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literature relevant to the problem under study is 
given, whereas Section 1.4 gives a concise statement of 
the problem together with a list of specific
objectives of the study. The envisaged significance 
of the results of the study are mentioned in Section 

1.5.
Chapter 2 deals with the properties of 

separating systems of a finite set Sn. Some useful 
properties of separating system proved by Renyi (1965) 
are given in Section 2.1, whereas binary minimal 
separating systems and non-binary separating systems 
are discussed in Sections 2.2 and 2.3 respectively.

In Chapter 3, random search models based on 
binary structures are examined. Properties of binary 
search models proved by Renyi (1965) are given in 
Section 3.1. Section 3.2 deals with random search 
models based on finite plane projective geometries 
while random search models based on finite plane 
Euclidean geometries are discussed in Section 3.3. 
Search models based on random 0-1 matrices are given in 
Section 3.4.

Chapter 4 is concerned with search models 
for detecting more than one unknown element from a 
finite set. Section 4.1 introduces two types of search 
designs namely; the 2-Complete search design and the 
partition search design. A detail study of the
2-complete search design is given in Sections 4.2 ana
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4.3. Section 4.4 considers construction and properties 
of the partition search designs. The problem ‘ of 
detecting more than two unknown elements from a finite 
set is discussed in Section 4.5.

In Chapter 5 duration of the search process 
for detecting two unknown elements is studied. Examples 
to illustrate the computation of the duration of the 
search process for detection of two unknown elements 
using the 2-complete search design and the partition 
search design are given in Section 5.2. In Section 5.3 
some results concerning the duration of the search 
process for detection of two unknown elements are 
derived.

Search models for the detection of unknown 
element(s) in the presence of noise are studied in 
Chapter 6. The possibility of an observed function 
being in error is introduced in Section 6.1. Section
6.2 deals with separating systems which determine one 
unknown element in the presence of noise while Sections
6.3 and 6.4 deal with the problem of detecting two 
unknown elements in the presence of noise using. a 
2-complete search design and a partition search design.

Chapter 1, contains a brief summary of ror • 
concluding remarks together with a list of sc-rue 
problems that require further investigation.

<
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CHAPTER 1 

INTRODUCTION

1#1 WHAT IS RANDOM SEARCH?
Consider a set Sn = {a±, az ..... , a^} containing n

elements and a system F of test-functions defined on 
S Suppose that k of the elements, say x4,x2,
.........x̂  (k < n) in Sn are not known. Then the
problem of search is concerned with determining the 
identities of these unknown elements using the
test-functions in F. It is assumed that it is not 
possible to observe these unknown elements directly but 
one can choose a sequence of functions f4,f2 fN 
from the system F and observe the values of these
functions at each of the elements xt>x2>......... and
x̂ , until enough information is obtained to determine 
the identities of these unknown elements.

A method for the successive choice of the
test-functions f , f „ ......,f from a system F of
functions, which lesds in the end to the determination 
of the unknown element(s) is called a strategy of

search. A strategy can either be pure or mixed. It is 
called pure if it uniquely specifies the choice of the 
test-functions and it is called mixed if the choice of 
these test-functions depends on chance. In a mixed 
strategy, test-functions are chosen according to some 
probability distribution. A mixed strategy is therefore 
called random search. A pure strategy is said to be 
predetermined if the number N and the choice
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of each of the test-functions is determined before 
beginning the observation. It is called sequential if

only the choice of is determined in advance and the

choice of fk (k > 2) is made on ly after observing

ft(x), f2<X),.... ,fk ^(x) and may depend on these

observed values. When observed values may be in error

due to noise the search process is called noisy.

Otherwise the search process is called noiseless.
If the system F of functions contains a function

which takes on different values for different elements
of S . then a single observation of this function at n
the unknown element(s) will identify the element(s).
In practice the number of different values taken by a 
test -function in F is much smaller than N. In the 
special case where each function can take only two 
values 0 and 1, the system of functions F is called a 
binary search system. A search strategy based on F is 
then described as binary search strategy.

1.2 BASIC CONCEPTS AND NOTATIONS.
r. he folic wing are some basic concepts and notations

v';- •• v l r useful in our discussion of the search 

problem.

Types of s e a r c h  systems.

A system F of functions defined on the set Sn is
celled a separating system if for every pair of / <c'
distinct elements a ,a. «= S there exists a function f

v j n

in F such that f(a^) * fCa^.
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A separating system F can also be defined as 
follows:
Let

M - (f t (aj) ) , v = 1>2,..... >m; j = 1,2,.... . n
denote an mxn matrix whose (i,j)-th entry is f (a )i j
Then F is a separating system if and only if all the 
columns of the matrix M are distinct. We shall call M 
the search matrix of the system F. A system F of
functions is said to be a minimal separating system if
no proper subset of F is a separating system on S .

We shall a... so need the notion of homogeneity of a
separating system ot functions in the situation where
all the elements in Sri have the same chance of being 
the unknown element, that is, when we assume that,

Pr(x = a.) = 1/n, i = 1,2,.....,n.

For any choice of k(2 < k < n) distinct elements a ,~ ~ l1
al > • • • • > at of S , let R denote the number of2 k 11 *
functions f in F such that f(a ) = f(a ) =  =

1 2̂
f(a )■ Then if R does not depend on the choice ofk-
he k elements, F is called a weakly homogeneous system 

of order k. The system F is called a strongly

homogeneous system of order k, if for every k

distinct elements a, 1 av > • • > aL 1 2  . k
of Sn and a

sequence of k numbers y ,y , . . .
1 2 y where

vk
yu ,s are
j

values taken on by members of F and they

are not necessarily all different, the number
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1 2 functions f in F for which

yt , . . . .,f<a ) = y. ,
2 k \

does not

of elements a ,a , . .I t . . . ,a but1 2 k
may depend on the values of y. ,y. ........

1 2

E f f i c i e n c y  of a s e p a r a t i n g  sy stem.

Let the range of the function f ,f ...... f in F
be a finite set Y = (y »y .........,y } and let k , be
the number of points in S such that0

fj(a> r yV 0 - 1>2,...... m

* - 1,2,....,q, a< n
and

E k., = n.V
If the element â  e is assigned probability p and 

the function f̂ g F is assigned probability p' , then

the entropy of a e is given by

H(a) = - E P(a = a ) 1 og P (a = a )‘ i r \.v = 1

= - E plogpi = l ( 1 . 1 )

and the entropy of f e F is
m

H(f) = - E Fr(f - f.)log Pr(f = f.)

- - E p' log p'. 
j-1 ( 1 . 2 )

fLus H(a) and H(f) give the average uncertainty
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associated with the selection of at from Sn and f. 
from F respectively.

The joint entropy of a and f is given by:

H(a,f ) = H(a) + H(f) (1.3)

since the choice of any element «=
is stochastically independent of the choice of any 
function f. e F.j

Now, the probability distribution of f(x) 
conditional on f = f. isj

Pr (f (x) = yz\ f = fj) = Pr(f.(x) = ŷ ) = p^

and so the conditional entropy of f(x) given f = f is
/

given by

= -E Pj/- for p * 0

and

H(f|f ) = 0, for p^ = 0 (1.4)

Renyi (1965) has proved the inequality
m
E H (f |f ) 2: log n (1.5)— J ^J=i

for any separating system F on S . The ratio

m
log2n/E H(f|fj) (1.6)

J J / <*'

is used as a measure of the efficiency of the 
separating system F. The closer this ratio is to one, 
the more efficient the system {f ,f ......... ,f } is1 2  m
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in separating the elements of
i. &£■ k; i;<‘. i i&fx

S .n

The Duration of a Search Process.

We shall first consider the duration of the search
process for detecting one unknown element. Let F be a
system of m functions defined on the set

Sn = âi,a2’....... > an} which separates the elements
of S . Let x be an unknown element in S and let us11 n
suppose that we search for x in the following way: we
choose first a function f from F at random so that each
function of F has the same probability 1/m to be
chosen. We observe f^x), the value of f at x and
after this we choose again a function f from F so

2

that the choice of f is independent of the choice of 
fj &nd each element f of F has the same probability 
1/m to be chosen as f2. We observe f2(x) and continue 
with the process until f̂  is selected and its value at 
x observed.

We shall denote the probability that the sequence
i\<x),f2(x),....,fN(x) determines the unknown element
x by Pl(N,x) and the probability that the process of 
detecting x terminates exactly at the Nth step by 
P1(N,x). The expected duration of the search process 
for detecting the unknown element x is then given by:

CD

Et(x) = E N p <N,x). (1.7)
N =  O

Next, we consider the duration of the search 
process for detecting two unknown elements. Let F be



a system of m functions defined on the set

sn = < V V .... pair of
elements of'S .n Let (u,v) be the unknown pair of
elements and let us suppose that we search for the
pair of elements in the following way: we choose first
a function f̂  from F at( random so that each function
of F has the same probability 1/m to be chosen. We
observe f at u and v. Each observation specifies a
subset of Ŝ , say A and A . where n iu i v

A,u =

and

A |v = ( 1 . 8 )

Next, we choose f at random such that the choice of 
f2 is independent of the choice of f and each
function f in F has the same probability 1/m of being 
chosen as f2. Again by observing f at u and v we 
obtain subsets A^ and The process is continued
until we are able to determine the unknown pair {u.v} 
uniquely; that is, until

( n Aiu]uf n a w ] = {u,v). (i.9>l — l J Vi. —1 J

If this happens then we require the sequence
? 4‘

........>fN of functions in order to detect the
Pair {u,v}.

We shall denote the probability that the sequence
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f .f .......... ,f.. determines the pair (u,v) of theft 2 N
unknown elements by Pi(N,u,v) and the probability that 
the process of detecting (u,v) terminates exactly at 
the Nth step by pi(N,u,v). The expected duration of the 
search process for detecting a pair of unknown 
elenents is “then given by:

00

E4(u,v) = E N Pt(N , u , v ) . (1.10)
N =  O

The concepts and notations of the duration of the
search process stated here will be useful in Chapters 
3 and 5, in the computation of the. duration of the 
search process for detecting the unknown element(s).

F i n i t e  P l a n e  P r o j e c t i v e  Geometr ie s :  PG(2,s).

In plane projective geometry, a point is defined
by an ordered set of three elements (x ,x ,x ) not all0 1 2
zeros belonging to GF(s), where s is prime or power of 
prime and a line is defined by the equation

a *o o a *i i a x 
2 2 = 0, GF(s>.

This geometry is denoted by PG(2,s). In plane
projective geometry the following basic properties 
hold .
(i) Two different points are incident, with one

line, that is, given two points there exists 
only one line through them.

(ii) Two lines are incident with one point, that 
is, they intersect.

(iii) Not all points are incident with the same
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line.
(iv) There are at least three different points in 

the same line.
(v) The number of points incident with at least 

one line is finite.
The following results are derived from the above 
properties of PG(2,s).
(i) The total number of points is s2+s+l-
(ii) The total number of lines is s2+s+l.
(iii) Each line is incident with (s+1) points.
(iv) Each point is incident with (s+1) lines.

Let n - s2+s+l, then with PG(2,s) we can associate 
an nxn matrix M = ((a )) where a = 0 or 1 depending

1- J

cr. whether the ith point is incident with the jth line
or not (<• = 1,2,. . . , n , j = 1,2.....n). This matrix M
is the incidence matrix of PG(2,s).

F i n i t e  P l a n e  E u c l i d e a n  Geometries. EGCP.s).

In plane Euclidean geometry, a point is defined
an ordered set of two elements (x^» ) belonging 
GF(s), where s is prime or power of prime and a line
defined by the equation

l +  a * + a * — 0 .
O  1 1  2 2

a , a. , aO' 1 ' 2 GF(s)

by
to
is

This geometry is denoted by EG(2,s). In plane
Euclidean geometry the following basic properties
ho id .
(i) Two distinct points are incident with one and

only one common line.

2 <



(ii) Through every point not incident with a given 
line there passes one and only one line which 
has no common point with the given line. 
This line is said to be parallel to the given 
line. All other lines through the point 
have one common point with the given line.

(iii) Not all points are incident with the same 
line.

(iv) There are at least two distinct points on the 
same line.

The following results are derived from the above 
properties of EG(2,s).

2(i) The total number of points is s .
2(ii) The total number of lines is s +s.

(iii) Each line is incident with exactly s points.
(iv) Each point is incident with exactly (s+1) 

1ines.

Let m = sz+s and n = s2 then with EG(2,s) we can 
associate an mxn matrix M = ((a)), where = 0 or
1 depending on whether the ith point is incident with 
the jth line or not (<- - l,2,..,n, j = l,2,..,r> This
matrix M is the incidence matrix of EG(2,s).

We shall make use of the incidence matrices of 
EG(2,s ) and PG(2,s) in the study of the homogeneity 
of separating systems in Chapter 3.
A t -C o m p le te  se a rc h  des ign.

A system (Si, S2 ST} where (>■ = 1,2,..,t ) is
a subset of the set S . is said to be a t-Complete
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search design if for every t distinct elements
a a , ...a e S , we can select subsets (S , j e T), 

* i. * v n J
i  2 t

where T = {j | av e S., for k = 1,2,---- t}, such that

U S — S ~ {a > a f .... i a } .i n v v v
j«=rr J 1 2  t

This definition was given- by Bush and Federer (1984). 
A t-complete search design can also be defined in terms 
of the intersection of the subset (Ŝ , j T) .
We shall use this approach to define a 2-Complete 
search design in Chapter 4.

A B a l a n c e d  Incom p le te  B lo ck  d e s i g n

A balanced incomplete block (BIB) design is an 
arrangement of v objects into b subsets (blocks) such 
that each block contains k distinct objects, each 
object occurring in r different blocks, and each pair 
of distinct objects occurring together on X different 
blocks. For construction of these designs see 
(1967) and Bose (1969).

An arrangement of v objects in b blocks suer, the
each block contains either k^k^,...... or r,?
objects and every pair of objects occurs in exact,, 
blocks is called a pairwise balanced design of index
X. It is denoted by PWB (v; k4, k2 , . k ;m
b , b , . 1 2 where bi denotes the number of

blocks of size k . All theV blocks of size form the

equ iblock component D. of 
1. the PWB design D. PWE

designs in which all the objects have the same number
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of replications are called equireplicated PWB designs.
The balanced incomplete block designs and the 

related designs will be useful in the construction of 
2-Complete search designs in Chapter 4.

A t - ( v , k d e s i g n .

An arrangement of v objects into b subsets 
(blocks) such that each block consists of k distinct 
objects is called a t-(v, ) design. A balanced 
incomplete block design is a special case of
t-(v,k,X ) design with t = 2.

A t-(v,k \ ) design will also be useful in the 
construction of 2-Complete search designs in Chapter 4.

