agency, 2007) and maths camps (African Maths Initiative, 2013) that

are geared to improve teaching and learning of mathematics.

This study is aimed at understanding patterns in student KCSE results with respect to

factors associated with KCSE performance. When a data set has student and school level factors,

we must keep in mind the multilevel (Gray, 1989) data structure;

The ANOVA method is applied to study variation in students' Mathematics scores in the

KCSE exam alongside other factors including the school "type" and the student's gender. Key

assumptions in the ANOV A method are that the population of values of the maths score variable

associated with the school types and genders have equal variances that they follow normal

distribution and that the variables are independent. However, when data such as maths scores for

schools are collected, the residuals are unlikely to be independent of each other (Cohen, et al.,

2003). For example, we would expect mathematics scores within a school to be more similar

than in a completely random sample of students. This is because students in the same school are

more likely to share a common curriculum, common mathematics textbooks, common teachers,

as well as other school and community resources, than a random sample of students drawn across

schools. A major concern when using ANOV A to estimate relationships on clustered data is that
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the estimated standard errors will be too small, leading to an overestimation of the statistical

significance of regression coefficients.

Mixed model analyses provide a generally, flexible approach in these situations because

they allow a wide variety of correlation patterns to be explicitly modelled (Kreft, et al., 1998).

Measurements of scores per student generally result in correlated errors that break the

assumptions of standard (between students) ANOVA and regression models. In recent years a

general algorithm known as Restricted Maximum Likelihood (REML) has been developed for

estimating variance parameters in linear mixed models (LMM). In this study, an ANOVA

technique was reviewed and the use of a Linear mixed model (REML) is demonstrated.

For balanced data, REML reproduces the same parameters as those of ANOVA because

the assumptions made when using a regression ANOV A (independent normally distributed

errors with constant variance) fit within a LMM (REML) framework but the procedure is not

dependent on balance. Unlike ANOV A, it allows for spatial correlations, changing variance

when the school types have a changing variance structure.

Student scores in an exam may be influenced by a number of factors. These factors include

characteristics and background of a student, characteristics of the school where the student learns

and the economic and social context in which the school operates.

This study examines relationships between a student's Mathematics score in the KCSE

exam and the school type and student's gender. It demonstrates how statistical techniques like

ANOVA and Linear mixed model (Eleanor, et al., 2001) use population means and variances to

test uniformity/homogeneity of Mathematics scores for student and school variables. The aim

was to compare the maths score for school types; and to bring out any differences that may exist

within the populations in such a way as to enable a statistician to make a decision that either

there are significant differences, or that differences do not exist.
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1.2: Statement of the problem

It is expected that the implementation of intervention strategies will translate into better

students' Mathematics scores and better performance in the KCSE exam. These KCSE

examination results are released every year by the Kenya National examination council where

summaries of regions, schools, subjects and students are presented to the public. Teachers in

schools do similar summaries that include calculating averages of subject scores, number of

students and frequencies of grades.

These summaries are not enough to create patterns and interpret the results, creating a need

to take this kind of analysis further as a means to inform and improve policy level decision

making. Doing an in-depth analysis like comparing maths score by students in various types of

school (single gender, mixed etc.), should enable further studies to be designed to measure the

impact(s) of strategies implemented to improve teaching and learning of Mathematics and KCSE

performance in different types of secondary schools.

1.3: Objectives

The main objective of the study was to do an in-depth analysis of KCSE results by

integrating fixed and random effects in a linear mixed model to study variations in students'

KCSE Mathematics scores. The specific objectives were:

• To check the degree of any relationship between KCSE mathematics scores and other subject

scores in Western Kenya.

• To compare differences in KCSE mathematics scores between single gender schools and

mixed schools in Western Kenya.

• To compare differences in KCSE mathematics scores between male and female candidates in

Western Kenya.

1.4: Research Questions

1. How does the KCSE maths score relate to the aggregate point scored by a student? i.e. Does

Mathematics affect the number of students getting direct entry into public university?

2. Is there any difference in the KCSE maths score between different school types? i.e. does the

school type affect the mathematics grade scored by a student?
3



3. Is there any difference in KCSE mathematics score achieved by girls and boys? i.e. does

gender affect the mathematics score achieved by a student?

1.5: Significance of the study

To achieve better educational outcomes, research findings are relied upon during education

decision-making processes. There is, therefore, a need for ascertaining variables that affect

Mathematics scores as well as identifying any interactions between these variables. This study

has contributed to the availability of reliable information helpful to teachers, educational

researchers and public decision makers because it recognises the multilevel nature of the KCSE

results.

The use of a linear mixed model helped to generate parameters and generalize effects of

school types and gender on mathematics scores. This adds value to the action plans of

interventions put in place to improve Mathematics education in schools and other educational

outcomes. The in-depth analysis will enable studies to be designed to measure impacts of

strategies implemented to improve teaching and learning of mathematics in the different types of

secondary schools.
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1.6: Outline of the thesis

This thesis is structured into five chapters.

In this first chapter we give background information on the topic of study.

In chapter two, we review previous research related to the current problem investigated and

the literature related to statistical techniques used in the study.

Chapter three provides the methodology used to achieve the aims and objectives of this

study. We give a detailed description of data collection, data organisation and data analysis

procedures that were used in this study.

In chapter four, we discuss the results of the study. This includes the exploration of the

KCSE exam data, testing for statistical significant difference in maths scores across the different

school types and gender. This chapter also contains explanations of analysis resulting from the

data.

The final chapter (chapter 5) provides conclusions, recommendations and suggestions for

further work.
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Chapter 2: Literature review

This chapter discusses work done by previous researchers related to the problem

investigated in this thesis; and the literature related to statistical techniques used in the study. It

shows the connection between factors that affect achievement in Kenyan schools whilst

identifying knowledge gaps.

A lot of work has been written by a wide range of professionals about the Kenya

Certificate of Secondary Education exam (Lucas, 1993). Performance in KCSE by a student is

influenced by various factors such as school infrastructure, the standard of teaching, and reading

and learning resources (Lewis, et al., 2012) (Maundu, 1986). There are a number of projects like

SMASSE (Japan International Cooperation Agency, 2007) and Africa Mathematics Initiative

(African Maths Initiative, 2013) that are geared towards improving teaching and learning

Mathematics (KNEC, 2009).

Teachers often lack the statistical background, understanding and tools to help them

measure the impact of these interventions on exam results (North, et al., 2010). More precisely,

studies about teachers' comprehension of measures of centre like mean, mode and median (Cai,

et al., 2002) (Groth, et al., 2006) revealed a lack of understanding of the algorithm for calculating

the average, a difficulty in discriminating the mean with the other measures of centre and little or

no understanding of the effect of outliers on the mean (Jacobbe, et al., 2011). Research involving

teachers' comprehension of graphs (Monteiro, et al., 2003) revealed that many teachers have

difficulties in the interpretation of statistical graphs; they often weren't able to make

generalizations about the data (Gonzalez, 2011).

Data from school examinations and intervention studies are often characterised by a

hierarchical structure (Ukoumune, et al., 2004). A two level hierarchy is established when

measurements are repeated on the same study subjects. Measurement occasions such as different

schools are referred to as level-1 units and subjects like individual students are referred to as

level-2 units (Goldstein, et al., 2001). Standard regression modelling usually assumes that the

errors have zero mean and are mutually independent. However, in clustered data (Donner, et al.,

1994) it is expected that errors for the same school are correlated (Rabe-Hesketh, et al., 2005).