Some concep ts  f rom C o d in g  Theo ry *

The basic concepts and properties of codes
mentioned here will be useful in discussing
error-correcting search systems in Chapter 6.

Consider the set {a . a ........,a } of p symbols.1 2  p
In coding theory, these symbols are referred to as code 
characters. A finite sequence of code characters 
called a code word and the number of code characters in 
a code word is the length of the code word. For example 
the code word 1101100 has length seven. The collect! 
of all code words is called a code; and the collection 
of all code words of the same length is called a blobkC*-. 
code.

The Hamming distance between two code words v and



v is the number of places in which they —2
Hamming weight is the number of non-zero 
in a code word. For example, the
v = 1101100 has a Hamming weight of four, 
distance d of a block code s is defined by

differ. The 
co-ord inates 
code word 

The minimum

d = minimum d(u,v) . 
u , v '<5 3 
u * v

The following two properties of block codes will 
be useful in discussing error-correcting search 
systems.
(i) A block code with distance d is capable of

correcting all patterns of t or fewer errors 
and detecting all patterns of t+j,0 < j < s 
errors if 2t + s < d, s > 0 •

(ii) The minimum distance of a block code is the 
weight of the minimum weight code word.

For a more complete discussion of these results 
see for example Blake and Hullin (1975).

3.3 BRIEF LITERATURE REVIEW.
The problem of search was in tie f • y s4 ages

concerned with developing models for l: 1:./ .e.-ific
problems. For example Bose and Nelson (1962)*
constructed a network for sorting n tier nos 7ney gave 
an upper bound for minimum number of comparators 
needed in an n-element sorting network and 
conjectured that this upper bound is the exact
minimum number of comparators needed in such a



network. Subsequent construction by Floyd and Knuth 
(1967) showed that this upper bound given by Bose and 
Nelson can be improved for all n>8. In a later paper 
Floyd (1972) proved that the Bose-Nelson conjecture 
was correct for n^8.

Other authors who developed models to solve 
specific problems include: Bose and Koch (1969) who 
studied combinatorial information retrieval systems 
for files with multiple-valued attributes. They 
developed a model for filing systems which is capable 
of handling large volumes of data and permitting 
efficient information retrieval. Koch (1969) extended 
this work by studying a class of covers for finite 
projective geometries which are related to the design 
of combinatorial filing systems. He gave a method for 
selecting a certain subset of m-flats from a finite 
projective geometry PG(N,q) which cover all (t-1) 
flats. His results have application in the problem of 
designing efficient information retrieval systems.

In an attempt to unify the various models that had 
been j roposed before to solve specific problems, 

l1966,1969, 1970) developed a mathematical model
for s general search problem. He examined in detail the 
usr; of a rooted directed tree of degree q with n 
vertices as search system with a sequential strategy 
for noiseless search. He also defined separating 
systems of functions and introduced different notions 
of homogeneity of separating systems.

Katona (1966) also studied the separating systems



of functions. He gave lower and upper bounds for the 
number of functions required to forn a separating 
system under some specified conditions. Dickson 
(1969) later extended the concept of separating system 
when he defined a completely separating system. He 
considered the problemtof finding the cardinality of a 
minimal completely separating system and showed that 
this cardinality is asymptotic to the cardinality of a 
minimal separating system. The cardinalities of 
minimal binary separating systems and non-binary 
separating systems under various conditions is studied 
in chapter 2 of this thesis.

After developing a model which solves a general
search problem and introducing the concepts of
separating systems and different homogeneities of
separating systems, the next problem was the
application of this model to solve specific problems
and the construction of these designs. Chakravarti
and Manglik (1972) considered the problem of applying
the random search model developed by Renyi (1965).
They used binary search systems derived froir incidence

matrices of PG(2,2) and PG(2,3) to determine the
identity of one unknown element in a finite set S .

* n

However, their study did not cover other known 
geometrical structures like Euclidean geometries, 
fandom 0-1 matrices or general projective geometries.

Manglik (1972) on the other hand studied the 
construction of different homogeneities of separating 
systems. He related strongly homogeneous systems of



order 2 to incidence matrices of equireplicated 
pairwise balanced designs. He also studied and gave 
properties of weakly homogeneous binary systems of 
order 2. Strongly homogeneous and weakly homogeneous 
systems of higher orders were not considered in his 
paper.

t
An extension of the work done by Chakravarti and 

Hanglik (1972) and later by Manglik (1972) is given in
chapter 3. The chapter mainly concentrates on areas 
not covered by the two papers, namely: the use of
binary search systems derived from incidence matrices 
of Euclidean geometries, random 0-1 matrices and 
general projective geometries, to identify one unknown 
element in a finite set Sn and the relation of 
strongly homogeneous and weakly homogeneous systems of 
higher orders to incidence matrices of equirep1icated 
pairwise balanced designs.

In applying Renyi's model to detect one unknown 
element in a finite set SR , Chakravarti and Hanglik 
(1972) assumed a noiseless search model. A noisy 
search was later studied by Chakravarti (1976). He 
constructed search systems and strategies which are 
separating in the presence of noise. He also gave a 
statistical decision rule for identifying an unknown 
element which maximizes the probability of correct 
identification in the presence of noise. A 
combinatorial approach of solving this identification 
problem in the presence of noise is discussed in 
chapter 6 of this thesis.
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After applying Renyi's model of search to detect
one unknown element in a finite set Sn> the attention
was directed at detecting two or more unknown elements
in the set Sn. Tosic (1980) considered the problem of
detecting two unknown elements in Sn. He developed an
optimal search procedure which identifies two unknown
elements in Sn by testing some subsets of Sn which may
.contain all the two unknown elements or just one of
the unknown elements. The same problem of detecting two
unknown elements using subsets of Sn was later
studied by Bush and Federer (1984). They examined the
case where each subset of S contains the two unknownn
elements and called such a design a 2-Complete search 
design. They also discussed properties of these 
designs. Construction of 2-Complete search designs 
which was not considered by Bush and Federer (1984) is 
given in Chapter 4 of this thesis.

A more general design for detecting more than one
unknown element was given by Sebo (1988). He considered
the problem of detecting an unknown subset of
cardinality k (k = 1,2.....) of the finite set S andn
developed a probabilistic strategy of detecting the 
unknown subsets u'sing minimum number of subsets. 
Although Sebo (1988) gave a method of detecting the 
unknown subset of Sn with a small error probability, 
explicit detection of two or more unknown elements in 
the presence of noise was not given. A model for 
detecting two or more unknown elements in the presence 
of noise is given in Chapter 6 of this thesis.



In this study we take up the problem of developing
search strategies for identifying one, two and three
unknown elements in a finite set. The search models
will be based on logical extensions and generalizations
of geometrical structures like projective and Euclidean
geometries and 2-Complete search designs.*

3.4 STATEMENT OF THE PROBLEM.
The present study investigates some properties of 

binary and non-binary separating systems studied by 
Renyi (1965) and Katona (1966). The relationship 
between separating systems and incidence matrices of 
projective geometries, Euclidean geometries and random 
0-1 matrices are also investigated along the line 
of Chakravarti and Manglik (1972). Duration of 
the search process for detecting one unknown element 
in a finite set Sn using these incidence matrices as 
separating systems is also discussed.

The problem of detecting two unknown elements was 
studied by Tosic (1980).and later extended by Bush and 
Federer (1984) and Sebo (1988). The present study 
attempts to develop search models for detecting more 
than one unknown element. In particular, the study 
gives a method of rconstrueting 2-Complete search 
designs introduced by Bush and Federer (1984) and 
develops new designs which are capable of detecting 
two unknown elements. The duration of the search 
Process for detecting two unknown elements using a 
2-Complete search design and the newly developed



designs are also calculated.
Lastly, the study examines the problem of 

detecting one unknown element and two unknown elements 
in the presence of noise.

-  1 9  -  ___ _____

SPECIFIC OBJECTIVES OF THE STUDY.
The specific objectives of the present study may

t

be summarized as follows:
(i) To obtain some useful properties of

separating systems.
(ii) To use the existing geometrical structures

like projective and Euclidean geometries to 
construct search systems for detecting one 
unknown element in a finite set.

(iii) To compute duration of the search process for
detecting one unknown element.

(iv) To develop models for detecting two unknown
elements.

(v) To compute duration of the search process
for detecting two unknown elements.

(vi) To investigate detection of one unknown
element and two unknown elements in the 
presence of noise.

1.5 SIGNIFICANCE OF THE STUDY.
The results of the present study are expected to 

provide useful search models for detecting one or more, 
unknown elements in a set under investigation.

Also, the results demonstrate further use of



projective and Euclidean geometries as separating 
systems.

The search models derived in the study presume 
both noiseless and noisy conditions, thus widening the 
scope of practical applications of the results of the 
study.

Examples of practical problems in which the search 
models proposed in the study are expected to be 
usefully applicable include: identification of an 
unmarked chemical in a laboratory, searching for a 
mistake in a computer program, decoding a received 
message, searching for failure in a complicated 
mechanism, diagnosis of a disease by clinical tests, 
forensic identification and so on.



CHAPTER 2

ON SEPARATING SYSTEMS OF A FINITE SET.

2.1 INTRODUCTION.
We recall here the two definitions of 

separating systems given in Chapter 1 as follows:
(i) A system F of functions f , f .....,f defined
on a finite set Sn is a separating system if for 
every pair of distinct elements a. , â e Sn there 
exists in F a function f such that f(â ) * f (â ).
(ii) A system F of functions f ,f ,...,f defined 
on Sn is a separating system if an mxn matrix whose 
(v,j)~th entry is f̂ (a.) has distinct columns.

An example of a separating system is given
below.

Example 2.1: Consider a system F = {fj.f̂ fg} 

defined on the set Sg = {a^a^a^ as follows;

r0 if v = j 
ft{a } = \

J m  if i ^ j, i = 1,2,3; j = 1,2,3,

For any pair of distinct elements a,a. e S there
V J  3

exists a function f. in F such that f (a ) = 0 and
1 u 1

f (a.) = 1, that is f.(a ) * f (a ). Thus, the system
J. '  j  X  V  l  J

F = (f ,f .f } is a separating system.1 2  3
The search matrix of this system is;



ai a2 a3 -
f 0 1 1

M = f ‘ 1 0 1
1 1 0

The columns of the matrix M are distinct as 
expected, since the system is a
separating system.

Some p r o p e r t i e s  of  s e p a r a t i n g  systems.

The following are some useful properties of 
separating systems; see Renyi (1965).

(i) Let F be a minimal separating system of 
functions separating the elements of the 
finite set Sn> having n elements. If m 
denotes the number of functions in F then 
m < n - 1 c

(ii) The minimum number of functions m which 
separates n elements of the set S is 
{logzn},where (x) denotes the least 
integer greater than or equal to x.

2.2 BINARY MINIMAL SEPARATING SYSTEMS.
We call a system F of functions defined on a 

finite set Sn a binary minimal separating system if 
the system consists of the minimum number 
functions which separates any two elements of the 
set Sn and each function takes only two values L and 
1. It has been proved by Renyi (1965) that the



minimal binary separating system of a set of n 
elements has exactly {log2n} functions, (Where {x} 
denotes the least integer > x).

Exam p le  2.2.' The minimal separating system of 
a set consisting of, 8 elements has logz8 = 3 
functions and one possible search matrix of the 
functions which separates the 8 elements is

a i a2 a3 a4 a5 a
<5

a7 a
8

f 1 1 1 1 0 0 0 0
f 1 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

A minimal separating system in which 
m
£ H( f (x) ) = log2n (2.1)
i = i

where H(f) denotes the entropy of f e F, is called 
an optimal separating system.

Lemma 2.1: Every optimal separating system is 
a minimal separating system. However, a minimal 
separating system is an optimal separating system if
and only if the random functions f , f ,..,f are1 2  IT.
independent.

P roo f

Suppose the functions fi,f2>......, fm form a
minimal separating system, that is the vector / s"
(f (x),f (x),...,f (x))' which is a column of the1 2  m



search matrix M of the functions f ,f takes1 2  m
on different values for different values of x e s .n
Assuming that the vector ( f <x).f (x) , . ., f (x))' is 
equally likely to be any of the m columns of the 
search matrix M, the probability that the vector 
(f <x).f (x), . . . . ,f (x))# is the ith columnX mi IM

(*■ = l,....,n) of the matrix M is - and then
entropy of ( f(x),f ( x ) f  (x)) is*  ̂ m

n

H(f(x),f(x),...,f (x)) = £ - logn = log n.1 2  m n 2 2v = 1

But
m
EH(fv(x)) > H(fi(x),f2(x)> . . ,f (x>) = log n 

with equality if and only if f (x),f (x),..,f (x)1 2  m
are independent. Thus an optimal separating system 
corresponds to a minimal separating system with 
f (x),f (x),.....,f (x) independent.

1  4L TH

Remark: An optimal separating system F can oe
characterized by saying that the partial bits of
information obtained by o b s e r v i n g dirt •. t 1. L
functions f belonging to F do not overlap. Thus an
optimal separating system corresponds to a most
economic strategy.

Lemma 2.2: Suppose F = (f ,f } is a1 2  m
separating system for the set S = {a .a ...,a }n 1 2 * ’ n J
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with m = log2n, then F is an optimal separating 
system.

Proof

Since m = log2n, the number of columns of the
search matrix M of the functions f ,f .. ,fm,n 1 2  m
consists of all possible combinations of v ones
(zeros) and (m-O zeros (ones), i = 1,2,.....,ra. To
determine the number of ones in a row, say the jth 
row of M we form a matrix M' , whose columnsm,n m . n
are all the columns of the matrix Mm,n with en t ry
1 in the j-th row. That is, the j-th row of the
matrix M'm , consists of,n all ones, with n' giving
the number of ones in the j-th row of Mm,n

With the jth row of the matrix M' ,m,n
consisting of all ones, the remaining rows which
consist of ones and zeros is (m-1) and the number
of columns of the matrix M ,, n' is given by them,n
number of all possible comb inat ions of v ones
(zeros) and (m-l-O zeros (ones). Thus, the number
of ones in the jth row of the matrix MTTl, is :n

* M  * [v:I *......* t :)
m-1

= E m— 1 j *
t =o *̂ 1 J

and the number of zeros in the jth row of Mm,n is;

2™- 2m_1 = 2m_1.

/ .<?•

Using the relative frequency interpretation of



probability we have:

Pr( f. (x) =0) = Pr(ft(x) = 1)= 2m~l/ z m = 1.

The entropy of f. in F is thus;

H(fv) = log2n + -|log2n = log2n

and
m
E H(f) = m = log2n
V= 1

which is the required condition for the separating 
system F to be optimal. Thus F is an optimal
separating system.

Next, we consider the problem of determining 
the lower bound of the integer m for which there
exists a binary search matrix M , in which each

m,n

row contains k ones and no two columns are
identical. We shall denote this integer by m(n,k).

Theorem 2.1: The integer m(n,k) described
above satisfies the inequality:

m ( n , k) k
n log2

log2n
n n-k 
k n log2 n

n-k

P ro o f

Let F = (f f ,...,f } bei  ̂ m
functions defined on the set S =n

/ <
a system of

< V a2....>8J
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whose search matrix is the matrix Mm, and,r> the

element â  e corresponds to the 3 th column of

Hm,n Assuming that the function f
V

takes the

values 0 or 1 with equal probabilities we have:

Pr(r<x) = 1) = £

and

P r ( f v( x )  = 0 )  = 1 -  -

since each row of n consists of k ones and (n-k)
zeros. The entropy of ft e F is then given by;

HC fv) n-k
n l°g2 n

n-k .

Bu t

m < n,k>
E H(fv) = m(n,k) {^log2 k

n + njt n In 2 n-kj
\ -1

> log n , (see Renyi (1965) 
2

Therefore,

c(n, k) > lcg2n/ ^  log 

Which is the required result

n + nil log " 12 k n 2 n- kj (2.2)

C oro l l a ry  2.2* For k close to but less than
or equal to ^ — 1, the integer m (n , k ) satisfies the

/inequali ty:

i.(n,k)>log2n / / [jlog2[-T ^ rTr)) + ^loe2(FFk))' (2 3>
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Proof*

From 2.3

m<n,k)> log n /f-log ^ + iHiiioc _H_- 2 / 3 2 k- r, -LU=>o2 K 2 n-kj

But

k n n-k,1os., r + — logn 2 k n 2 n-k
1

= n Lklog2n ~kloS'2k + (n-k)log^n

- (n-k ) l o g ,(n - k )

2 r
= ” [^nlog2n-klog^k-nlog2( n-k )

+ k 1 o 2. . ( n-k

mogn [_ 2 n - k

i i
< - 1 n 1 o £ - n i

T±r + klog —

n- l n - j . ̂ n-k •-v — c  i

fcr k Ciose to but less than or eoual r o — - 1- '? 1 ’
we h a v e ,

£  log £  + n “ k " ’ 1n s2 k n k l o ? 2 = ~2n|-n ^°S2n - 2n i o g i n - k2n|_' -c = 2

+ • • 1 o s . ( n - k ) - 21 o s

2ni2n*:

- mog

ri icg

+ 21 o g
^ r. - n 1 o s' k

= 7T~ ' n 1 O ^ ---------~
-  11 L “ v li -  K J _  Th —  ,r ;

- In_ • O & 9 - w "D
Thu

2 k i n - k ) ♦ -leg.--n 2 n - / <?

m,n’kl 1 l o s 2n/ I j i ° g 2 ( - ^ T r ) )  +

nenoe the proof of Corollary (2.2 ).



Remark: Corollary 2.2 gives a weaker but 
compute estimate of the integer m(n,k).

easier to

Example 2.3: Let n = 11 and k = 4, then k = 4 
is close to (n-2)/2 = (ll-2)/2 = 4.5. Thus corollary
2.2 could be applied » to obtain an estimate for 
m(ll,4). This estimate is:

|log2( 121/4x7) + ri-log24 / 7

That is, m(ll,4) > 4, since m(n,k) must be an 
integer.

2.3 NON-BINARY SEPARATING SYSTEMS.
A system F of functions f ,f , . . . . ,f1 2  m

defined on a finite set is a non-binary

separating system if for every pair of distinct
elements a a. e S , there exists a function f e F 1 J n
such that f (â ) * f (ap and each function in F

takes p values 0,1,2,....,p -1 (f > ?)■

log2ll
3.52 •

Exam p le  2.4-: Consider a of two
functions f end f defined on the set 1 2

,a } as follot’ pJ
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W =  V as> = W  = f;

Then the system is

system. This can be seen 
matrix given as follows;

ai a2 a3 a
A

a
M = ' 0 0 0 1 1

2 0 1 2 0 1

<a3>= W  = W  =2 • 

a non-binary separating 

easily from its search

a a a a<5 7 8 p
1 2 2 2 '
2 0 1 2

All the columns of the search matrix M are distinct: 

thus the system (f ,f } is a separating system.

Theorem 2.2*' Suppose F = {f , f f } is a1 2  m
separating system on the set S>n and each function 
f e F takes the value i (i = 0,l,..,p-l) at k points 
in S , that is n = kp. Then m the number of 
functions in F satisfies the inequality;

m > log n .

Proof

Let M = ((f^Ca )) be an mxn search matrix of 
the functions f , f ......,f -Then the columns of1 2  m
the matrix M are distinct since f ,f .........,f
is a separating system. The joint entropy

of {f,,f2,......f } is;

....... fm> = i = l

= log2n .
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And the entropy of f e F is

P-1
E Pr(f (x) = 1)log

2 Pr (f
1
(x) i>

log n
2 k

= log since pk = n.

Bat
H<ft> + H( f2 )+.... + H(fm) > H(f4,f2....... ,fm).

That is,

m log2 ^ > log2n.

Changing from base 2 to base p, we have

mlog 77 log np K p
log 2 - log 2p p

mlog - > log np k p

mlog p > log np p

m > log nF

which is the require^ result.

Theorpnn 2.3: Suppose F = (f , f . . . . , f } is a1 2  IT
separating system on the set and each function
f e F takes the value v (v = 0, 1,.....,p-l) at / <
k ,k .. . ,k points in S . where k < k <.....< ki 2 '  p r n i - 2 -  - p

and [ k = n. Then m, the number of functions in Fi
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satisfies the inequality:

" i laZpn/ lo6p £ •

Proof
Let M = ((f (a.)) be an mxn search matrix oft j

the functions f ,f , , f -Then the columns of the1 2  m
matrix M are distinct since f , f „,.......,f is a1 2  TTl
separating system. The joint entropy of

(ft, f2, • • > fm) is >

H( f , f ,......,f ) = log n .1 2  m 2

And the entropy of f e F is;

H(f > = E r  log ir
1 = 0 v

But

H(f ) + H (f ) + ---+ H(f ) > H( f , f ,--- ,f )1 2 ID - 1 2  m

= loe2n -

That is

f - 1 : '« s l + V  log^  + - - -+ - f  logJ )  i log2n

l. e
(K logn + k log n + ... + k log n)1 2  2 p ^

- <kilog2kl + k2log2k2+. . . ,+kplog2kp) j > log2n

Now, since k < k <....< k1 - 2 - p ? <■

^nlog2n - nlog2 kj > ĵ"(kilog2n + k2log2n+ ....

+ k log n)-(k log k
P  Z  1  Z  X
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+ k2log k2 + ........

...........+ kp1°g2kp)]

> log2n .

Therefore,

n  [n i j  i  l o g 2 n ‘

Changing from base 2 to base p, we have

mlogpa  ̂ iogpn 

logp2 logp2

and
in logpn/logp n

K

Hence the proof.

Example  2.5: L et F "  ^ 1  * 2̂ * ' * *

separating system on the set - {a4,a2 , . . . , )
and each function f * F takes the value 0,1,2 and 3 
at 4,12,20 and 26 points in respectively.
Then the minimum number of functions, m satieties 

the inequality:

tn > log4 6 4 log4 64/4 

= 1.5.

That is, to separate the elements of the set
functions would be required.a minimum of two



C H A PT ER  3

RANDOM SEARCH MODELS BASED ON BINARY STRUCTURES

3.1 INTRODUCTI ON.
The search models we are going to study in

this Chapter consist of a system F of functions
which identifies any unknown element x of the set
Sn = {a4, a2 an), and each function in F takes
only two values 0 and 1. Each function divides the
set S into two subsets. The intersection of subsets n
in which the unknown element x belongs gives 
the identity of x. These search models were 
described in Chapter 1 as binary search models.

Renyi (1965) obtained the following 
properties concerning binary search models.

(i) A system F of binary functions which is 
weakly homogeneous of order 2 is also weakly 
homogeneous of orders 3.

(ii) If R denotes the number of functions in
F and R denotes the number of functions for which 

2

f(â ) - fCâ ), i * j, f e F then

R2/Rj > (n-2 )/2(n-l ) . (3.1)

(iii) If the system F of functions defined on
the set S is weakly homogeneous of order 2, then n
for all x e n

Pt(H,x) > 1 - (n-l)[R2/R1]N (3.2) A
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where P (N,x) denotes the 
sequence of functions fi#f2>. 
unknown element x and R̂  and 
above.

(iv) If the system F of binary functions 
defined on the set is weakly homogeneous of order 
2 and thus weakly homogeneous of order 3, then for 
all x in Sn

P1(N,x) < 1 (3.3)

where Rg denotes the number of functions for which 
f (a ) = f (a ) = f(a ), i * j * k, f e F.

t  J  X

We also recall that the expected duration 
of the search process for detecting the unknown 
element x is given by;

00
Et(x) = E Npi( N , x ) c.f .(1.7)

N = 0

with p4(N,x ) denoting the probability that the 
process for detecting x terminates exactly at the 
N th step.

The following is an example illustrating the 
crnputation of the duration of the search process 
for detecting one unknown element.

9

Example  3.1: Consider a 
three elements a ,a and a1 2  3
wish to determine one of

set S3 consisting of
and suppose that we
these elements. Let



set of three functions defined

0 if 1 = 3
1 if 1 * 3, i - 1,2,3, j = 1.2,3.

as follows:

w .  { •

Then, the search matrix of the system F is;

f
M = f

3 *-

a a ai 2
0 1 1
1 0 1
1 1 0

We notice that the columns of the matrix M
aie distinct, therefore, the system F of functions

frfz'f3 is a separating system. For any choice of
two distinct elements a ,a • in S there is only

1 L2
one function in F such that f(a ) = f(a ). So F is

i l2
a weakly homogeneous system of order 2 with R - 1

2

Further, F is a strongly homogeneous system of order
3 with P2(l,l) = R2(1.0) = R2(0,1) = 1, R2(0,0) = 0,
R (0,1,1) = R (1,1,0) = R (1,0,1) = 1, where R , R 3 3  1 2
and Rlc(yi *1 2
1.2 of Chapter 1.

,yv ) are as defined in Section
k

Now, let us compute Pt(N,x) if the unknown
element >: is â  . The following tv 
not detect x;

^  | . p  n  j i  r  _ u C  • i ^  w '

*z> f2>.........and fa, f ,

Thus* the probability of not detecting x within N 
steps is;

t r * (3.4)



Therefore, the probability of detecting x within N 
steps is;

P,(N,x) = 1 - 2[ |]N. (3.5)

Hence the probability of detecting x in exactly N
steps is;

p,<H,x> = [l;2(l]"]-[l-20)"-']

* I &)"■•• » 1 ^

and
Pt( l,x) = | > for N = 1

since the function f identifies the unknown element 
x. Using Equation (1.7) in Chapter 1, the expected 
duration of the search process is;

00

Et(x) = Z N.Pi(N,x)
N =  1

E N.Pi(N,x)

3 C2 [I ] + 3 [l

4 f __1_
3 [(1-1/?)

■ )

That is, to determine x an average of two 
test-functions would be required.



3.2 RANDOM SEARCH MODELS BASED ON FINITE PLANE 
PROJECTIVE GEOMETRIES: PGC2, s).
We recall that the incidence matrix of 

PG(2,s) is an n x n matrix M = ((a )), where n = 
s + s + 1 and a.̂  = 0 or 1 depending on whether the 
tth point is incident with the jth line or not 
( -  1*2,....»n j  j —  1)2;.......................... ,  n ).

Identifying the points of PG(2,s) with the 
elements of the set and the lines with functions 
of F, the incidence matrix M of PG(2,s) forms a 
search matrix.

Lemma 3.1: The system of functions (lines) F , 
derived from PG(2,s) is weakly homogeneous of order 
2 .

P r o o f •

Let M = (fv(a )) be the search matrix of the 
strategy based on the system F. Then F will be a 
weakly homogeneous system of order 2 if R which
is the number of functions in F for which

s. *\ a ,j

is constant. That is, the number of functions
for which f (a ) ='f(at, ) r 1 or fCa^ = f(a., )
a. * a, is constant. j j

But, the number of functions in F for 
f(a.) = f(a . ) = 1 is

in F 
= 0,

which
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2
B  -*• S  +  l

E rCa.) f.(a., ), a .j * a.,j

and the number of functions in F for which 
f(a.) = f(a., ) = 0 is

2
8  +  S  +  l

E <l-r(a ))(l-f.(a., )).
i. = 1

Thus,
2S + S  + 1 r -1

Bz = E ft(a )ft(a . ) + (1-f/a ))(l-f.(a., ))v = l L -J
2

s + s + i  p
■ = E l- ft(a > - f,<a . ) + 2fi(aj)fi<aj. )

V. = 1 L

= ( S 2+ s + 1) - 2(s + 1) + 2

- s2 - s + 1 . (3.6)

which is a constant as required. Hence r is a weakly 
homogeneous system of order 2.

Lemma 3.2:- The system of functions (lines)
F, derived from PG(2,s) is weaki> homogeneous of 
order 3.
Proof

The system'F will be weakly homogeneous of 
order 3 if R , which is the r.umber of functions in F 
for which

.<?'
f(a ) = f(a/ ) = f(aj<# ), &j * * ajV



j.i constant. That is, if the number of functions in
F for which f(a^) = f(aj# ) = f(aj/# ) = 1 or fCa^ =

f(a , ) = f(a ■ n ) - 0* a ̂  a , i* a.,/ is constant,j j j j j
But the number of functions in F for which 

f(aj) = f(aj# ) = f(aj#, ) = 1 is

2
6  +  S  +  l

E fc(aj)fi( a., )f(a.,, ), aj * a., * â ,
i = 1

and the number of functions in F for which f(â )
f (a , ) = f ( a „ ) - 0 is j j

2s + s * l
E <l-f (a ))(1-f. ( a , ))(l-f(a ,, )) •

 ̂ J  ̂ J  ̂ J1 = 1

Thus,
S +S  + 1

R =
’  S ’ l  r-

E f (a )<f (a., ) ( a ,, ) 
v=1 L 1 v L J J

(l-f.(a.)Xl-f.(a , ))(1-f (a,, ))11 J t J v. J

9 *► S + 1T  a T  J r

E 1-f (a ) - f (a , ) - f (a ,, )I <- J V j t jV = 1 *-

+ f(a)f(a,) + f(a)f(a,, )
«■ j «■ j v j i j

fS~°y > >

j ; - 3 ( s + 1 ) + 3

s2- 2s + 1 = (s-1)2 (3.7)

which is a constant as required. Hence the proof of
the lemma.
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Exam p le  3.2:- Consider the incidence matrix 
of PG(2,3) given as follows;
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P i p 2 P 3 P 4 p5 P <5 p7 P B p * P J p  p  t o  i l
p

1 2 * 1 9 -

u 1 1 0 0 0 1 0 0 0 1 0 0 0

I z 1 0 1 0 0 0 0 0 1 0 0 0 1

I s 1 0 0 0 0 0 1 0 0 0 1 1 0

U 1 0 0 1 1 0 0 1 0 0 0 0 0

Its 0 1 1 1 0 0 0 0 0 0 1 0 0

u  U
0 1 0 0 0 0 0 1 0 0 0 1 1

M = 17 0 1 0 0 1 0 1 0 1 0 0 0 0

Is 0 0 0 1 0 1 1 0 0 0 0 0 1

lo 0 0 0 0 0 1 0 1 1 0 1 0 0

U o 0 0 1 0 1 1 0 0 0 0 0 1 0

u  1 0 0 0 0 1 0 0 0 0 1 1 0 1

U z 0 0 0 1 0 0 0 0 1 1 0 1 0

U s 0 0 1 ' 0 0 0 1 1 0 1 0 0 0

Identifying the points of this geometry with

the elements of the set S „13 and the lines with

functions of F = { f , f , . . L 1 2 ,f } , the incidence13
matrix H forms a search matrix.