The distinguishing aspect of grouped data is that observations of students' aggregate points

and Mathematics scores within a school may be correlated, and the degree of similarity of
6



aggregate points within a school can be measured (Donner, et al., 2003) and more reliable

conclusions can be drawn from the analysis (Aitkin, et al., 1981). Thus, early work on the

analysis of hierarchical data in the context of education was carried out by Aitkin and Longford

(Aitkin, et al., 1986). The statistical and computing techniques for hierarchical linear modelling

(Douglas, 1999) (Nezlek, et al., 1998) are based on fitting the regression analyses done at various

levels for each unit in a single model (Goldstein, et al., 2001). Investigators have also conducted

numerous studies aimed at identifying effective schools, determining which practices are related

to their effectiveness, and measuring school contributions to student performance (Good, et al.,

1986)and (Heyns, 1986).

Important questions left out during KCSE exam analyses are whether there is an

association between mathematics scores and other subjects, whether there are statistically

significant differences in mathematics score between single gender schools and mixed schools;

and whether there are statistically significant differences in mathematics scores between boys

and girls. If the questions are adequately answered then the information yielded will describe

which (if any) school type and I or gender require further attention. Furthermore, this information

could contribute to teachers' and educational researchers' working knowledge as they design

interventions to help improve teaching and learning of mathematics in various schools.
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Chapter 3: Methodology

3.1: Introduction

This chapter discusses the data collection, data organisation and data analysis procedures

that were used in this study. First, we have a discussion of how KCSE results for 2011

candidates were collected, and how the data was prepared and organised for analysis. This is

followed by a description of the data analysis techniques; exploratory analysis, analysis of

variance (ANOVA) and linear mixed model techniques that were used in the study.

3.2: Data Collection

At the end of Kenya Certificate of Secondary Education course, a national exam is taken

by students at the end of their four year learning in secondary schools in Kenya. In 2011 this

exam was set, administered, scored by the Kenya National Examination Council (KNEC) and

was used for selecting candidates for universities and middle level colleges. The KCSE results

drawn from KNEC were supplied to this study in text files. The permission to use the results for

educational purposes was granted by the Kenya National Examination Council and it is

gratefully acknowledged.

This comprised the results for 50,584 candidates in 699 schools which is 12% of the total

413,492 candidates who sat for the exam that year in the whole country. The information

collected included variables such as school code, school random number, school name, student

name, student gender, aggregate point scores and letter grades for each subject done by a student.

The subject categories were as shown in Table 1 below

.•....--,"ENO UNIVERSITY
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Group one Mathematics, English, Kiswahili

Group two Biology, Physics and Chemistry

Group three History& government, Geography, Religious Education

Group four Home science, Art and Design, Agriculture, Computer Studies,

Aviation

Group five French, German, Arabic, Music, Business Studies

Table 1: Table showing how the various subjects taught in secondary schools are grouped by the Kenya National
Examination Council

For grading, a candidate must have had a minimum of seven subjects. The candidate must

have taken all the three subjects in group one which are compulsory subjects, at least two group

two subjects (sciences), at least one subject of the group three (humanities) and at least one of

group four (technical) or group five (practical) subjects. Success in this KCSE exam is very

important because it determines whether a given student will get direct entry to university or not.

The target population for this study was students in Western Kenya who did their KCSE exam in

2011.

Each data vector represented information about a student; thus each student in the dataset

is represented by one row of data in which one can find the region, school code, school random

number, school name, student gender, student mean grade, student aggregate points and grades

for each subject done by the student. Due to requirements imposed for confidentiality of

students, a random identification number was used to identify a student.

The outcome measure used in this study is the students' Mathematics scores in the KCSE

exam and their aggregate points score. Below is a section of the text files of students results -

please note again that the candidates' names have been omitted to make the students anonymous.
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Figure 1,' A snapshot of the data collected from Kenya National Examination Council

3.3: Data Organisation

Since this data set was acquired as a text file it was necessary to organise it into a suitable

form for analysis. The first step involved a number of software packages being used in

manipulating and restructuring the data into an appropriate form for analysis. These software

packages included Python, Excel, GenStat 14th edition and R. The statistical software packages

GenStat and R were chosen based on availability and flexibility.

3.3.1: Data processing

The Python programming language was used to clean the summary section m order to

restructure the data into a usable format The data acquired from KNEe was in plain text format

i.e. a notepad file which is a basic text-editing program used to check over text files. The file

contained information about schools such as the school code, number of students who did the

KCSE exam, their grades and a summary of how the students performed in every subject as

shown in Figure 2 below.
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Figure 2: Data showing summary of school's grades at the bottom of the text file collected from Kenya
National Examination Council

Figure 2 above shows the summary of grades section for a school. The mean grade

summary section was edited to remove it in the data file. The data processing capabilities of

Python were required when using this data set where the text files were converted into comma

separated values (CSV) format. The Python script removed unnecessary white space and cleaned

up the data automatically for all 50,584 records. It also prevented any human errors that could

have occurred if this work was done manually. The CSV format was then easily accessible with

spreadsheets and other statistical packages (we used GenStat and R).

3.3.2: Data manipulation

3.3.2.1: Using Excel

The CSV (comma separated values) file format created using python was imported into

Excel for further manipulation. Creating new variables such as the grade score from the raw data

was necessary prior to statistical analysis and was done in Excel.
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Figure 3: CSVfile created using Python

Using the VLOOKUP function in Excel, values were assigned to the grades by looking

for grades in a column in one worksheet and then returning a value in another column in the

same sheet. Figure 4 below shows a VLOOKUP dialog box.

WEEKDAY
WEEKNUM
WEIBULL
WORKDAY
XIRR

o

Select a function:

VDS
VLOOKlJP

VLOOKU P(lookup_ va lue,.ta ble_a rray,coLinde:x_n um,ra 11-ge_looku p)
Looks for a value in the leftmost column of a table, and then returns a value in the
same row from a column you speofy. By default, the table must be sorted in an
ascending order,

Help on this function OK 1 [ Cancel

Figure 4: Vlookup dialogue box

The letter grades for each subject were converted to an equivalent twelve point scale with

12 corresponding to grade A (the highest grade) and 1 corresponding to grade E, the lowest

grade. : The scale assigned A = 12, A- = 11, B+ =10, B = 9, B- = 8, C+ = 7, C = 6, C- =5, D+ =4,

D = 3, D- =2, and E=l. X - Absentees Y - irregularities Z - missing group(s) P/W-

pended/withheld were also assigned. Table 2 below shows the worksheet from which numerical

values were assigned to each grade.
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·12
11
10
9
S
7
6
5

4

3
2
1

99
99
99
99
99
99.

.,..;.." A

1 Grade

2_A
3 A-
4 B+

c..5 B

Ic6 B--

~ C+
_B_C

9 «i-
10 0+

._110
-.!:...2 D-

13 E

14 P

E5
16 \IV

17 X

2_8 Y
19 Z

B
Polnt:s

Table 2: Assigning a/numerical values to grades done in excel

The formulaic function VLOOKUP (lookup value, table_array, col_index_num, range_lookup)

was used. For example, this formula searched for the text format grades in the first column and

returned the matching values from the second column in table array.

Formulas Data

('-' );; western_20ll . Microsoft Excel

Rultr , B 00 ~SPlit

'7 Headings ; Hide

II Zoom 100% loom to New Arrangt Frteze _.... 1
!I Selection :I Window All Panes"::J' unmce

Zo~ .. ~j.

../ Formula Bar

1 ;chooICodt:hooIRandlchooINam gender neanGrad'l'egatePoi 101 ,.......i!!lL.. 102

~

- western 601101 292223 HIAS SECC M 8- 54 C+ IL--l B-
3 western 601101 292223 HIAS SECC M C+ 52 8- 8 B
4 western 601101 292223 ·HIASSECC M B- 56 8- 8 C+

KIS 121
A
B-

B-

M

12
8
8

Ix =VLOOKUP(H2,Sheet2!$A$2:$8$19,2,FALSE)

BCD E F G i---H--T-I =:J J K

8
9
7

Figure 5; Organized Excel file

Figure 5 shows an organised excel file. Each data vector represented information of a student;

thus, for each student in the dataset (each row of data), one can find the region, school code,

school random number, school name, gender of the student, aggregate points, mean grade, grade

and assigned value for each subject done by the student.
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3.3.2.2: GenStat
Calculations to restructure the data into appropriate form for analysis as well as the actual

analysiswere done using GenStat 14th edition and R. The Excel file was imported into GenStat

which was able to handle the rectangle of data where each row referred to a student record and

eachcolumn referred to a measurement for that student. It contained 50,584 records and was the

main data file used. This package is very good at manipulating e.g. sorting, selecting and

counting the many rows of data. Figure 6 shows data imported into GenStat and ready for

manipulation.

I" GenSut
rdt [dit VItW Run Oft. Splud G"phics ~b Tools Windcw Help

j·i!'l~el~~-;'- ::l21il11"!!. ;.3m-s ~j·£I'1jJ$lG';'8'lfti~,jIB
jill~}:uItU~tI.!HP!gJHl!x!Ill~~~l~~m-=.lI •.~:4 ilDe~* .!!J~---

P.w b,lOI .ctoolCo. 'c!!l)Olbnt.d lqader 'eo., Iq;rt;It'll)l £:l; 110: fl, 112: VAt!'.! "231 aio ~232 ~b.y 'Ilt233 ~u. V'23' Site '-311 ai. "312 ~: VUll a!: +
1 velte 601101 2'2223 ST. M B- 54 Ct "1B- I " 12 C+ "1. + c- .5 • C Ii. t B 9 •.

:2eeat.e 60UOl 292223 Sf. ,. c- 52 B- B B \I B- 8 D 3 _ • 0- 2 • C 6. t B-

3 weste 601101 292223 ST. M B· 56 B- 8e. ,B- 8B g- 'C .. 9 - • A- II

stveste 601101 292223 ST. 101 C. 49C 68 ge. 10 3- • D- • B- O-
S veate 601101 292223 ST. H C· 36 C- oe • D· 2D 3- • D- • C- ,- • C-

6 vellte 601101 2112223 ST. H 43 B- eB· o D H- OD 3D .e. ,-
Figure 6: Data imported into GenStat:

GenStat had data manipulation features that allowed the formation of new variables from

the existing variables and factors. Most of the calculations needed were done within the dialog

box facilities of GenStat. The information in the table was essential for analysis, but was

incomplete. Additional information such as school type was needed. For example, to have the

aggregate points for 6 graded subjects minus Mathematics we use the spread menu in GenStat as

follows.
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Column .., Shift+Fll '---.. .. .. --
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1.
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Recalculate ... Alt+Fll '---
Standardize Ctrl+ Shift+F3 -
Raridc rn Sample ... -
Random Subset ... Ctrl+-Alt+ S -

1.

Summary Stets... Alt+FS ,--
Cell Selection Stars Alt+ Sh ift+ F5 ~
Row Summaries." Alt+ Ctrl+FS r---
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Text Split ... Ctrl+ Shift+ T
r---
I---

Cc-rribirre Text ... Alt+-Shift+T -Recede .... AIt+- Shift+- Fll
Code to Groups ... Ctrl+Alt+ F8

,--
r---

Reb e s e Dates Ctrl+Alt+8

Figure 7: GenStat dialogue box manipulation facilities:

Figure 7 shows the Spread menu in GenStat that provides the different manipulation facilities

and dialog boxes.

:::J
Options...' 0 efaults

em Spreadsheet [western 2011.GSH1'"

W Displ.!!1YIn Spreedeheet: I [western_2011.GSHlwestern~ ~ ~ sm li ....i'i.0.0.JI Cancel

a.qqrt!Q'COmp aqoreqcomp4

20 16

14 11

9 6
16 1!:5

36 34

24 23

2.5 24

2!:5 24

27 26
35 29

11 10
24

Figure 8:An example of data manipulation screen depicting a form of calculation

Figure 8 shows an example of a data manipulation procedure in GenStat that was used to create

new variables like aggregate6, aggrecomp, aggrecomp4 and many others. Aggregate6 involved

taking the total aggregate score a student gets then subtracting his or her Mathematics score,

aggrecomp involved summing the scores for Maths, English, Kiswahili and any two SCIences
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taken by a student while aggrecomp4 involved subtracting a student Maths score from the

aggrecomp. In all the three cases, the original scores are combined to form the new variables.

Figure9 below shows a few of the additional variables created.

I...::..JL:::,.J~

~read Graphics Stats Tools Window HElp 1'''''
_." ~- !.e

Q~~I~I~~.i~I!~[l~ ~~~~i~!~10
i=I ~eIII III II W ~ III t I H =- :; :; .00 1.0, I ~ 6 E ~ * i I ~ ~,62. ,x, 1<2 !I I i~!§: -= -= +,0 .00 ~ ", i ~

Row I schoolName Iscbooltjp !gender I mednGrdde aqqregatePoints aggregate! aggregco~ aggregco~! Iuol
-

11129 CBEKALINI SECONDARY SCHOOL IIi xed M 0+ 21 24 t t C-

11130 CBEKALINI SECONDARY SCHOOL Hixed F C 41 39 20 18 C+

11131 CBEKALINI SECONDARY SCHOOL Mixed N Ot 29 26 14 11 C-

OOMlIT\!DV ~rl!M' Il.Iivo. lu In ?? ?1 Q sln

Figure 9: New variables and additional information formed using existing variables:

3.3.2.3: Using R

R is a powerful statistical package where all the code that supported a wide a range of

computations, statistical procedures and most of the exploratory plots was accessible. It is a free

open source package that is easily downloaded from the internet. RStudio, a system and a text

editor designed to work with R was very helpful for this large dataset. Calculations were done in

the console. The code was written in a script (.r) and then sent to the console. R made a file that

contained everything that was in the work space. It was then possible to save the workspace

when quitting and import it again when we started working again. From Excel, where the data set

was saved as a 'studentData.CSV' format, the data file was imported into R using the command

dat<-read. table(" studentData.csv" ,header=T ,sep="; II .na.strings=cf" ","="))

and further manipulation to the data was carried out on the data set.
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3.4: Data Analysis

3.4.1: Exploratory analysis

Exploratory analysis included generating summanes such as frequencies, percentages,

means, standard deviations and representations for the scores in the exam. Exploratory data

analysis gave insights into the variability of maths scores; provided explanation for surprising

patternsobserved in the data and revealed unusual observations.

Numerical methods and graphical displays were used for describing the important aspects

of the KCSE results which gave a basic understanding of the data. A cross tabulation classified

the data into two dimensions. The table consisted of two rows and columns. The rows classified

the data according to one dimension of gender and the columns classified the data according to

the second dimension of school types. The row percentages and column percentages helped to

quantify relationships.

Graphical methods were used to study relationships between variables. For example,

scatter plots were used to study the relationship between maths scores and aggregate scores in

different school types. Vertical bar charts and histograms were used to depict the frequencies and

distribution of mathematics grades and aggregate grades for the region. A graph of cumulative %

aggregate points was used to show the relative cumulative frequency distribution of the

aggregate points and relative cumulative percentages. Box and whiskers displays sometimes

called box-plots were used to describe candidates' aggregate scores by using a five number

summary within a school type. The five number summary consisted of;

• the smallest aggregate score,

• the first quartile,

• the median for the school type,

• the third quartile,

• the largest aggregate score and indications of outliers.