Taking any two points, say and P2 which
correspond to elements aî SL2 € S13> equal to
the number of functions in F for which 
f(a5) = f(a2) = 1 or f(as) = f(a2) = 0. But, the 
number of functions in F for which f(ai) = f(a2) = 1

E = 1

and the number of functions in F for which

f(a ) = f(a ) = Tj is;i. 2

l — 1 ̂



1 3
13 - I f,>a,

i « 1
- Ii »1
1 3

f (1 o

Thus ,

13
+ Y f. ( a )f.(a0)u i 1 i 2l = 1

= i 3 - 4 - + + l = 6

R2 = 1 + 6 = 7

which is constant for any pair of elements
(a a . ), implying that the system of functions 
j ’ j

(lines) is weakly homogeneous of order - •
Theorem 3.1:- The expected duration of the 

search process based on the incidence matrix of 
c; fcr detecting one unknown element .

denoted by E (x), satisfies the inequality:

E . I x ) < ( s + l ) ( s + s + t) 1 + ' + s- 1 ) ( s^-23+ 1 
9 s

£ 1 s ~ ̂ —  (4s + (s 2 + s -1)(s ‘'-2s -1))
*? ( s + s 1

fr □of
From Kauai ions (3.6) and (3.7), R9 = s - s + 1
_ s,:_ _>s + i respectively. Substituting these

v a lues and s + s 1 in (3.2) and (3.3) we

:otain:

P (N ,x ) i ! - ( s + s s — S + 1
lsfc + s+V

N ( ■,Z +  s ) !sZ-2s+llS
 ̂  ̂S “ ♦ S + 1.

:.nc
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p (N 1 &
But

_l,x) > 1 - <s*+ s) (v1-Is + S+*J

N - i

( N , x ) = P^N.x) - P, ( N- 1 , x )

f 2 1N / 2 \ f 2 1n"
1 - ( S2 + s ) S -s+l s + s s -2s4-1

2+ S+ 1 J
T l 2 J 2l̂S + S + 1 J

f 2 J N- 1
1 - (  S 2 + S )

s -s + l
+ S + 1 y

= s(s+1 )
r 2s -s+l N- 1f 2 ̂ s -s+1 + 2 2 (s + s)(s + s — 1
ks %  s+ 1 ,  ̂ S2+ s+ lJ 2

2• S ” 2s * 1 2s - 2 s + 1
x 2 s + s + 1 2, s + s + 1

N- 1

2 s ~(s + 1 )
s"+ S+l

s -s-f 1
2s + S + 1

N- 1

s ( s% 1 ) (s" + s- 1 )(s2-2s + 1 )
2(s^+s+l)

s - 2 s 1
2[s t S + 1

N- 1
, for N > 2

9 9.

and

P1 (1,x ) = 0 , for N = 1
since no single function derived from PG(2,s ) can detect t ’. • 

unknown element.The e x p e c t e d  duration cf the search ■ c • 
is;

S<x) = I N .p^N.x)

Vhich implies that

. f ( 1
N =

E,(x) < [ N
N = 2

2s2(s+l ) '2s -s+l
s 2 + s + 1 2ŝ + s+ 1 j

N - 1

s ( s+1 ) ( s*” + s-1 ) ( s2-2s-1)f 2 ^s - 2 s+ 1 N- 1

2 ( s 2 + s + 1 ) 2 .Is +S+1 J

/

2(s%s+l )
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2s (s+ 1 )
(s +s+l)

1-
2S - S+ 1
2S +S+ 1

2 (s + 1 )
2s + S+l 

f
+ s(s+l)(s2+s-l)(S2—2s +1 

2(s2 + s + 1 )
1 - s -2s+1

2S +S+ 1

s ( s + 1 )(s%s—1 )( Ŝ —2 S + 1 )
2(s 2 + s + 1 )

2 2 2 2 2 2 2s ( s + 3 ) (s +i) s(s + i ) ( s + s- l ) (s - 2 s + i )(s + s+ i ) --------  x ------ + --------------------------------------
(s2+s+i) 4s 2(s +s+i).9s

S( S+l ) , . A / 2̂  i w 2 o 1\\(4s + (s +s-l)(s -2s-l))
2(s +s + 1 )

= ( s+ 1 ) ( s % s +  l ) 1 + sSs—1 )(s2-2s+i) 
9s

-  :=~~L— —  (-4s + (s° + s- l)(s2-2s-l)) (3.9)
2 ( s ̂ + s+ 1 )

which is the required result. The upper bound of the expected 
duration of the search process given in (3.9) clearly
increases with increase in s.

Example 3.3: Consider the incidence matrix of PG ( 2 , 3 ) given
as;

r P1 Pq r. p5 pb P7 p8 p9 P10 P1 j 1 1 2 * 1 3-1
£l 1 - 0 0 0 1i 0 0 0 3 0 (■) i •
iz 1 o 3 0 0 0 0 0 11 0 0 0 - !f.3 1 0 0 c 0 0 1 c 0 0 1X
U 1 o 0 1 q 0 J o 0 0 r\
is 0 J. l -J 0 0 0 (• r. 0 1 0

M = is 0 ] 0 0 0 0 0 X 0 0 0 1 1 .
h 0 1 (j o 1 0 1 0 1 0 0 0 c
is 0 0 0 , 1 0 1 1 0 0 0 0 0 3
is 0 0 0 M 0 1 0 1 1 0 1 0 0
£10 0 0 1 0 ] 1 0 0 0 0 0
til 0 0 0 0 1 0 0 0 0 1 1 0 3
tl 2 o 0 0 0 0 0 0 3 3 0 1 0
tl3 0 0 1 0 0 0 1 1 0 3 0 0 0

identifying the point s o f PG ( 2,3 ) wi t h t} i e elemen t s

2’.... a 13 o f the set S13 and the lines



*

wjth functions , f2, . . , f 13 -of -the— by^u.»— F-, the
incidence matrix M of PG(2,3) forms a search
matrix. The system F = {fx,f2, . . ,f13) would detect 
any unknown element x in S since the columns of 
the incidence matrix of PG(2,3) which is a search 
matrix H are distinct and thus, F is a separating 

system in Sia.
Using the incidence matrix of PG(2,3) as a 

search matrix, the probability that the search 
process for detecting one unknown element, x 
terminates in exactly N steps, P1( N , x )  and the 
duration of the search process Ei(x) satisfy the 
inequalities 3.8 and 3.9 respectively. That is,

PjCt^x) 2x9x4 f 71N't, 3x4x12x4 f 4 1 
- 13 U3J 2x13 L 13 J

72 1L + 576

*41Z

13 Il 13 J 26 L 13J
and

E (x) < 72.2.i —

The exact values for p^(N,x) and Ei(x) have been 
computed by Chakravarti and Hanglik (1972) and found 
to be:

Pt (N , x ) 72 f 7 r 66x9 j 4 f '13 113 j 13 1.13.J
9

72x10 f 3] . 23x3 2 f n+ 13 Il3j 13 U3j
and

Et(x) = 49.64
/



Clearly, the exact expected duration of the search 
process given above satisfies the inequality given 
in (3.9).

We note here that the formula given above 
gives an upper bound far from the exact value, thus 
an improvement on this bound is necessary.

3.3 RANDOM SEARCH MODELS BASED ON FINITE PLANE 
EUCLIDEAN GEOMETRIES: EGC 2, s).
Again we recall that the incidence matrix of 

EG(2,s) is a mxn matrix M - ((a )) where m - ̂J
2 2s + s, n = s and a^ = 0 or 1 depending on whether 
the j-th point is incident with the i-th line or not 
(*• 1,2, . . , m , j — 1,2, . . . , n )

Identifying the points of EG(2,s) with 
elements of the set Sn and the lines with functions 
of F, we see that the incidence matrix M of EG(2,s) 
is a search matrix.

Lemma 3.3: The system of functions (lines)
F, derived from EG(2,s) is a weakly honoger. € . ;.*? 
system of order 2.

P r o o f .

Let M = (ft(a )) be the search mat: >: cf the 
strategy based on the system F. Then F will be a 
weakly homogeneous system of order 2 if R , which 
is the number of functions in F for which
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f(a.) = f(a^, ), aj * aj# ;

is constant. That is, the number of functions
for which fCa^ = f(aj# ) = 1 or fCa^ = f(a
n a * a, is constant.' j j

But, the number of functions in F for

f (a.) = f(aj() = 1 is 

s 2 + s
E ft(aj)ft(aj, ),

and the number of functions in F, for

f (a ) = f (aj# ) = 0 is

C-2 s
Z (l - (&J)(i - ft( )) •

Thus,

= V S [W  V V )t = l L

(1 - fi(Sj))(l - >]

2
S + S

- E (l-f/a ) - f.(
1=1

= K s s ) - 2 ( s
2= s - S .

which is a constant as required. Hence F is a 
homogeneous system of order 2.

in F

, ) =

which

which

(3.12)
weakly
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Lemma 3.4: The system of functions (lines)

F derived from EG(2,s) is weakly homogeneous of 

order 3.

P ro o f

The system F will be weakly homogeneous of 
order 3 if R , which is the number of functions in F 

for which

f(a ) = f(aj#) = f(a.„.) aj * aj# * aj#/

is constant. That is, the number of functions in F
for which f(a) = f(aj# ) = f(aj#/ ) = 1 or f ^ )  =
f(a , ) = f(aj(/ ) = 0 , aj * ajf * aj#/ is constant.

But, the number of functions in F for which
f ( a ) =f(a,) = f(a„) = lis;

j j J

2s + s
z f (a )f (a , )f (a „ >, a *  a , *  a „l J V J V j J J J

and the number of functions in F for which f(a )
f (a , ) = f (aj#, ) - C 

2s +s
s;

E [<l-fi(aj))<l-fi(aj. )) j •

T hi; s.

e ' k c v f ^ o f / v  >lr 1 L

S + 5  r
= Ei - l *-

(1-f (a ))(l-f (a , ) ) ( 1 -f (a ,/ )) 1 j i j 1 j J

1-f. (a) - f (a,) - f (a,, ) t J v j i J

f.(a )f (a , )+ f (a )f.(a.„ >
t J V. J V J 1. J
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+ ) ]

= ( s2+ s) - 3(s + 1) + 3
=  S 2 - 2s (3.13)

which is a constant as required. Hence the proof of 

the lemma.

Exam p le  3.4: Consider the incidence matrix of 

EG(2,3) given as follows:

- P! p2 P 3 P* P5 P<5 P 7 P 8 Ppl
u 1 0 0 1 0 1 1 0 0
Iz 1 1 1 0 0 0 0 0 1
Is 1 0 0 0 0 1 0 0 0
U 1 0 0 1 1 0 0 0 1
trs 0 1 0 0 1 0 0 1 0

M = ** 0 0 1 0 0 1 0 1 1 •
£7 0 0 0 1 1 1 0 0 0
Is 0 0 1 1 0 0 0 1 0

0 0 1 1 0 1 0 1 0
£10 0 0 0 0 0 0 1 1 1

1 0 1 0 0 0 1 1 0 0
£12 0 0 1 0 1 0 1 0 1

Identifying the points of this geometry with

the elements of the set - 'a2> • •, a } and the

lines with functions of F {n,f2,• •• f12> ; le

incidence matrix M forms a search matrix.
Taking any two points, say Pt and P2 which

correspond to the elements a ,a2 of , R2
equal to the number of functions in F for whie.n 
f(at) = f(a2> = 1 or f(at) = f(a£) = 0. But, the 
number of functions in F for which f(at) = f(a2 - 1 

is;

Z fl(al)fl(a2) = 1 > <
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nCj the number of functions in F w h i c h

f(a,> - f(a„) = 0 is;

12
I

v = i

12 12
= 12 - E fl(al)-E ft(a2>

V = 1
12

v.=l

- E  fl<a1)fi<a2)i = 2
= 1 2 - 4 - 4 + 1  = 5

Thus
R = 1 + 5  = 6 

2

which is constant for any pair of elements (a^a^ ) 
implying that the system of functions F is weakly 

homogeneous of order 2.

Theorem 3.2: The expected duration of the
search process based on the incidence matrix of 
EG(2.s) for detecting unknown element x, E^x) 

satisfies the inequality

E 4(x ) £  |̂( s - 1) ( s + 1 )Z/2 j ĵl + 2(s - 2)(s - 2 )/9 j •

Proof
From (3.12) and (o.l3), F s and

2

r - sz_ 2s Substituting these values and3
R = s2+ s in (3.2) and (3.3) we obtain.

' <?



td -

Pt(N,x) i 1 1)
S.

N

+ 2L S + Sj

and

Pt(N-l,x) > 1 - (s'- 1) im
N - l

But

Pt(N,x) = Pt(N,x) - P±(N - l,x)

< (s - 1) s - s
s + s

N - l

2rs - n r 2 o is -2s
l 2 J 2

ws  + S

N

(s -1). 2s
2S + s

2s - s
s + s

N - l

s ( s 2- 1 ) ( s 2 - 2 ) ( s  - 2 )
2s(s+ 1)

s -2s n-i
2s + s

That is,

P t ( N , x )  £ 2(s -  1 )

2s - s
2s + s

N - l

(s-1)(s -2 ) (s-2) 2 1n-i
•  /  C  *

Si- Si

The expected duration of the search process is given
by:

oo
Ei( x ) = £ N.pt(H,x)

N  -  O

c . f ( 1.7)
2 <?

which implies



- 52 -

a>
x) « E N

N« 0
2(s-1 )

r 2 is - s
2Is + s)

N-  1

(s-1 ) (s -2 ) (s-2 )
?