In describing the distribution of the population's grades, we described the dataset's

measures of central tendency. Population means for scores were calculated by adding the

population scores and then dividing the resulting sum by the number of students.
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n
The population variance and standard deviations were also calculated. Since this was a

complete enumeration of the candidates from schools and school types, the complete population

of candidates was used to calculate the standard deviation, that is:

(J'j is the population standard deviation aggregate score for school type j,

Xij is the aggregate score for a candidate is in a school type j,

Ilj is the mean aggregate score for school type j, and

n is the total number of candidates who were graded after the school type j

The degree of asymmetry, or departure from symmetry of the score distribution in

mathematics and other subjects was also checked. For skewed distributions the subject mean

grades tended to lie on the same side as the mode grade. The formula for skewness in the grades

was given by:

L7=1(Xij -flj) 3
Skewness = --------

(n - l)S/

Where X is a subject score of student) in subject i

is the mean of subject}.

s: E 10 UNIVERSI
{*> G c, ~ ~BRARY~'J;• to~:;:;pD t-..~

S is the standard deviation of subject}

n is the number of data points
Simple correlations measured the linear relationship between mathematics and other

subjects like chemistry, physics and the languages; and if the value of the coefficient of

determination r was near zero, it meant that there was no linear correlation. The degree of

relationship of Mathematics and other subjects was checked using Karl Pearson correlation
18



coefficient rxy given by the ratio of the covariance between mathematics (X) and other subjects

(Yi),to the product of the standard deviations of X andf.,

Symbolically

Cov(X, Y)

Where, (Xv lj1); (X2' lj2); (Xn' ljn) are n pairs of observations of

Mathematics score and a given subject j score.

2:1:1 (Xi - Ilx ) (Yi - Ily )
Cov(X, Y) = ---------

n

(J =Y

The exploratory data analysis was undertaken because not so much about the data was

known; therefore preliminary work was done to understand the nature of the KCSE examination

results. The main drawback was that the data could only be scrutinised in "parts". For example, it

was difficult to look at several components of the exam results pattern at the same time. We

therefore needed a method of apportioning variability of math scores across the school types and

gender all at once.

3.4.2: Two way Analysis of Variance (ANOVA)

In this section we examined the effect of two factors (school type and gender) on a

response variable (maths score). Factor 1 had two levels and factor 2 had two levels. For two

factors that might affect a response variable, an interaction may exist if the relationship between
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the mean response and one factor depends on the other factor. For this reason, an interaction

betweenthe two factors was also examined.

Analysis of variance (ANOV A) was carried out to find if there was a significant difference

in Mathematics achievement among students from the different school types as well as gender.

Mathematics scores were classified on the basis of candidates being in the different school types

and on the basis of gender of the candidates. Each factor had two categories; the school type

factor has two categories that are single gender schools and mixed schools, gender had two

categories that are male or female. ANOV A model was used to determine how much of the

variation in the response can be attributed to different factors.

First, the effects of school type and gender are estimated (Stern, et al., 2004), and then an

interaction term which is the product of school type and gender is included in the model. Using

the analysis of variance technique provided an opportunity to look at the whole pattern e.g. the

two factors together and the part of the data that cannot be explained by the model.

The ANOV A table (Table 3) below gives summary elements called sum of square, degrees

of freedom and mean squares for both the components of the pattern and the residual. The sums

of square allowed us to see what proportion of the variation is explained by the different parts of

the pattern in the data and the residual sum of squares shows us what remains unexplained .

.
1.1.-jVi~EN()UNIVERSITjY f
, tIC:!: G "'.... I
t:__~__~. ". ~. LIBRARY I
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ANOVA summary table Sum of squares What the letters stand for
Source Sum of Degrees Mean Test 2 T2 a = number of levels of schooltype2
of square of square statisti SST=L:L:L:Xijk- - b = number of levels of gendern

variation s freedom SSA=Ii T2 T2 r = number of data values for eachc ....!...--
combination of levels of schooltypeSchoolty SSA a-1 MSA MSA ni n

F=- and gender
pe2 MSR

T2 T2 n= total sample size
Gender SSB b-1 MSB MSB SSB=Ij

..L __
Xjjk =Kth member of sample at levelF=-

MSR nj n i of schooltype2 & level) of gender
AxB SSAB (a-1)(b- MSAB MSAB

SSG=Ij
T2 T2

T= =IIIXjjk overall totalF=- .s .«:
Interacti 1) MSR ng n

T', =total of data at level of i
on schooltype2
Residual SSR n-ab MSR

ni =number of data items at
Total SST n-1 SSR= SST -(SSA+ SSB

+ SSAB) level i of schooltype2

Tj = total of data at level j of
gender
nj =number of data items at
level j of gender
T9 = total of all data at a particular
level of schooltype2 and of gender
(There are ab such groups)
ng = total of data values at a
particular level of schooltype2 and
of gender

Table 3: ANOVA table containing a summary of components ofpattern and the residual

Where

Xijk=theKth value of the response variable observed when using level i of factor 1

and level j of factor 2

The ANOV A procedure for two factors partitioned the total sum of squares SST into four

components: the factor 1 sum of squares SSA, the factor 2 sum of squares SSB, the interaction

sum of squares SSAB and the error sum of squares SSR. The formula for this portioning was as

follows:

a-I, b-1, (a-l) (b-l) and n-ab gave the degrees of freedom for factor 1, factor 2, interaction and

unexplained error. In addition, we obtained the mean square associated with the factors and

finally calculated the F ratio which tested the effects of factors. The process was done at the
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same time with the testing of the effects of factors. The significance of both factors and

interactionwas tested by comparing the F values that were obtained through computation and the

expected. The F-probabilities that are given in the final column of the ANOV A table above

enabled us to test the hypotheses about the components of the pattern part of the data. The

assumptions made in the ANOV A technique are that

1. The population of values of the response variable associated with the factors had equal
variances.

11. The population of values of the response variable associated with the factors all had
normal distributions.

111. The students associated with the factors were randomly selected.

In secondary schools, students existed within a hierarchical structure that included

classroom, class level, school and district. Usually, regression analysis (Gelman, et al., 2008) is

used in examining the relationships among the student's dependent variables such as KCSE

aggregate points and one or more independent variables. These assume that the maths score of

any student is not related to any other student. However, this assumption is violated if some of

the students are from the same family, class, school, school type, and district. Thus, the KCSE

exam results are structured hierarchically since students are nested within a class, school, school

type which are then nested within districts.

Among the key assumptions in ANOVA is the independence of candidates' scores under

study. This means (for example) that the mathematics score of anyone student is not related to

the observations of any other student. The assumption is however violated when results are from

the same school. When assumption of independency among observations do not hold, the

estimated coefficients can be biased and result in misleading analysis (Bryk, et al., 1992).

3.4.3: Linear Mixed Model

Using Residual Maximum Likelihood (REML) algorithm with fixed effects and a random

effect (Laird, et al., 1982) (Lee, et al., 2006) the study was no longer restricted to independent

data. This becomes an extremely flexible estimating tool that demonstrates how to analyse data

that is successively correlated (Allan, et al., 2001).
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A linear mixed model which included a random effect term-school was fitted, to take into

consideration the dependency of mathematics scores within a school (Venables, et al., 1999).

The variables "school type" and "gender" were the fixed effects. School type was fixed because

it only had one of the two values; single gender or mixed school. Gender was also fixed because

a student can only be either male or female. The influence of the school on the maths score was

considered a random effect. The linear mixed model was given by

Where

Yij is the value of the response variable which is the maths score for the jth student in the
Ith group.

f30 is the overall maths score mean

{31 and {32 are the fixed-effects coefficients

Xli and X2i are the fixed effects variables for observation in group i

'Yi is the random-effect coefficient for each school. This is thought of a random variable
and not as a parameter. It is assumed to be independent and identically distributed N
(0,0'2 )

Z, is the random effect variable which is the school

Eij is the error for the observation j in group i. The errors are assumed to be normally
distributed and multivariate normal. It is assumed to be independent and identically
distributed N (0,0'2 )

The results of the analysis are presented in the following chapter.

MASENO ~~~VERS'TY1'
I S.G. S. t.~dRARY
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Chapter 4: Results from analysis and Discussion

4.1: Introduction

This chapter describes how data was analysed to answer the objectives of the study.