2
1— 

r—1 \

s -2s
2Is + sj

= 2(s-1 ) 1-
2

S -  S
2s + s

- 2(s-1 ) +

(s-1 )(s - 2 ) ( s - 2 )
9 1- sZ-2s - 2

s + s ,

(s-1 ) ( s 2 - 2 ) ( s - 2 )
9

= 2 1 s-1 )d< s + 1 )2 + ( s-1 ) I s‘-2 ) ( s-2 >sU s + U. 2i c ̂ 9 s

(4 + (s2-2)(s-2 ) )

(s-1 ) ( S4 1 ) 2 
2 [l + 2(S"-2 >1£-2,1

-1 ( 4 + (s2-2)(s-2)) (3.15)
2

which is the required result. Hence, the proof o:

the theorem. From ( 3.15) we see that the expected

duration of the search process based cn t h c

incidence mat rix of F.G ( 2 , s ) increases ''1th increase

in £ .

Example 3.5: Consider the incidence matrix 

EG(2,2 ) given ns folio v. s ;

|- Pi Poc P'3

l \ 1 0 0 1

I z 1 1 1 0

1 3 1 0 0 0

U 1 0 0 1

l b 0 1 0 0

l b 0 0 1 0

/

M
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Identifying the points of EG(2,2) with the 

elements alta0,a3,a4 of set and the lines with

functions f 1 , f̂   ........... f6 of the system F, the
incidence matrix M of EG(2,2) forms a search 
matrix. The system F = ( f , f , . . , f } would detect 
any unknown element x in S4 since the columns of the 
search matrix M are distinct and thus, F is a 
separating system on S4. Using the incidence matrix 
of EG ( 2,2) as a search matrix, the probability 
p i ( N , x ) , that the search process for detecting one 
unknown element x, terminates in exactly ' steps, 
and the duration, E (x) of the search process 
satisfy the inequalities (3.14) (3.1”!

v. That is,

p 1 ( N , x ) < 2t3 (3.16

and

To obtain t he exact value ci 
E1 ( x ) , we substitute P - s •+ s ,
R3 - s - 2s in (3.2) ■< :.d (3.3) tc

v, d

F ( N, x ) ^ 1 - (s'- 1

P1 ( N , x ) £ 1 - (s - 1

's2-

<2 >  1 t - Cl
V? +
f 2 } KC •; s -1 ' __} <Lts +

fs2- L £
s + s

.18)

? *

3 .19)
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3 » t. he exp re ssions (3.18) and (3.19) reduce
c • • .*■ ji ■' &:a . Vv?.r> I

and

• • . f". ^  ^  w

/.\N
Pt(N,x) > 1 - 3[±j

#SL

Thus

and from

we get

and

Pt(N,x) £ 1 - 3
f t ) '

Pt(N,x) = 1 - 3^}

P1 ( N » x ) = P1 ( N , x ) - Pt(N - 1 ,x)

( N , x ) = 1 -  3 [in -  r 1 - 3 f —
N - 1 -|

l 3J J L l 3 j

= 3( l^"1, 4 (‘ ■ £)■  2 ( 3
(

,N*>2

P1(1.x) = 0.

since no single function (line) can detect the 
unknown element.

The expected duration of the search proc 

^(x) is then given by;
9 X: (1 ̂ N “ 1

f t f t  N f t )

(

ess

= 2
i <i- J.! ' ft

= 2.5
Thus» the expected duration of the search process
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for detecting one unknown element using the 
incidence matrix of EG(2,2) as a search matrix is
2.5 test-functions. This expected duration of the 
search process satisfies the inequality given in 

(3.17).
We note here that although the formula given in 

section 3.2 gives an upper bound far from the exact 
value in example 3.4, the above formula gives an 
upper bound which concides with the exact value in 
this example.

.3.4 SEARCH MODELS BASED ON RANDOM 0-1 MATRICES.
Consider an mxn matrix M = ((a..)), whose1 J

entries a., (i = 1,2,. . . , m ; j = 1,2, . . . , n ) take only* J
two values 0 and 1 with equal probabilities. That is

Prob,(a.. = 0) = prob. (a . . = 1 ) =i j * J 2

Then the matrix M is called a r a n d o m * 0 - 1  m a t r i x .

Identifying the ith column of the matrix M
with the element a. of the set S = {a,a ,..,a }i n \ • 2. n
and the ith row with the function f of the systemj
F = {f , f_ .......... . f } , the random 0 - 1 matrix Mi t * n i
gives a search matrix of the s; stem F.

Let x  ̂ S , be the unknown element whose 
identity we wish to determine by choosing a sequence 
of functions f , f . . . , f , from the system F and 
observing the values of these functions at the  ̂^  

unknown element x, until enough information is 
obtained to determine the unknown element. The 
unknown element, x would then be determined in any



of the following mutual exclusive cases:
î) only one function in F, say is selected. The 
unknown element would be determined if in the 
submatrix consisting of the jth row of M there 
exists "l" in the xth column and 0's in the 
remaining (n-1) columns or "0" on the xth column and 
l's on the remaining (n-1) columns. The probability 

of such arrangement is

*

and the expected number of such functions (rows) is

■KT.
(ii) Two functions in F, say f̂  and f^ are

selected. Then the unknown element would be
determined if in the submatrix consisting of the
,th and j th rows of H, the xth column is different 1 2
from any other column. Possible columns of the 
submatrix consisting of the ^th and j2th rows of M

are :
'0

Prob. [*]= Prob. [q]= Prob. [°] =
P

Prob . 1
4

Thus, the probability that a column 
different from all other columns is



And the expected number of pairs of rows with a 
column different from all other columns is

n-i

(iii) Generally a sequence of k functions 
f f f ,f will determine the unknown element ifri ' 3* ' k
in the submatrix consisting of k rows of M, the xth 
column is different from any other column, possible 
columns of such a submatrix of M are:

( 1 )

1

• 
o

__
__

_
y

r
---------

o
 o

 • ■
V_

_
_

_
_

_

d .

)

d . i

with

Prob.(i1; - Prob.

r i 
0

. Prob. • • 
• o
 o

UJ UJ LoJ
Thus, the probability that a column

different from ail cchtj r columns is

1 L r.- 1 i n rL1  ̂k j  ̂tL> -U
-

-“  u. n " ' 1
t ,> j t i r 2kJ

1
2k

will be

and the expected 
a column d i fze rent

number of k rows of M with
':om all other columns is



T e r m i n a t i o n  of the  s e a r c h  process.

To determine the probability that the search 
process will terminate at the Nth step, we consider 
the complementary event that the search process will 
not terminate in N steps. To do this we require 
the following counting lemma.

Lemma 3.5: Let t be the number of ways of 

placing N balls in m cells such that all the m cells 
are occupied, then;

t = E <-l)k[”]<in-k)N .

For proof of this lemma see Renyi (1970).

Lemma 3.6: Let P (N,x) be the probability 

that the sequence
f ,f , . . ,f ,f ,f , . . ,f ,f , . ,f , . . ,f , . . ,f,V. \ . l l  l l  V l . V,

1 1  1 2 2  2 3  3 l Z

of length N will not detect the unknown element 
x . Then,

Proof

Taking t he * functions f fv  v  • • 1 2
to be

(ni—to arid the length N t-* be number of balls in

Lemma ( 3.5 ) > we find that the number of ways of
/

arranging the sequence
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fi» * • » fi' fv’ * * ’ * * ' fv' • • * 
1 1 1 2 2 3 3 ' V "

o f f u n c t i o n s  s u c h  t h a t  a l l t h e f u n c t i o n s

h'f
1

, . , f  a p p e a r  a t  l e a s t  o n c e  i nV2 ' V
e a c h s e q u e n c e

i s

E (-l/ffl(-)N.v = o Ĵ

But from (3.20) the expected number of ^ rows of

matrix M with a column different from all other 
columns and thus detect the unknown element is

so the expected number of  ̂rows of matrix M which 
do not detect the unknown element is

Thus, the expected number of sequences

f , f , . . , I , ft, • . , fv. • • • > • • • > fV
i 1 1 2  2 3  3 * 1

which do not detect the unknown element is

and the probability that the sequence

...........
1 1 1 2 2 3 3 <■ <

will not detect the unknown element is therefore,

P <N,x) = m



which completes the proof of Lemma 3.6, We 
illustrate this Lemma by computing the expected 
probability that the search process will not 
terminate within N steps for l = 3. That is, a 
sequence of three functions

f . , T  , . . . , f . ,  f .  , . . , , f . ,  f\ , . . , . r
1 1 1 2 2 3 3

in F = (f ,f ____ ,f ) wi1 1 2 m J
will not detect the unknown

e1eraent.
Now, the unknown element x will be detected 

by three functions f ,f ,f if in the submatrix
1 2  3

consisting of the t -th, »-2-th and ig-th rows of M, 
the xth column is different from any other column. 
Possible columns of such a submatrix of H consisting 
of three rows are:

rn
i
i

rn
i
0

rn
0
0i1) iyj j

(o')
i
i

rn
0
i

ro] ro] ro]
i ) 0 > 0

lo j I n

with

r n fl] r n i fo] fl]
i = Pr. 1 = Pr . 0 = Pr. 1 = Pr. 0
UJ bJ b J U J UJ

fo] f01 ro]
= Pr. 1 = Pr . o = Pr. c •

b J ii J l ° J 23

Thus, the probability that a column will be 
different from all other columns is;

H d H r:R0 H -0



- t- jt

* m - ± P  m h t

t - y  i>-p p  (*-4 0 “

The expected number of three rows of M with a column 
different from all other columns is;

U K * ~ ± . r
23

i
( 3.21)

T aking the functions f ,f and f toV. 1 l 1 2  3
be

cells and the length N to be number of balls in

lemma 3.5 we f ind that the number of ways of
arranging the sequence

f f h'h' .... f f* 3 X L * X l ’---,fii i 1 2 2 3 3

of funct ions such that all the functions
f ,f ,f appear at least once in each sequence isi i t1 2 3

E(-1)JP][3-o]N = 3N- 3.2N- 3.

But from (3.21) the expected number of three rows 
M with a column different from all other columns - 
thus detect the unknown element is

so the expected number of three rows of matrix
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which do not detect the unknown element is

(;) -

Thus, the expected number of sequences

f., fv, . . . . , fv, f . . . . , f •, • • ,f.
i i 1 2 2 3

which do not detect the unknown element is

and the probability that the sequence

W -
i 1

f f' Iy-’ 1 • •1 2
f f. ) L ■ f L . fX. I2 3

. • ,f.

will not detect the unknown element is therefore:

<■ ?<»•"> = 3 * =]] X "

Remark: The probability that the search process does 
not terminate within N steps, P~(N,x) given in lemma
3.6 is the average of the probabilities that the 
search processes do not terminate within N steps. 
That is, if a number of random 0-1 matrices are 
considered then the average of the probabilities 
that the search processes do not terminate w: i. n i n N 
steps is given ,in lemma 3.6.

C o r o l l a r y  3.1: The probability that the
search process terminates in N or less steps is

Pt(N,x) = l-
l
E <-l)u
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P ro o f

From lemma 3.6 the probability that the 
search process will not terminate in N or less steps 

is

mN

Thus, the 
term inate

Pt(N,x) =

probability that the search 
in N or less steps is

Nm

process will

Hence the proof of Corollary 3.1.

Example  3.6:- Let M = ((a^)) be a 5x5 matrix 
constructed from five rows and five columns oi
random numbers such that:

/ 1 if (v,j)th random number is even 
a = i
lJ t o if (v.j)th random number is odd-

Then one possible such matrix is:

fl 2 0 o'
0 0 1 X
1 1 0 1 1X
0 0 1 0 i

0- 1 0 ij

Now, since random numbers are even or ode wi;h ecual 
probabilities, the prob.(a = 1)= prob.(at - 0)= 
Thus, the matrix M is a random 0-1 matrix.

Identifying the columns of the matrix M with

t\5
| t—

*



the elements of the set = (a . a .a .a . a t h a t  
is, the ith column corresponds to the element e
S , and the functions f , f f  , f > f.* with the rows
^ 5  ' 1 Z d 4 D

of M, that is, the jth row corresponds to the 
function fj# the random 0-1 matrix M gives a search 
matrix of the functions ft,f2,f3>f4,f5.

Let a e S , be the unknown element whose1 5
identity we wish to determine by choosing a sequence 
of functions f ,f ,......... f from the system1 2  5
F = ff ,f ,f ,f jf } and observe the values of these

1 1  ’  2  3  4  5

functions at a until enough information is obtained 
to determine it.

To determine the probability of termination 
of the search process, we consider the complementary 
event, that is, the event that the search process 
does not terminate in N steps. We will use lemma 3.5 
to get the number of sequences of length N which do 
not detect the unknown element.

The search process will not terminate in N 
steps if any of the following sequences occur:

(i) Only one function f el is s e I e'•ted
N timer. The ur.k: : - 1 '•, w i 1 r n o t
be detected because tht re is no row with
"l" if) the first column and O' s in the
remaining 4 columns cr C in the fi r s t
column and 1's an the remaining 4
columns. The number of possible sequences
is five, viz:
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.,f2; f

f«’ f4’ • • ' f4' w
(ii) Two functions f and f are 2

and x2 times respectively, where xt+x2 
N. In this case the unknown element ai
will not be detected because the first 
and second columns of the submatrix 
consisting of the 1st and 2nd rows of 
matrix M are the same. The number of 
possible sequences of f̂  and f is

^J(2N- 2) = 2N- 2.

(iii) Two functions f and f are selected1 ’ 3
x and x times respectively, where x +x 1 2 r 1 2
= N. In this case the unknown element ai
will not be detected because the first 
and second columns of the submatrix
consisting of the 1st and 3rd rows of
matrix M are the same. The number ■jf

possible sequences of f and f is1 3

G K - = 2N- 2.

ilar & argument the sequences of the
follow ng functions will not detect the unknown 
element a .i

(iv) Two functions f and f are selected1 4 x.
and times respectively, where
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x + x = N; the number of possible 1 2
sequences of ft and f4 is

(v) Two functions f and f4 are selected xt
and x times respectively, where 

2

x + x = N; the number of possible 1 2
sequences of f and f4 is

(vi) Two functions f and f5 are selected
x and x times respectively, where1 2
x +x = N; the number of pos.sible1 2
sequences of f and f5 is

(vii) Two functions f and fg are selected xt
and x times respectively, where 

2

x + x = N; the number of possible 1 2
sequences of f and fg is

• ( viii) Two functions fg and f4 are selectee
x ^and x2 times respectively, where
x+ x = N; the number of possible1 2
sequences of f and f4 is



(ix) Two functions f and f are selected
3 5

x± and x2 times respectively, where 

xi+ X2= the number of possible
sequences of f and f is

3 5

(x) Three functions are selected
x ,x2,x times respectively, where 
x + x2+ x3= N; the number of possible 
sequences of f ,f ,f is

[3] < ̂ N- 3-2N + 3) - 3N- 3-2n + 3-

(xi) Three functions f ,f ,f are selected
1 2 *4

X ,x2,x3 times respectively, where
x + xz+ xa = N; the number of possible 
sequences of f ,f ,f is

( 3n- 3.2n + 3) = 3n- 3.2n + 3.

(xii; Three functions f ,f ,f are selected 
xi,x2,x3 times respectively, where
x}+ x2+ x3= N; the number of possible 
sequences tf f ,f ,f is

t*

(3)(3N- 3.2n + 3) = 3N- 3.2N + 3.

(xiii) Three functions f ,f ,f are selected 
x<,x2,x3 times respectively, where
x + x2+ xa= N; the number of possible
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sequences of f2,f3,f4 is

HJ(3N- 3.2n + 3) = 3N- 3.2N + 3.

(xiv) Three functions f ,f ,f are selected2 3 5
x ,x ,x times respectively, where1 2  3
x + x + x = N; the number of possible1 2  3
sequences of f2,f3,f5 is

flj(3N- 3.2N + 3) = 3N- 3.2N + 3.

(xv) Four functions f1»f2if3»f4 are selected 
x ,X2,X3,X4 times respectively, where 
x + x + x + x = N; the number of 
possible sequences of f ,f ,f #f is

^J(4N-4.3N+6.2N-4) = (4N- 4.3S + 6.2N- 4). 

Thus, the probability of the search process
terminating in N or less steps is;

Pi(N,x) = l- J
'8(2N-2 ) + 5(3N-3 .2N+ 3)+(4

SN

= 1- -  L  ̂ 3N + 4N‘
- 5n

i . e P

Pt(N,x)=l- 1)"- ( ! )”* (!)
N

and the probability of the search process-
terminating in exactly N steps is



1, X)Pt(N.x) = (N , x ) - Pi(N -

■ ffl“- 8)1}
- H f f l “  H T ’ - f f l ’"*]}

■ t in -  8  * 8 )"*'(>-

* © " " 8  - 0

i t i r *  m r

The expected duration of the search process
1 s

00

E (x) = E N. p4(N,x ) c . f (1.7)
N = 1

N = i  ^ J  N = 1  ^ J  N =1

N -  1

1r i 2 ] T  2 lr i j 3f 1 1
5 L( 1-4/5 )“J 5 1L (  1-3/5 y) 5 [( 1-2/5 yJ

1 0, x 2 25 3 25
5 x 25 + -F- 5  ̂—  "2 ‘ 5 x -9

= 5.83.
Thus, an average of 5.83 t est - f ur.c t ior.£ 
required to detect the unknown element a .j

Note t*hat the probability of termination of
the search process and expected duration c; the
search process given here are for a specific

/
example. If a number of random 0-1 matrices are



considered then the average of the probabilities 
and durations of the search processes would be given 
by Lemma 3.6.

Remarks:- To compare search systems derived from 
incidence matrices of PG(2,s) and EG(2,s) with 
search systems derived from random 0-1 matrices, we 
first note the following:

(i) In a search system derived from the 
incidence matrix of PG(2,s) or EG(2,s) 
the number of functions is always greater
than or at 1east equal to the number of
elements.

(ii ) The search systems derived from the
incidence matrices of PG(2,s) and
EG(2,s) are always separating systems.

(iii) In a' search system derived from the
random 0-1 mat rices the number of
functions can be less than, equal to or
greater than the nur.ber of elements.

(i v) The search s y s t c n r deii vec from i he
random 0-1 met; l n o t si wa / s
sep&:ating r> 11: i

Now, since not a11 sefcj’cn iystems der ived
from random 0-1 mat rices a so; J ng systems, one 
would pre.er to use scare' systems derived from 
incidence matrices of PG(2,s) or EG(2,s) '••'nee 
such search systems aie always separating systems.
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CHAPTER 4

DETECTING MORE THAN ONE UNKNOWN ELEMENT.

4.1 INTRODUCTION.

In this Chapter, we study two different
strategies for detecting more than one unknown
element from a ’ set S consisting of nn
distinguishable elements ai>&2>.......' an ‘ We
first study strategies for detecting two unknown 
elements. These strategies are described below.

2 -C om p le te  s e a r c h  de s ign s .

Using the definition of t-complete search
design given in Section 1.2 of Chapter 1, we define
a 2-complete search design as a system
{Ai, Az,......, A^ j Ŝ } consisting of m subsets
A ,A ,....,A of a finite set S , in which for any 1 2  m n
pair of elements â ,â , in Ŝ , there exist subsets 

A. , , . . . . ,At , {W  • • ' c {l>2> • • • such1 2  k
that â ,â , e for 0 = 1 > 2 k and

j
k
pi A - (a,,8̂,, }. Without any loss of generality

j= i ’ j

we will assume that the subsets Â  , Â  ......,Â  ,
1 2  k

are the only subsets in the set {A±,A2,........ >Am)
which contain the pair â ,â , •

To identify two unknown elements, say u,v e S , 
we determine subsets A. ,A ....................A ,

'  i U2 k

{i , ̂  , . . ,ik) c { 1,2 m}. such that u,v e Ai



72

for i- l,2,...,k. The identity of the two unknown
elements is then given by the intersection of these

k
subsets, that is f) At : (u,v).

j=i i
The following example illustrates this strategy.

Example 4.1: Suppose the system {At,A2, 
A A A A ,A ; S } constitutes a 2-Coraplete 
search design for separating the elements of the set 
S? = {a1,a2,a3,a4,a5,a<J,a7}. Then one possible
configuration of the subsets , A2 , Ag , A^ , As 

the following:

A, = {a4> V a«'a7}'

A2 = {a2,a3,a<5,a7}/

Aa = fa2'a3'a4'as}'

A4 z { V W a7}>

A5 = ^S1 ' a3 ’ S4 ’ a<5̂'

A<5 r {a1,a2,a4,a7},

A, = {ai,a2,a5,ao}.

This design will detect any arbitrary pair of

elements of S . That is, for7 any d ist inct pair

(â , â , )
pof elements of the set S?, there exists a

pair of subsets Â  , Â  such that â ,â , e A ,t1 z J
i= 1,2 and A n \  z l W  > ■ Thus, to detect 

V1 l2 ^
any pair of unknown elements in the set S? using 
this design, we determine subsets amongst
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A »A_,A ,A ,A ,A ,A which contain the unknown pair
1 2  9  4  D  O  *

of elements. The intersection of these subsets gives 
the identity of the unknown pair of elements.

More explicity, we have the following display 
of detectable pairs of elements and the associated 
subsets.

Subsets Elements Subsets Elements
A<,*A7 a , a„ A3-A = a , a
A4 <A* a , a1 3 \ ' A. a , a
A,’A* s,-a. A2,A, a , a3 <5
A4 •A7 ai ’ a , a
A,-a7 a , a1 <5 A , , A 3 a , a
A4 ’A« a , a A,-A, a , a4 <5
A2*A3 a , a V A« a , a
A3-A« a , a2 ’ 4 A , A a='a«
A3<A7 a , a A1 ’ A4 a='a7
h >A7 a , a2 ' <5 A,’A2 a«-a7

-The display shows that every pair of the seven 
elements can be detected by a unique pair of 
subsets. For example, if (a , a_) is the unknown pair 
of elements, then we determine subsets amongst 
A , A , A , A , A , A , A which contain both a and a .1 2  3 4 5 C5 ?  1 5

The intersection of these subsets givss the identity 
of the unknown pair of elements. In this case, the 
subsets which’ contain both a and a_ are A and A . 
The intersection of these subsets, Â  and A? gives 
the identities of the unknown elements. That is, 

A. n A7 : {a, .a,} •
We can further characterize this arrangement in 

terms of the incidence matrix of the search design.
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This is an mxn matrix N = ((n.p) such that if
a .a ....... a are the elements of the set S andi z n n
A .A,,....,A are the subsets, then:1 z m

"w = {
if a e A.v j 1 = 1> 2, . . . . ,n 

j = 1 , 2 m

In the above example we therefore have:

if a. e A. i j

N =

a i a2 a
3

a 4 a
5

a<5 3 7
Ai r 0 0 0 1 1 1 1 '

A2 0 1 1 0 0 1 1

A
3

0 1 1 1 1 0 0

A4 1 0 1 0 1 0 1

As 1 0 1 1 0 1 0

A<5 1 1 0 1 0 0 1

1 1 0 0 1 1 0
J

(4.1)

From this matrix, we notice that every element
of appears in four subsets, every pair of
elements appears in two subsets and any three
elements appear in at most one subset. Now, for any
pair of elements to be uniquely detectable the
number of subsets in which they appear must be
strictly more than the number of subsets in which
any three elements appear. This is because if t he
number of subsets in which any three elements appear
is the same as the number of subsets in which any
pair of elements appears, then the intersection of
these subsets will consist of three elements, not
two as required for the identification of the
unknown pair of elements . This requirement is



satisfied in this example, and so any pair of 
elements can be uniquely detected.

P a r t i t i o n  s e a r c h  des ign.

Here the strategy is to determine m subsets

Ai* A2*....' Am of S suchn that for any pair of
elements a , a.«• j (a. ** â ) in S , theren exist two
disjoint subsets A, and A,<■ k with a. e A. and a ej V
The composite set (A , A , . . L 1 1 2 * ,A ; S } is then m n called a
partition search design.

To detect two unknown elements, say u, v e s

we determine two disjoint subsets A
V.i

and \  • 2

{ V l2} c U,2, ....,m} such that u e A and ■
V.1

v «= A .X.2
The two unknown elements are then identified

separately from the subsets A and A byi1 2
separating systems described in Chaper 2.

The following example illustrates this 
strategy.

Exam p le  4.2: Consider the set S = (a  ,a , . . , a  }8 i 2 e
and the subsets A ,A ,A ,A ,A A described b e l r r :i 2 3 4 5 <5

A = (a , a , a , a }

A = (a , a , a , a },

A = {a , a , a , a }3 L i* 2 7* 8 J

A = {a . a , a , a }
4 3 * 4  * 5  '  <5J
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A = (a , a , a , a },3
A = {a , a , a , a }<5 1 2* 4' <5* 81"

the systemThen, the system {A , A , A , A , A . A : S 1
1 Z 3 4  5  O 8

constitutes a partition search design, since for 
every distinct pair (a.,a.) of elements of S , there

V J 0

exists a pair of disjoint subsets A. and A,l k
that a. e A, and a.j A . The configuration of

such
£  e m u  a. —  ti, . i lie k/LMli i g u i  a u i U l l  U1  t h e

elements of the partition search design can be 
more explicitly displayed as follows:

Di s j o i n t  subsets

A , A 1 * 2

a3,a4

a5-a*

I d e n t i f i a b l e  pai rs  of  elements

<al ,as ) , ( a t ,a<s) , ( a l ,a7 ) , ( a l , a8 )
(a2'a5)' (s2'a<5)’<a2’a7)'(a2-aB) 
(a3,a5),<a3,ao ),(a3,a7),(a3,a8)
(a4,a5>,(a<i,.ao),(a4,a7),(a4,ae)

( a ±, a3 ), ( a4 , )  , (a2 , a3 ) , ( a2 , a4 )
(a5,a7), (ao,a7 ),(a5,a8),(a^^e)

( s , a ) , ( a1 2 7 ’ 3 a ) , (a ,a ),(a„,a )
4  <5 /  8

The display shows that every pair of the eight 
elements can be separated int tv' = oint subsets.

To detect two unknown t . - c r- v %a an o
we determine two disjoint subsets A md A ,

c {1,2,3,4,5,6} such that â  e Â  and a?

Â  . In this case, the two disjoint subsets
<■ ...

are A and A . That is, a e A and a
3  4 ' 5 3  7

A . The4
two unknown elements a and a are then identified5 7
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separate 1y from the subsets Â  and Â  respectively.
Again we can characterise this design by its 

incidence matrix M, given as follows:

Ai
ai
r 1

fi2
1

a3
1

a
4

1
as
0

a<5
0

a
7

0
a

e

0 '
A2 0 0 0 0 1 1 1 1
A3 1 1 0

%
0 1 1 0 0

A
4

0 0 1 1 0 0 1 1
A

5
1 0 1 0 1 0 1 0

l 0 1 0 1 0 1 0 1 .

From the incidence matrix, we notice that in 
any two columns of the matrix M, there exist two 
rows such that the 2x2 submatrix formed by the 
intersection of these columns and rows is

1 0 ■ ’ 0 1 '
or

_ 0 1 1 0

and the subsets corresponding to the rows are
disjoint. That is, to say, for any two distinct
elements ai,aj (i * j) there exists two disjoint
subsets At ,At , c { 1,2,3,4,5,6 } , such that1 2
s e A anda «= A .j t1 2

4.2 2-COMPLETE SEARCH DESIGNS.
Let N = ((ntj)), i = 1,2,...,m; j = 1,2, ...,n

be the incidence matrix of a search design 
(Ai >Az, .. , Am;Sn} of the set Sn. Further, let the 
elements in Â  correspond to the entries of l's in
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the i-th row of the incidence matrix M and T be
set consisting of all the subsets A*s which are not 
incident with the j-th element, â  of Sn. That is,
T. corresponds to the entries of 0's in the j-th 
column of the matrix M. For example, in the 
incidence matrix (4.1) of a 2-Complete search design 
given in Section (4.1) of this Chapter,

The following theorem gives a necessary and 
sufficient condition for the existence of a 
2-Complete search design.