Findings from the study are presented, interpreted and discussed. In the first section of data

exploration below, data is presented in tables and numerical summaries such as means, standard

deviations, five number summaries and correlations. Graphical summaries such as box-plots,

histograms and scatter plots are presented in the subsequent sub-sections to explain the patterns

observed in the results. The section gives ideas and examples of patterns while also giving us an

insight into variability contained in the exam results.

4.2: Examining the results
MASENO UNIVERSITY}

S.G. S. LIBRARY J
Out of 50,584 candidates who had registered for the KCSE exam in the region, 22,178

(44%) were female candidates while 28,406 (56%) were male candidates. The western region

had 106 (15%) and 55 (8%) single gender girl and boy schools respectively and 538 (77%)

mixed schools that had students who sat for the KCSE examination. From a total of 50,584

candidates, 49,815 (98.5%) were graded. The remaining 769 students did not receive grades

either because their results were withheld for not providing proper documentation, they were

absent, had a missing group/subject or were involved in exam malpractice and had their results

cancelled. The number of students who were graded are summarised in Table 4 by gender and

the type of school.

Single gender schools Mixed schools Total
Female candidates

Male candidates

Total

9006 (53.5%)
7843 (46.5%)
16849 (33.8%)

12908 (39.2%)
20058 ( 60.8%)
32966 (66.2%)

21914 (44.0%)
27901 (56.0%)

49815 (100.0%)

Table 4: Cross tabulation of counts of students by gender and type of school

The row totals in Table 4 above provide the total number candidates by gender while the

column totals provide number of candidates by school types. One good way to investigate

relationships such as these was to compute row percentages and column percentages. The row
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percentages are computed by dividing each cell's value by its corresponding row total and

expressing the resulting fraction as a percentage.

For instance, the row percentage for the lower left hand cell (candidates in single gender

schools) in the table above is (16849/49815) x 100% = 33.8%. Similarly, column percentages are

computed by dividing each cell's frequency by its corresponding column total and expressing the

resulting fraction as a percentage. For example, the column percentage for the upper right hand

cell in the table above is (21914/49815) xl00% = 44.0%. The table also gives a percentage

distribution of candidates in different school types and helps to quantify relationships. The

average number of candidates in mixed schools was 61 which was much lower than that in single

girls and boys schools (85 and 143 respectively). The high number of candidates in mixed

schools could be attributed to the greater number of mixed schools (538) .

en • girls.•...
c a
ill a 0 boys-0 a
::J io.•... Nen.•....
0
L- a(I)
.0 a
E aa::J ...-
Z

a

boys girls mixed

Figure 10: A bar chart presentation of the information in Table 4

4.2.1: A look at Aggregate scores

Aggregate student scores are important since they determine whether a student can be

admitted to university or not. The calculation entails the summation of all the scores for the

seven subjects taken by a student (The choice of subjects is explained in section 3.2. The

maximum that a student can score in a subject is 12 points and aggregately is 84 points. The

Joint Admissions Board (JAB) is the Kenya body responsible for setting the admission criteria
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for entry into public university III Kenya. For KCSE 2011 candidates, male and female

candidatesneeded to have an aggregate of at least 63 and 62 points respectively for them to gain

directentry into a public university.

In Figure 11 below, a histogram is presented to show the general distribution of the

aggregate scores and a box plot distinguishing the distributions between the three school types

involved. Since most candidates were from mixed schools, the distribution of the aggregate

scores for mixed schools has had a tremendous effect on the overall distribution. For instance,

thehighest frequencies in the histogram are between the aggregate scores of 20 and 40, which is

where 50% of the candidates in mixed schools were. There were only 550 candidates in mixed

schoolswho got an aggregate of 70 points and above. This was only 1.7% of the total candidates

in mixed schools in the region. Therefore, it is not surprising to see them being pointed out as

outliers in the box plot.

0 ""-1- ~0 800 x
$ CD l- S

r- xc t'0 0 ,. 700.
0

'0 0 I-
~ l() ,-'-~ IJJ 60gg ,.... I-- ~
.,0 I" ~ 50

~
€ -t r f-~ Q)
III 0 I-- .-! 0 co r-- ...-CIl0 0)40:2 (") ~ '-,.-'0
C r----, 0)
~ 0 < 30 '-,- f-
~ 0 r----,o 0
~N -
c r---- '-,-
41 20:l 00"0
~ 0 r----
LL ••• 10n,

r-0
0 10 20 30 40 50 60 70 80 boys girls mixed

Candidates' Aggregate Points

Figure 11: The distribution of overall candidates' aggregate scores (histogram) and by school type
(box plot). As can be seen in the box plot, around 25% of the candidates in boys schools would make it

to the university through direct entry.
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Grade boys gl r Is mlxed
E 4 3 171
D- 63 190 3020
D 292 619 6200
D+ 630 1133 6797
c- 978 1477 6002
c 1157 1705 4295
c+ 1329 1471 2880
B- 1088 1075 1631
B 975 716 1091
B+ 757 404 640
A- 464 190 220
A 106 23 19

Table 5: Table showing the aggregate grade distribution in the various school types and information presented
in Figure 11

The best male candidate from boys' school got an aggregate of 12 out of 12 in all seven

subjects while the best female candidate from girls' school scored 12 out of 12 in six of the seven

subjects, just like the best male student from mixed schools. The best female candidate from

mixed schools had an aggregate of 82. The majority of the candidates (63.8%) scored a C plain

or below, and 19,134 candidates (38.4%) of them got a mean grade ofD+ and below.

JAB has a policy on affirmative action which improves the chances of female candidates,

the minimum requirement for one to join a public university is an aggregate of 42 points but due

to limited facilities this was moved up (for direct entry) to a minimum of 62 aggregate points for

girls and 63 for boys who did their KCSE exam that year. 90.7% of the students did not get the

minimum grade to join a public university. Only 9% had a minimum grade of 62 points or above

proceeded to public university. If C+ was the minimum requirement then 19,013 candidates

would have made it to public university however only 4,397 made it from the region 1,327 girls

and 3,070 boys. Despite the minimum aggregate points for joining public universities being

lower for girls, there were fewer girls joining public universities than boys. Figure 12 below

shows the cumulative percentage for the aggregate points scored by the candidates.
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Figure 12:A graph of cumulative percentage for the aggregate points in Western region

From these, we can calculate the aggregate score of a school by taking the total sum of

aggregate scores for all the students in a school and divide by the total number of students to get

the average score of a school. This was done again for categories of the schools. The standard

deviation was also calculated. Since this was a complete enumeration of the candidates from

schools in Western Kenya, the complete population of candidates was used to calculate the

standard deviation.

The mean aggregate point for purely girl's schools (~Fgirls) was 43.62 points with a

standard deviation (crFgirls) of 14.30, for purely boy's schools (~Mboys) it was SO.06 points with

a standard deviation (crMboys) of lS.44. There were approximately 1,200 more female candidates

in girl schools than male candidates in boy schools. 9S% of male candidates in girl and boy

schools got between (43.62 - 1.96x14.30, 43.62 + 1.96x14.30) and (SO.06 - 1.96xlS.44, SO.06+

1.96x15.44) respectively. This can be simplified to be (1S.S9, 71.6S) and (19.80,80.32) points

respectively.
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The girls in mixed schools had a mean (~Fmixed) of 31.33 with a standard deviation

(CTFmixed) of 12.12 while the boys in mixed had a mean (~Mmixed) of 35.64 with a standard

deviation (O"Mmixed) of 14.74. (O"Fmixed) is unexpectedly lower than (O"Mmixed) despite the

number of male candidates in mixed schools exceeding that of females by approximately 6,000.