Theorem 4.1: A necessary and sufficient
condition for the existence of a 2- Complete search
design (At,A2,..... A^; Sn) for detecting an
arbitrary pair of elements (a.,a ) in SR is that

T £ T U Tk i.

for k = 1,2,....,n ; k  ̂v ^ j •

Proof
Let the system {A , A ........,A ;Sn) be a* milr

2-Complete search design. Then, consider two pairs
of elements (a,a) and (a , aL) . Since 
(At,A2, . . , A m;Sn) is a 2-Complete search design^ 
there exist subsets

,ĥ } c (1,2, ,m} such that
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V aj e K 9
l

for g = 1,2,...

n \  = K9= * 9
,ap. That is, the subsets Au ,n1

Ah ,..,Ah are incident with both a and a . 
2 l <■ j

of T , asj a set
A'si which are not
i t f o1lows that TC

is a set consisting of all the subsets A »s which
V.

are incident with the j-th element a .j
Thus

 ̂hh ' *.......* J  ̂v H  ̂j ’ (4.3)1 2  l ' J

That is, the subsets A. , A, ,...., AL which detectn h h #1 2  l
the two unknown elements â  and â  are given by

Tf 0 • (4.4)

Similarly, the subsets A. ,, A., ,...., A. , whichh n h .1 2  l
detect the two unknown elements a and a, are givenr k

by

( n C

Now, since { A ,A ,...., A ;S } is a 2-Completei c. m
p

search design

I f  ;
n Ah = { v aj) and n v  = ( v V9-1 9 9=* 9

and so
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{Ah ,Ah , 
1 2

That is,

* * * *  ̂ ^ (A^# * ̂Y\'l 1 2 Ah, } (4.5)
f

t c n t c $ tc n Tf
v ' 1 j  r  1 1 k

which implies that

(4.6)

T U T $ T. U T. . (4.7)
r  k v j  x 7

*
In particular, if the pairs were (at,a^ and (ai,ak) 
then (4.7) reduces to

T U T  $ T. U TV. K t J
which implies that

Tk $ I U T. - (4.8)
Conversely, suppose that T, ^ T U T , then we

k v. j

have to show that the system (A ,A ,....,A ;S }1 2  m n
is a 2-Complete search design. That is, for any
pair of elements there exist subsets

Aoc ' Aoc ’ * * ' A<x * ( * «21 • • ,«T ) e { 1,2 , . . , E }1 2  T
such that

T
â ,a. <= A^ , for t = 1,2, ..,t and v,aj).

J t 1=1 t

Now, Tk $ U Tk implies that
T U T. $ T U T.r k i j (4.9)

for any other set (r * k), r = 1,2,. . . . , n; and
from (4.6) it follows that

tc a i c t t n t c • (4.10)

Now, p) T̂" gives subsets Cl sn.
which are incident with both a and aj
(l * = 1,2, ..,n) say, A^ A ,....oc . . ,A .* ex1 2  T
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Thus, for any pair of elements (a^,a ) there
exists subsets of , A^.A^,...., A^ such that

1 2  r
a ,a e A for t = 1,2,..... >t . To complete
1 J t

T
the proof we need to show that n A = (a ,a.}.

t=i t 1 J

Now suppose,
t

T

n A * (a , a }
11 OC V J1=1

That is, p| Aa =
t=i t

0 or a set consisting of one

element or a set consisting of a ,a and some «■ j other
T

e lemen t ( s ) . Now pj
t = i

A cannot
OCt

be an empty s e t  or a

set consisting of one element since a , a <s A ,L J « for

t = 1 , 2 , . . .  , T . Thus, we are left with t he

possibility that
T

n A is* 1 OCL = 1 t
a set consisting of

a. , a and some other element(s). To investigate this*• j
T

possibility we let a , a , a , v j j e nt=i
A .OCt

That i s ,

v v  c A« for t 1,2, .. .. ,T and so

1 2
} is a subset

T
of the set of subs-' * s

which are incident with both a and a ,j j
subsets which are incident with both a and £ , .* j j
is given by T^ p| T̂ , . Thus

(A
OC1

>A„ }OC

T

This contradicts ( 4 . 1 0 ) ,  hence p) A^ i s  not  a
i=i t

consisting of al>aJ an<̂  some other element(s).

/

s e t

We
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therefore, conclude that p) A = {a ,a } which
t=i “ v J

completes the proof.

Corollary 4.1. Let the cardinality of the
set T(i = 1,2, . . , n ) be p and the cardinality of the
intersection of any two sets T and T , i * . 1 j j , be
less than p/2. Then the system { A. , A , . . . ,l 2 A ;m Sn},
where Sn is a finite set and {A , A ,---,A }x  ̂ m is a
collection of all the elements of the set TCV
(l - 1,2,....,n) is a 2-Complete search design.

Proof
We are given that for any distinct indices t 

and j, |Tt fl TJ < Where || denotes the
cardinality of the set concerned.
That i s ,

k  n tJ < | (4.11)

and

n* < I (4.12)

Then

iTk n <t u t ,)

Therefore,

< p = (4.13)

T ^ T U Tk L j (4.14)

since T = p. Thus, it follows from theorem (4.1)
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that the system {At,A2>....’Am:sn> is a 2-Complete
search design.

Theorem 4.2: Suppose the system {A , A . . . , A  :S }1 2  m n
is a 2-Complete search design and suppose that

(1 ~ 1*2,....,n) consists of 2p + 1 elements and
that | T f| T | < p for any other set T. (j * O.t j — j ' '

j = 1,2,...,n; then n,m and p are related by the 
equation:

_____ m I p !______
n (2p+l) ! (m-p-1)!

Proof
Each set consists of 2p+l elements and so 

the possible number of such subsets out of m is

(4.15)

Out of these subset any p+1 arbitrary elements 
appear in

f m-(p+l) _ fm-p-n
l2p+l-(p+l)J ~ L P J (4.16)

subsets. Thi^ is obtained by considering (p+1) 
elements to have already been chosen, thus we are 
left to choose ((2p+l) - (p+1)) elements from
m - (p+1). '

But, we are given that |T. f| T.| < p, thus, any 
P+1 elements must appear in only one subset. So the 
number of subsets T. which satisfy the condition of
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the theorem, is given by;

(4.17)

" (2p+l) ! (m-2p-l) ! X

______ID 1 p !____  ,
■ (2p+l) ! (m-p-1)!

which completes the proof.

p ! (m-2p-l) 1
(m-p-1) !

(4.18)

4.3 CONSTRUCTION OF 2-COMPLETE SEARCH DESIGNS.
In the construction of a 2-Complete search 

design, we will make use of the properties of a 
t-(v,k,X ) design and a balanced incomplete block 
design which are defined in Chapter 1.

We recall that, a t-(v,k,Xt) design is a 
family B of subsets B , called blocks, of a finite 
set X contain'ing v points, such that every has 
the same cardinality k and every t elements of X are 
contained in exactly X̂  blocks of B. A balanced 
incomplete block design is a special case
t- (v,k,X ) design with t - 2.

Taking the subset B j
to represent a set

consisting of all the subsets A/s which are not

incident with the j-th element of S , T.

(3 =1,2, . .,n), we see that a t- (v,k,X ) design with

parameters t = P+1, v = m, k = 2p+l and X = 1 is a
2-Complete search design. This is because each set



T\ (ET) consists of 2p+l elements and since every 
p+1 elements is contained in exactly one (X = 1)
subset, it follows that |t. n t l < p, which are the 
requirements for the exsistence of a 2-Complete 
search design, according to Corollary (4.1).

A necessary and sufficient condition for a 
t- (v,k,X ) design to exist states that the quantity

be an integer for s = 0,1,2, . .,(t- 1 ) ; see Renyi ( 1970)
In the following theorem we give a

necessary condition for exsistence for a 2-Compiete 
search design.

Theorem 4.3: Suppose the system
(A ,A,,....,A ;S) is a 2-Complete search design and i 2 m n
suppose that T (v = 1,2,....,n) consists of 2p+l
elements and that |T pj T | < p for any other set 
T̂ (j * v), j - 1,2,...,n; then the quantity

( " & • ' ] /  C T ‘ ]

is an integer for s = 0,1,2,....,p.
f

Proof
Let X. be the number of subsets in which ptl-i

V r

elements appear, that is is the number of subsets 
in which p+1 elements appear, X is the number of
subsets in which p elements appear and so on.

Then from Theorem 4.2 together with the fact

-  8 5  -



and pthat any (p+1) elements appear in ' sets 
elements appear in sets and so on, we have

But.^o = 1, since |T̂  fj | < p, so

f m ‘'J fm-p-l + s"]l P+s J 
( z p + i j

pn-p- l + s*J /pn-p-l^l l P+s JX l P J (4.19)

which must be an integer. Hence the proof.

Example  4-.3: Let the cardinality of the S f. f 

T. (*. = l,2,....,n) be 2p+l and the cardinality of 
the intersectioh of any two sets and T (i * j) 
be less than or equal to p. Then for p - 1, ever.-
pair of elements appears in exactly one subset and 
each subset consists of three elements. The system 
{?i1T2»••••»T } forms a simple triple system and 
thus a BIB design in which k = 3, X. = 1, b - n and



v — in.
As a particular case, consider the system

{Al(Az.....Ap,St2} then with P = 1, the set

{Tl,T2, . . . ,!„} forms a s imple triple system with

k = 3, X = 1, b = 12 and v = 9. One possible

configuration of the 
these parameters is;

s imple triple system with

- {1,2,3} Ba = {1,4,5}

B = {1,6,7}3 B -4 {1,8,9}

B - {2,4,7} B« = {2,6,9}

B7 r {2,5,8} B = 8 {3,5,6}

B = {3,7,8}P B,o = {3,4,9}

B - {4,6,8}li Bl2 = {5,7,9}

If we let the block Bv to correspond to the set 
T and points in the blocks to correspond to the 
subsets A 's, that is, the j-th point correspondst
to the subset Aj} then the sets Tjs are as

T, = < W V T - a,.}

T2 - t Aj, A4 , A5 } * a ■4 ' , A 1k r> Ci C> '

t3 = {ai,a<5,a7} T -p { Aa’A7'Ae}

T4 = {A,< Afl,Â } <milO {A3, «4,Ap}

?= = {A2,A4,A7} T =ii { A< ’ Ao* Ae >

= (A2< W T „ = ( W V

Now, the cardinality of the
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TV (i = 1,2,... ,12) is three and the cardinality of
the intersection of any two set TV and T\ (v * j) is
at most one. Thus, using Corollary 4.1, the system 
{Ai,A2,....,Ap;Siz) is a 2-Complete search design.

From our definition of the set T. given earlier, 
as a set consisting of all the subsets A/s whichi
are not incident with the j-th element, â of :
see that the subsets A , A , A ,1 2 3 for example are
incident with â  e S , and Tc 1 = (A ,A , A4 ' 5 ' <5,A7,
consists of subsets which are incident with

we
not 
A }pJ
a .i

Using this information, provided by T ,T ,....T1 2  12
we get subsets A , A , . . , A

1 2 P
as follows

Ai - {a , a , a ,a , a , a , a , a } ,
A2 r {a. , a , a , a ,a , a , a , a }
A3 - {a , a , a , a ,a , a , a , a },
A

4
- ■fa,a , a ,a ,

L 1 ' 3 '  4 <5
a , a , a ,a 1,

A5 — {a , a ,a ,a ,a , a , a , a },
A<5 = {a , a .a , a .

L l  , 2 * 4 ’ 5
a . a , a , a }7 P  l O  12

A7 = 3, . 3 | 3 « 3. »
L 1 2  4 P

a . a , a , a }
AB r {a , a , a , a , a , a , a , a

A
p

{a , a , a , aL 1 ' 2 , 3 ’ 5 , a , a , a , a }
’  7 8 * P  ’ 11 J

The incidence matrix of this design 
therefore;

is
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a
r  * a  2 8  3 a  4 a s a <3 a  7 a e a p a io a li

& i 2 l
A ,

0 0 0 0 1 1 1 1 1 1 1 1

A z
0 1 1 1 0 0 0 1 1 1 1 1

A 3
0 1 1 1 1 1 1 0 0 0 1 1

A
4

1 0 1 1 0 1 1 1 1 0 0 1

A s
1 0 1 1 1 1 0 0 1 1 1 0

t

A «
1 1 0 1

1
1 0 1 0 1 1 0 1

A? 1 1 0 1 0 1 1 1 0 1 1 0

A e 1 1 1 0 1 1 0 1 0 1 0 1

A c l  1 1 1 0 1 0 1 1 1 0 1

--
\

o

(4.20)
Now, any pair of elements will be detected 

according to the following scheme:

Subsets El ernents S u b s e t s Elernents
, A , A A a a A yA A a >a<5* 7 * e p i 2 2 4 7 4 8
, A , A A a a A )A A .A a a4 0 p i 3 2 5 <5 4 p
, A , A A a a A yA A a Ja

4 * <5 7 i 4 2 5 <S 7 4 1 o
, A A A A a a A }Aa A .A a )a5’ <5J 0 p i 5 2 5 7 4 11
, A , A A a a A >Aa A ,A a }a

4 1 5’ 7 } 0 i <5 2 4 <3 4 1 2

, A , A A a a A Ao A a ) a
4 * <s ; 7 } p i 7 i 3 5 0 4 <3

, A , A A a a A A A ^ > A a } a
4 ’  7 } p i 8 i 3 <5 p 3 7

, A , A A a a A A A^ a ) a4 '  5 ’  <3 y p i p i 0 p 5 8

, A , A A a a A A A ^ > A a ) a5 * <3 * 7 0 i 1 o i 5 <5 p 5 p
1 A , A a a A A A ,A a a5* 7 ' 0 i i 5 <5 e 5 1 o
, A a a A A A ,A am)a4; c5 8 i 1 2 i 3 5 p i i
. A * A a a A A A ,A a )a2 1 pJ “ 0; p 2 3 i 3 <5 6 5 1 2A. r. , A A a a A A A ,A a )a2 3' <5; 7 2 4 i 3 4 7 <5 7
, A , A A „ a a A A A-,>A a ya3' o’ 89 p •* 2 5 i 4 7 8 <5 0
, A > A a a A A }A a ya3’ 7* 8 2 <5 i 4 5 <5 p
, A , A A a a A A }A-,>A a ya3' <5 7 8 2 7 i 5 7 8 <3 1 o
, A , A A a a A A )A*>A a ya

2 * 7; 0 p 2 8 i 3 5 7 11

> A , A a a A A yA.>A a ya
2 ' <5’ p 2 p i 3 4 0 <5 1 2

, A > A A a a A AayA-,>A a ya
2 ’ <s' 7 > 0 2 1 o i 3 7 0 7 8
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Subsets Elements Subsets Elements

A > A , A , A , a A , A , A ,Art a„ , a2* 5* 7* p 2' i i & 4 <5 p p
A , A , A , A a , a „ A > > a„ , a2* 3* <5’ 8 2 i' o' 7 * io
A , A , A , A a > a A > > l ,Art a , a.2’ 3 4’ 5 3' 4 i 3 ' 7 p 7 i i
A , A , A , A a , a A > > , A a , a3* 5 * p 3' 5 i 3 ' 4 <3 7 1 2
A , A , A , A a , a A > > , A a , a3’ 4' 3 3* <5 i 2 4 p 8 p
A , A . A a > a A > > , A a , a3* 4* p 3* 7 i' 2 71 8 8 1 o
A , A , A , A a , a' A 1<< ,Art a , a2, 4’ 8* p 3 8 l 2 7 p 8 i i
A , A , A , A a , a A > > , Ao a , a2* 4 5' p 3* p i 2 4 8 8 1 2
A , A , A a , a A > > , A a > a ~2* 5 8 3 1 o i 2 5 <s p 1 o
A , A , A a , a A , A , A ,Art a , a.2* 3’ 5’ p 3 11 i 2 5 p p 11
A , A , A , A a„ , a „ A , A . A , A . a , a, o2* 3 4 ’ <5 1 2 i 2 4 o p 1 2
A , A , A a , a A ,A„,A^ , A a , a3’ 5* <5 4 5 i 2 5 7 1 O 11
A , A , A , A a , a A , A , A , A a , a3* 4

y rn-z>* 7 4 <5 i 2 <5 7 1 O 12
A , A > a , A a , a A , A .A a , a3* 4 , <5? 7 4 7 1 2 3 11 12

We can also construct 2-Complete search 
designs from the theorem given by Bush and Federer 
(1984). Before using this theorem we state it and 
give an alternative proof.