One plausible explanation for this could be that girls have more uniform scores or because the

girls in mixed schools had a lower average.
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4.2.2: Subject summaries
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Figure 13: Box plots showing the distribution a/scores in various subjects

Figure 13 above shows box plots that illustrate how students' performed in various subjects

in the province. It reveals that all the other subjects appear to have a higher median than

Mathematics which has an unusual distribution. It illustrates the differences in variation in the

subject score and indicates outliers for Mathematics and Chemistry. The spread of the grades in

the subjects is fairly symmetrical except for Mathematics as indicated by the relative positions of

the medians within respective boxes. The lack of symmetry in the box plots indicates skewness

in the grades in the various subjects.
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Subject Mat Chern Bio Eng Kis Phy Geo His B/S Agri CRE
Mean 3.525 3.972 5.174 5.501 6.287 5.483 5.846 6.014 6.061 6.323 7.109

Median 2 3 5 5 6 5 6 6 6 6 7

SD 3.00 2.552 2.582 2.385 2.468 2.804 2.703 2.483 2.514 2.585 2.437
Skewness 1.379 1.338 0.640 0.279 0.210 0.581 0.325 0.229 0.235 0.111 -0.233

No. of candidates 49815 48781 48617 49815 49815 12698 33719 32693 19251 21849 35182

Table 6: A Summary of students' performance in Western region per subject. Only eRE had more candidates
scoring above the 50%.

The results in Table 6 above show the means, medians and standard deviations of KCSE

examination scores for some subjects for the whole of the Western region. Studying the means

further show that Christian Religious Education (CRE) had the highest mean while Mathematics

had the lowest mean. Amongst the subjects, Mathematics scores had the highest variability while

English had the lowest variability. The asymmetrical form for the Mathematics box plot indicates

skewness in the distribution of the grades. The bigger positive value for skewness in

Mathematics grades indicate that the grades are skewed to the right i.e. the tail to the right is long

relative to the left tail.
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Figure 14: Bar graph showing the distribution of MathA grades

Figure 14 above shows the distribution of Mathematics mean grades per gender which is

clearly skewed. From the bar plot, it can be seen that most students, irrespective of their gender,
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got a mean grade E in maths and the numbers reduce in comparison as the grades get better. But

it is also interesting that the number of A's were more than the number of A- for both genders.

Like Mathematics, English and Kiswahili are the other subjects that are done by all

candidates. Together, they comprise the compulsory subjects. For this reason, we also look at the

performance in English and Kiswahili by the candidates.
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Figure 15: Bar graph showing the distribution of English grades
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Figure 16: Bar graph showing the distribution for Kiswahili grades
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Figure 15 and Figure 16 above summarise the performance of English and Kiswahili

respectively. It is quite visually clear that the distribution of grades is not the same as that of

Mathematics. Most of the students in English have a D while in Kiswahili have a C+. Unlike

Mathematics where most of the students have an E, it is the complete opposite in English and

Kiswahili where the grade E has the least number of students.

We also check on the association of Mathematics and other subjects using Karl Pearson

correlation coefficient rxy given by the ratio of the covariance between mathematics (X) and

other subjects (Yi), to the product of the standard deviations of X and Vi' The Pearson correlation

coefficients between Maths A and Chemistry and Maths A and Physics were 0.8376 and 0.8189

respectively. Mathematics has sufficiently a very strong positive association with the two

subjects Chemistry and Physics. The Pearson correlation coefficient between Maths A and

Kiswahili and Maths A and English were 0.6060 and 0.6006 respectively. Mathematics has a

moderately positive association with both English and Kiswahili.

It was not surprising for poor math students to be discouraged from doing Physics, hence

the low number of students who sat for the Physics examination. Generally students who

performed well in Maths also performed well in Chemistry. There was a deviation when it came

to other "non-mathematical" subjects like Languages. There were some who performed well in

them despite the fact that they did not have such good performances in Maths. Notice that there

were more As in Maths than in English and Kiswahili. The distribution of grades in both English

and Kiswahili were also skewed. In English, most students scored grade D while Kiswahili most

students score grade C+. From the bar graphs plots, it can be noticed that in English and

Kiswahili, students scored less number of As compared to the number of As in Mathematics.

There was also a strong correlation (0.7606) between Mathematics and the students'

aggregate score of the six graded subjects minus Mathematics. This is an identification of factor

"Mathematics", associated with a good aggregate score. Given that there are multiple factors

influencing the aggregate scored, Mathematics is identified as an important factor. Furthermore,

the distributions of Mathematics grades vs. aggregate points by gender and type of school

suggest a pattern between aggregate points and Mathematics score.
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a 0+ 3907 3215 1114 191 74 43 13 2 1 0 0 0
n c- 1956 3378 2096 90 285 138 72 34 3 4 0 1

C 532 2017 2386 760 6 2 366 2 1 112 68 23 9 1
G c+ 87 667 1498 833 868 622 523 287 149, 87 34 25

I r 8- 8 76 423 393 5 4 529 617 4 6 321 219 112 6
I a 8 0 9 51 7S 189 261 4,6 469 440 378 218 246

d 8+ 0 0 0 0 15 28 103 179 260, 343 300 573
e A- 0 0 0 0 1 0 2 1S 34 91 132 599

I A 0 0 0 0 0 0 0 0 0 2 5 141

L Mathematics grade
- --

Table 7: Counts offinal grade vs Mathematics grade scored by candidates

Table 7 is intended to show the relationship between the grade scored in Mathematics and

the aggregate grade scored by a student. By visual inspection, it is apparent that poor grades in

Mathematics are correlated with poor mean grades by the student. For instance, most of the

students with a grade E in Maths got a mean grade of D. There are only very few, 8 students,

who got a better grade of B-. Most of the students who did extremely well with a mean grade of

A also had an A in Mathematics. This explains the strong correlation between the performance of

a student in Maths and the other subjects and as a result the overall mean grade.

-----=..:.=..:..~~--.
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Figure 17:A Scatter diagram of Mathematics scores versus Aggregate 6 in the different school types

Figure 17 above is a scatter plot with maths score on the vertical axis and aggregate6 on

the horizontal axis. It shows that the variables are strongly related, the crosses in the scatter lie

closely to some straight line. Not all of the points are exactly on a straight line but the crosses

extend from bottom left to top right indicating a positive relationship. This suggests that

Mathematics score could be a factor in determining the aggregate score of a student in KCSE.

Furthermore, the distributions of Mathematics grades vs. aggregate points by gender and type.of

school suggest a pattern between aggregate points and Mathematics score.
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Figure 18:A scatter plot of school Mathematics means versus means of aggregate6 for the different
school types

Figure 18 above demonstrates a possible linear relationship between the mean aggregate

points of six subjects without Mathematics and the mean Mathematics score in schools. Not all

the points are exactly on a line. Nevertheless, because the relationship between mathematics

means and average aggregate6 appears to be approximately linear, it seems reasonable to

represent the general relationship between the two variables using a straight line. This suggests

that on the average, schools with low Mathematics achievement tend to have low aggregate

points. The plot shows evidence of schools doing well in Mathematics having a higher aggregate

and clustering is also clearly seen.

4.3: School type and gender effects

In this section, ANOVA was used for modelling the relationship between the students'

Mathematics score which is the dependent variable and the explanatory variables that included

the gender of a student and school type. This was with the interest of assessing the effect of
36
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explanatory variables on the response. To determine how much the variation in maths scores can

be attributed to school type and gender, first we consider separate effects for schooltype2 (single

gender school or mixed school) and gender. We have two factors that are school type at school

level and gender at students' level.

The model considered is

Maths scorej, = fio + fii schooltypez, + fiz gender, + Cijk

Running this model, we obtain the analysis of variance indicating that both the type of school

and gender are significant. The ANOV A output in Table 8 below shows the results for the

analysis of variance and parameter estimates but without interaction.

> coef(fit1)(Intercept) schooltype2single2.213473 1.900174 genderM1.194719

> +t tLc-aov~MathA.num-schoo 1typez+qender.nara-wes t)> summary(fit1)Df Sum sq Mean sq F value pr(>F)
schooltype2 1 33347 33347 4176 <2e-16 ***gender 1 17194 17194 2153 <2e-16 ***
Residuals 49812 397783 8
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' , 1

Table 8:ANOVA model output when schooltype2 and gender included in the model

We conclude from the small p-value for the F-statistic that there is significant difference between

the single gender schools and mixed schools. There is also a significant difference between the

boys and girls. The mixed school is the reference level for school type while female is the

reference level for gender. We now include the interactions as a measure of interrelationships

between schoolype2 and gender.

We have the model as

Maths scorej, = /30 + /31 schooltypeZj+ /3z gender, + /33 schoo\type2. Genderj, +Eijk

In the output in Table 9 below, the significant interaction implies that schooltype2 and gender do

not act independently. However, the F-ratios for the significant main effects are larger than that

of the interaction. This means that schooltype2 and gender maybe dominant over the interaction

and calls for further analysis such as profile analysis.
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> t1t1.1<-aov~MathA.num-schoo1type2*gender,data-west)> summary(fitl.1)
Df Sum sq Mean sq F value pr(>F)
1 33347 33347 4185.2 <2e-16
1 17194 17194 2157.9 <2e-16
1 894 894 112.2 <2e-1649811 396888 8

schooltype2
gender
schooltype2:genderResiduals

~dd(

'/r'fr'fr

'1r1(*

Table 9: ANOVA model output when schooltype2, gender and their interactions are included in the model
A close inspection of Table 9 above shows that both the main effects (school type and gender)

and their interactions are significant.

When we model using the schooltype4 which takes into account gender,

signif. codes: 0 ,***, 0.001 ,**, 0.01 ,*, 0.05 '.' 0.1 ' , 1> coef(fit1.1)
(Intercept) schooltype2single
2.3345987 1.6054413schooltype2single:genderM

0.5720303

genderM
0.9956436

It can be seen that the output in Table 10 below is the same as the previous output in which

interaction is taken into account.
> tlt2<-aOv(MathA.num-schooltype4,data=west)
> summary(fit2)Df Sum sq Mean sq F value pr(>F)schooltype4 3 51436 17145 2152 <2e-16
Residuals 49811 396888 8

Maths scoreij = /30 + /31 schooltype4 j + Eij

signif. codes: 0 ,***, 0.001 '**' 0.01 ,*, 0.05 '.' 0.1 ' , 1
> coef(fit2)(Intercept) schooltype4Fsingle schooltype4Mm;xed2.3345987 1.6054413 0.9956436

schooltype4Msingle
3.1731152

Although a significant F-test with a schooltype4 factor is obtained, the schooltype4 effect cannot

be interpreted directly. The ANOV A can only tell that the 4 levels in schooltype4 differ but we

can't tell which levels differ. The output says we have strong evidence that at least two of the

means differ.

Table 10: Table displaying ANOVA model output when schooltype4 variable with four levels is used

A Tukey's test was then used after ANOVA in additional exploration of the differences

among the pairs of means. This is to provide information on which means were different from

each other and we were then able to estimate how large the differences were.
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> TukeYHSDCf't~)Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aovCformula MathA.num ~ schooltype4, data = west)
$schooltype4

diff lwr upr p adjFsingle-Fmixed 1.6054413 1.5058764 1.7050062 0Mmixed-Fmixed 0.9956436 0.9138158 1.0774714 0Msingle-Fmixed 3.1731152 3.0692931 3.2769373 0Mmixed-Fsingle -0.6097977 -0.7017810 -0.5178144 0Msingle-Fsingle 1.5676739 1.4556732 1.6796747 0Msingle-Mmixed 2.1774716 2.0808963 2.2740469 0
Table 11: Table showing the Tukey's test output in exploration of the differences among the pairs of means

From Table 11 above, the differences are different from 0 and all the bands do not include 0, so

we conclude that all these pairs of means are significantly different. The following can be

summarised from the above ANOV A outputs in Table 9 and Table 10.

• Candidates from single gender schools had a higher score in Mathematics compared to

candidates from mixed schools.

• Female candidates from purely girls school had a significant higher maths score by 1.605

than females from mixed schools (95% CI for the difference is 1.51 to 1.71)

• Male candidates from mixed schools had a significant higher maths score by 0.996 than

females from mixed schools (95% CI for the difference is 0.91 to 1.08).

• Male candidates from purely boys school had a significant higher maths score by 3.173

than females from mixed schools (95% CI for the difference is 3.07 to 3.28).

• The gender of the student was also significant. The male candidates had higher scores in

Mathematics.

4.4: Integrating fixed and random effects

The objective was to determine the effects of the school types and the gender on maths

score and there was a difference from the ANOVA outputs in the previous section. With the

linear mixed model, we include the additional random effect term (school represented by the

schoolRandld in Table 12 below to represent the clustered and dependent maths score arising
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from students having the same experiences in the same school. A mixed model description of the

data set is given by

Where:

f30 is the overall maths score mean

f31 is the coefficient of the of school type effect

f3z is the coefficient of gender effect on the maths score

'Yi is the random variable for each school is identified by schoolRandld

Eij is the random error

The fixed effects are schooltype2, gender and their interaction whereas the school effect and the

error are random effects.

>11brary~ 1me4 , 11b.10c= C:/users/Mbasu/Documents/R/w1 n-library/2.15")>fit2<-lmer(MathA.num~schooltype2*gender+(1IschoolRandId),west)
>print(fit2,digits=6,corr=FALSE)Linear mixed model fit by REML
Formula: MathA.num ~ schooltype2 * gender + (1 I schoolRandId)

Data: westAIC BIC logLik deviance REMLdev234953 235006 -117471 234928 234941Random effects:Groups Name variance Std.Dev.
schoolRandId (Intercept) 1.1720 1.0826Residual 6.3198 2.5139

Number of obs: 49815, groups: schoolRandld, 699
Fixed effects:
(Intercept)schooltype2singlegenderM

Estimate std. Error t value
2.1592124 0.0524866 41.13840.9287495 0.1225554 7.57821.0121117 0.0291337 34.7402

schooltype2single:genderM 0.9496943 0.1882502 5.0449
Table 12: Table showing the Linear Mixed Model output with school type and gender as fixed effects while school

as a random effect

From the output in Table 12 above, we state our prediction equation in light of the estimated

coefficients and have our equation as;

40



Mathscoreij = 2.1592 + O.92871schooltype2 j + 1.01212genderk + 1.1720il schoolil + Eij

In the output, we have the Bayesian information criterion (BIC) and Akaike information criterion

(AIC) that are used to measure the model adequacy. The absolute BIC and AIC computed values

have no interpretation in this case however, the values can be computed for two or more models,

and the values can then be compared. A smaller BIC/AIC indicates a better model. Deviance is

another way to compare models.

The deviance value 234,928 gives an overall measure of how well the model fits the data.

While the method of least squares is the method usually adopted when fitting models involving

fixed effects only, the method of maximum likelihood is the method used by REML. This

method calculates an expression known as the likelihood, which measures how well the model

fits the data. The better the fit to the data the smaller is the value of the -2 log likelihood. By

comparing the deviance values derived from separate models one can determine which model

provides a better fit to the data.

The estimate of variance parameter for the random effect was 1.1720. This vanance

component provides a measure of variation directly associated with the schools random effect

showing that there was variation among the schools with a corresponding standard deviation of

1.0826. The residual variance 6.3198 provides a measure of variation that cannot be explained

with a corresponding standard deviation of 2.5139. The number of candidates on which

observations are made is stated as 49,815 to which the model fits and the number of schools is

stated as 699 for the random factor.

The other part represents the estimates for the fixed effects and their standard errors. The

fixed-effect "intercept" = 2.1592 represents an estimate of the average level of maths score with

a standard error of 0.0525. The coefficient labelled schooltype2single = 0.9287 represents the

difference between the average level of maths score in single gender schools and the mixed

schools with a standard error of 0.1226. Single gender schools had an average maths score higher

by 0.9287(±0.2403) than mixed schools. The coefficient labelled genderM = 1.0121 represents

the difference between the average maths score in boys and girls with a standard error of 0.0291.

Male candidates had an average maths score higher by 1.0121(±0.0570) than female candidates.

The coefficient for the interaction labelled schooltype2single.genderM= 0.9497, gives the
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average change in the within single gender school type associated with the change in the gender

with a standard error of 0.1883.

4.5: Discussion of findings

In Kenyan schools, students existed within a hierarchical structure such as schools, school

types and districts. The performance in the KCSE exam was at multiple levels. Student

achievement in the KCSE exam was viewed at as an individual occurrence of a school type

effect. There were individual student factors, school or school type effects that affected

achievement in Mathematics. Policies are put in place to address improvement of student

performance as well as school performance.

When analysis is done for the KCSE results at any level, they tend to ignore the gender and

school type differences or they do not address it adequately. A mixed model allowed us to

estimate the effects of individual characteristics like Mathematics score in KCSE performance

and then better account for the variability in student achievement between different school types

and gender. However, the observations made on a students' mathematics score results are not

independent i.e. the maths scores within a school or school type are more similar to each other

than to other schools due to the characteristics of the school.

The linear mixed model allowed us to model differences in mathematics scores associated

with school types and gender while bearing in mind that Mathematics scores within a given

school are not necessarily independent. By applying a mixed model with fixed and random

effects, we compare the linear mixed model with that obtained by ANOVA. For this case, gender

and school types were considered as fixed effects since they were not a random sample from the

population of all possible levels. We can only have a male or female candidate and again we can

only have a single gender school or a mixed school thus fixed effects parameters tell how the

means differ between school types and gender.

A student scored any grade in Mathematics irrespective of the school and this was thought

of as a random selection from a much larger collection of schools thus representing the general

variability among schools accounting for school to school differences. The linear mixed model

used more of the information contained within the results than when we use ANOV A. This was
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because it dealt with and combined information from different data layers; providing appropriate

and correct standards errors consequently improving the precision of fixed effects comparison.

With the random term specified in the mixed model, the estimate of the constant is reduced

from 2.33 to 2.16. Candidates from single gender schools have an average Mathematics score

higher by 0.93 than those from mixed schools. A male candidate has now an average

Mathematics score higher by 1.0 point than a female candidate. This is due to taking into account

the variations between schools in maths scores whereas the ANOV A assumed variation to be the

same in different schools. When the random term was included in the linear mixed model, the

relationship between maths scores and the independent variables school type and gender

changed. Therefore, the linear mixed model with fixed and random effects describes more

accurately the different layers of variation associated with the hierarchical data providing a more

appropriate and correct analysis.

4.5.1: Mathematics scores differences

Naturally, some students were more intelligent than others or they understood what they

were taught in Mathematics better than others leading to variability between students'

performance in the mathematics scores. Mathematics is important and the foundation for science

and technological education at higher levels. For this reason, it is a compulsory subject in

secondary school however, a great majority performed poorly at the 2011 KCSE examination not

knowing its value in their subsequent university or tertiary education.

Universities expect students to have scored a certain grade in Mathematics; this grade

determines whether these students are to be scientists, accountants, technicians, engineers or

Mathematics teachers (http://jab.uonbi.ac.ke/cluster_information). With the kind of patterns seen

in the KCSE results many students fail to get direct admission to public universities or fail to get

on courses they had wished to pursue as a result of not performing well in Mathematics.

4.5.2: School type and gender differences

It was noted that there were more girls in purely girls' schools than there are boys in purely

boys schools. The region also had more purely girls' schools than purely boys' schools.

Conversely, we have more boys in mixed schools than girls. This could be because of the
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perception that girls do better if they learn in a purely girls school than when they learn in a

mixed school environment.

The variability in the Mathematics scores in KCSE between the school types could have

been caused by differences between the backgrounds of the students. Students tend to be more

similar to each other if they are from the same school than when they are randomly sampled

from different schools. This is because students are not randomly assigned to schools from the

population, but rather are assigned to different types of schools based on their KCPE marks.

Thus students within a particular school type tend to have scored certain range of marks in their

KCPE exam. Certain school types had a fairly selective group of students and the schools tend to

be homogenous in terms of educational preparation and experiences.

The estimates furnished by the linear mixed model are adjusted according to how reliably

they have been approximated which is done by borrowing strength from the data of the full

sample and shrinking each estimate towards the school's average. Students in a particular school

are more similar to each other because they share the same teachers, environment and

expenence.

The performance in purely single gender schools differed significantly from the mixed

schools because the school types vary in their characteristics especially with respect to the

students they admit. The school membership is determined by a non-random process of Form

one selection.
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Summary, Conclusions and Recommendations

Summary

This thesis sought to analyse the differences in mathematics scores between different

school types and between genders and the correlation between these scores and students'

aggregate point scores. In addressing the research questions, an ANOV A model containing fixed

effects for school type and gender was fitted into the data. Using a linear mixed model we

extended the model by introducing random effects for school and used the method of restricted

maximum likelihood (REML) to fit the linear mixed model. The outputs produced by REML are

described and compared with outputs produced by the ANOV A method.

Although the presentations of results are different, analyses of variance and parameter

estimates and standard errors are shown to be the same when no random terms are included in

the model. Random term for school is then added in the linear mixed model and the output

compared with that obtained by ANOV A. Having fitted the linear mixed model, the

interpretation and significance of the effects are discussed. The study explored the multilevel

structure of the data by dealing effectively with .layers in the data and gave more valid

approximate significance tests and standard errors.
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Conclusion

In conclusion, this thesis has demonstrated how further analysis of the KCSE examination

results can be done. This thesis begins with a simple question, how does the KCSE mathematics

achievement relates to the aggregate points scored by candidates. As is true of many other

investigations into educational phenomena, the answer is much more complex than expected. As

the investigation was correlational but not experimental in design, assigning of a causal status to

any particular variable has to be done with due caution.

Notwithstanding this, the analysis suggests that the poor aggregate points in KCSE could

be due to poor mathematics score achievement by candidates. There was a strong correlation

between mathematics scores and aggregate points scored by candidates. Maths was identified as

an important factor in getting a good KCSE aggregate score. Maths scores were strongly

correlated with Physics arid moderately positively correlated with the languages i.e. English and

Kiswahili.

There was a significant difference in KCSE maths score between single gender schools and

mixed schools in Western Kenya. Candidates from single gender schools had a higher maths

scores than those from mixed schools. Partly this may be due to the academic status of the single

gender schools which are mostly boarding schools, have more learning resources and students in

these schools have more time at their disposal for academic pursuits.

There was a significant difference in KCSE maths score between boys' schools and girls'

schools in Western Kenya. Partly this may be due to the strong motivation in boys, social in

nature, to do well in maths, could be a contributing factor as reflected in boys' positive attitudes

towards the study of mathematics unlike girls. Going by the findings reported here, KCSE

mathematics achievement as is true with any other educational achievement, is a multifaceted

phenomenon.
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Recommendations

Critical studies should be carried out to determine why there was a significant difference in

Mathematics scores between the different types of schools and between genders as evidenced

from the data. Studies should also be carried out to verify if various action plans put in place in

institutions increase statistics, mathematics and pedagogical knowledge among the participating

students and if so, in what ways does this happen? For example, the study could involve

integrating qualitative techniques to investigate the perception of using resources as such

GeoGebra, Computer Assisted Statistics Textbooks (CAST) and GTL in teaching and learning

mathematics and statistics in schools.

The aggregate points' scored by students depends on complex relationship of variables

apart from maths score, gender and school type. Therefore, there is need for future and further

research on these and more variables for better understanding of the KCSE results. Further,

application of the research findings will consequently inform policy makers for informed

decision making.
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