Theorem 4.4. A BIB design with parameters 
(v,r,k,b,k) is a 2-Complete search design if

- 2A >

Proof
Let M oe the incidence matrix of a BIB design

with v objects â ' V  .... a and
V

b blocks

B ,B ,... . , E,. That is , b M = <(n..)),  ̂ = 1,2 ,.••,v;

0 = 1,2,. . . . ,b, where;

» . , = T
if a. e B.<■ j

J [o if a. e B .>■ j
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Now, let the complements of the blocks
BtlB2,.....,Bb of this BIB design correspond to the
subsets Ai,A2,.... , A b , of the finite set S , that
is, Bc corresponds to A for v = 1,2,....,b and Tv v j
is as defined earlier, that is, a set of all subsets 
A/s (B̂ 's) which are not incident with the element 
â  € Ŝ . Then | |  is * the number of subsets A *s
which are not incident with the element â , that is,
the number of complements of the subsets A ‘s whicht
are incident to a.. But the complements of the 
subsets A #s correspond to the blocks B's so IT Ii i 1 i 1
is the number of blocks which are incident with a 
particular object (element). That is |T. | = r and 
|T̂  p| Tj | = X ( l ^ j). Using Corollary 4.1, this 
design will be a 2-Complete search design if X < 
r/2, that is r-2X > 0.

A BIB design with 2-Complete property will have 
b > r. In search problems we need designs with 

b < r. These designs could be obtained from 
BIB designs by deleting q objects (treatments) and 
all the blocks in which these objects occur.

Theorem 4.5: Suppose a BIB design has the
2-Complete property, that is r-2X > 0. Then the
number of objects (treatments) q which could be 
deleted together with all the blocks in which they 
occur without affecting the 2-Complete property
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s a t i s f i e s  t h e  i n e q u a l i t y :

Proof

If q objects are deleted together with all the 
blocks in which they occur, then the minimum number 
of blocks in which ariy object can occur is r - X q .  

Therefore, for a design to retain the 2-complete 
property after deleting q  objects r - X q  - 2X > 0  

That is,
q < £ - 2. (4.21)

Example 4.4: Consider the symmetric BIB
design (13,4,4,13,1). Here r = 4 and X = 1, thus the 
number of objects which can be deleted without 
affecting the 2-Complete property is less than 
4 - 2 = 2 .  That is, only one treatment and the blocks 
in which it occurs can be deleted without affecting 
the 2-Complete property.

Consider the BIB design (13,4,4,13,1) whose 
blocks are:

B
i

=  (1,2,4,10) Be - (4,0,7,13)
B

2
=  (1,3,9,13*} B

p
=  (4,8,9,11)

B S
=  (1,7,11,12) B

i o

.—> 3—
t

COO
'

COII

B
4,

=  (1,5,6,8) B
n

=  (6,10,11,13)
B

5
=  (2,3,5,11)

B , 2
=  (5,9,10,12)

B
<5

=  (2,6,12,13)
B, 3

=  (3,7,8,10)
B

7
=  (2,6,7,9}
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If one treatment, say 13 is deleted with all the 
blocks in which it occurs, we obtain?

B x {1,2,4,10}
B p

= {4,8,9,11}
B

3
- {1,7,11,12}

B . o = {3,4,6,12}
B

4
= {1,5.6,8} B

12 = {5,9,10,12}
B ,

{2,3,5,11} B
i s =  {3,7,8,10}

B ,
= {2,6,7,9}

Let the element correspond to the j-th
treatment, then the subsets Â 's which are the 
complements of the blocks B's are:i

A, = f V V V V  V  V alt>\2},
A, = < v  V  V V  W ap'a,ot
A< = {a2,a,,a<,a7,ap,aio,aij,ai2}.

A, = { V R< ' V  V  V ap'a,o'ai2}<
A, = {a1,as,a4,as,ae,aio,all,ai2}.

Ap = {V  V V  W  W ' 8̂ .
= K-a.,,a, . a 8,ap, aJO,au ),
= {ai<az,a3,a4,a<j,a7,ae,ali).

Aia = { W  W  Va^.a^.a^}.

And the sets T , that is, sets of all subsets
A/s, which are not incident with the element a are:j

10
12

Ti II ( W V t7
T2 = {A1,A=,A7} T =s : {A4'AP'A13
T3 = < V A -a13) TP = Â7 ‘ Ap ' A1Z )
T4 — < W A,o> T = io { A1 ' A12 ’ A» 3 }
T3 — {A4,A=,A2} T r n { A3 * Ag * Ap }
To - T = 12 < V A,o'A«>
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Each subset T(t = 1,2,....,12) consists of three
elements and [TV f) Tj I i 1 (' * i>- Using Corollary
4.1, which states that if the sets TV (i = l,2,..,n)
contain the same number of elements p and if the
intersection of any two sets contains less than p/2,
then the system {A ,A ..... ,A ;S } is a

1 2  m n
2-Complete search design, we conclude that the 
system {A ,A ,A ,A ,A ,A ,A ,A ,A ;S } is a
2-Complete search design. The incidence matrix, N, 
of this design is

r
a i a2 a3 a

4
a

5
a

<5
a 7 aa a0 a a aIO 11

Ai 0 0 1 0 1 1 1 1 1 0 1 1
A3 0 1 1 1 1 1 0 1 1 1 0 0
A

4
0 1 1 1 0 0 1 0 1 1 1 1

A5 0 0 0 1 0 1 1 1 1 1 0 1
A7 1 0 1 1 1 0 0 1 0 1 1 1
A0 1 1 1 0 1 1 1 0 0 1 0 1
Aio 1 1 0 0 1 0 1 1 1 1 1 0
A1 2 1 1 1 1 0 1 1 1 0 0 1 0

A
13 t

1 1 0 1 1 1 0 0 1 0 1 1

A given pair of elements will be detected
according to the following SCh eme

Subsets Elements Subsets r> r~ — r-, +ll Z 1 .
A , A , A , A a , a A , A , A , A a , a0 1 O 12 13 1 2 3J 4 3 ' 13 4 £
A , A ,A a , a A , A , A , A a , 81 2 3 5 ’ 13 4 P
A , A , A , A a , a A , A , A , A a a3 7 12 13 1 4 3’ 4 D 7 4 1 o
A , A , A , A a , a A , k , A , A a > 87 P 10 13 1 5 4 ’ 7 12 13 4 1 1
A , A , A , A a , a A , A^ , A , A a , a12' 13 1 * <5 4 3 7 13 4 1 2
A , A , A , A a , a A , Aa , A , A a > 8  ̂

3  0 1 7 i 3 P 13 3 <5

A = ' A 7
, A , AIO’ 12 a , a 1 8 A

i > A p
, A1 o a3 c
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S u b s e t s E le m e n t s S u b s e t s E le m e n t s

,A13 a.«flp Ai,A3,A7,A10 a3'ae
V A7 •Ap -A,o ai-a,o A,•A3>A,0«A,3 a5•s p
V A.o-A,2'A13 ai, a* i i A 3 •A7>Ap 'A,0 a5>a.o
V A7 >AP 'A,3 al-ai2 A. , A .  A , A7 lO 13 a5> ai i
A3'A« >AP -A12 a 2 >a3 A 1■A7>Ap "A,3 a=-ai2

* A 1 2 ’ A1 3 a 2 , a4 A i>A3*AP'A12 a<3■S7
A3 ’ Ap , A , A1 O 13 a 2 * a5 A i , A , A* 5’ 12 a e 'a8
A3'AP - \ 2'A13 a 2 , a’ <5 A i>A3'A5-A13 a<5> a* p
\ < AP ,A10>Al2 a 2 > a* 7 A 3 , A , A a<53 a' lO
A , A3 1 O , A' 1 3 a2 > a8 A 1 , A , A12 13 a<5> a’ 11
V A <

, A , A’ 1 O 13
a 2 > a* p A i , A , A , A a<3 •a , 2

A 3 > \ , A , A’ p ' i o a2 > a’ 1 o A i , A , A , A
*  5 ’ l O ’ 12 a

7
3 a8

A , A4 ' 1 O , A , A a 2 > a11 A i , A , A , A a
7 3 a'  p

A„ , A rt4 P ’ A 1 3 a2 > a1 2 A
4

, A , A , A5 ’ P 1 O a
7 3 a 1  o

A >, A3 4 •A7 ' A l 2
a 3 > a4

A i *A4-A10>A.2 a
7
3 a11

A , - A 3 •A7 'AP a 3 3 a* 5 A i ’ A 4 ’A3 ’ Ap a
7 - a . 2

A,  , A 3 , A , A’ P 1 2 a 3 > a<5 A i , A , A , A a8-aP
A , A1 4 • A p  ' A , 2 a3 > a

* 7 A 3 , A , A , A’ 5 7 1 O a8 - a . o

A , A1 3 >A7 ' A l 2
a3 ' a B A 1,A7,AlO,A12 a83 a11

A , A ,1 3 , A
4

a3 > a
*  p A i > A 5 , A 7 a8 - a i 2

A , A3 4
. A  , A„ a3 > a1 o A 3 , A , A , A ap•a«o

A , A1 4 •A7 ’ A l 2
a

3
> a11 A i , A , A , A ap3 a11

A , A1 4 ' A 7 ' A P
a3 > a i 2 A i , A , A , A ap3 a* 1 2

A , A •A13 a4 , a A 4 , A , A a , a 10 11
A 3 1 A 5 •A12'A13 a4 > a'  <5 A 4 , A , A , A a , alO' 12
A4,A5 •A i 2 a4'a7 A i , A , A , A’ 4 1 7 13 a i 3 a1 12

The disp’lay shows that every pair of the

twelve elements can be detected by a unique set of

subsets. For example > if (a3,.a ) are thep
unknown

elements, then the intersection of Ai,A3,Â gives

the identity of the unknown pair, that is,

a, n ‘\ n A =3 * 1 <4 (a3 ' a p >-

/
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4.4 PARTITION SEARCH DESIGNS.
Suppose the set Sn consists of n elements

(a1>a2>..... an)• Then in a partiton search design,
we determine m subsets {A ,A ......A } of S such

1 2  m ri

that for any two distinct elements a ,a e S
lz n'

there exists two disjoint subsets A and A such
, V V1 2

that a. e A. and a «= A. .I V  t l
1 1  2 2

We describe here a procedure for constructing
the subsets A^,Az , . ..,A^. We start by partitioning
the set S into two sets A and A .n i i

1 2

That is,

A; U i  = S (4.23)1 2

and

A n A = 0 .t 11 i
1 2

We proceed to obtain other subsets by considering
the subsets A. and Ai i 1 2

as the set Sn and then

partition each into two . The union of t he first
part of Al1

and the first part At2
forms the t bird

subset AL and 1*he union of the second part of3
Al and the second part A forms the fourth subset 
* 2

Al . This process is repeated until all pairs of the

elements of the set SR have been separated into 
disjoint subsets. This procedure of partitioning a
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set into two is called halving procedure.

E x a m p le  4.5: Consider the set Si<5 =
{a ,a ,a3, . . . . ,ai<3} then applying the halving
procedure, we obtain the following subsets of Sn, 
which will separate all pairs of elements of Ŝ :

A1 = a2> a3J a4’ a<5' a7' &B ̂ *

A2 " { ap' &io ' ail ’ &13 *
A3 = {&±> a2, a3, â } U {ap, a,0« alt, &i2).

A 4 "  ^ a 5 ’ a <5, a 7 , a 8 }  U  { a i 3 ’ a i 4 , a i 5 ’ a i <5 } .

Other subsets obtained in a similar manner as the

subsets A3 and A are :4

A= = < v V a5'&<S'ap'a.o’S.3'a }14 ' '

A„ r {a3-a4>V V aii'a!3’a,=’a1<s>-

A? r {a,, a3 *V &7 *v Si.'a,3'a },

> CD II {a2.a4' V a,o■ai2' SJ4

To detect two unknown elements, say and a„. 
we determine two disjoint subsets At and Âi ?
{. > } c {1,2,.....8} such that <v 1 2

A an d  
1

a e A .In this example,the two disjoint subsets
7 i

are A and A . That is, a e A and a?3 4 ' A and
4 /

A pj A - 0. The unknown elements are then
identified separately from the subsets Ag and Â
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using separating systems.

More explicitly, we have the following display 
of detectable pairs of elements and the 
corresponding subsets:

S u b s e t s I d e n t i f i a b l e  p a i r s  of e lements

V Az (a,-sp).(»J.aio).(al,ajl),(ai,alj)

<a2*at,).(a2.a10).(a2.ajl),(a2,ai2)
Ca2.al3>,(a2,ai4),(a2,a15),<a2,al<5)

( a 3 . a p ) , ( a 3 , a  )i o  7 , ( a 3 ,a11).(a3> a ) 1 2 7
< a 3 • a , 2 > ( a 3 > a  )H , < a 3 , a , = ) - ( a 3 2 a )i d '

( a . a  )i o  7 2 ( a 4 , a . i > ' < a 4 . a  ) 1 2 7
( V •a12),<a4■a13 ) , ( a 4 • a . 4 > - ( a . - a 1 5

< “ «''a1<5>'<a5 ■ a P ) 2 ( a  , a i O ) ' ( a 5> a  ) 11
< V 'a . 2 > ' ( a s ' a ! 3 ) 2 ( a ' a J - ( a 5 - a )1 5 7

( V a » < 3 > ' < a <, • 8 p > , ( a a , a 1 0 > ' < a 0 - a ) 11 7
( V a,2>-<a<5, a' 1 3 ) 2 ( a O ' a I 4 ) ' ( a <3.2 a> 1 3

( V a 1 0 ) ' < S 7 * p 7 2 ( a ? , a . O ) ' ( a 7' a , t >

< a 7' a i 2 > ’ < a 7 2 a 1 3 ) , ( a ? ' a . 4 > ’ < a 7 , a i3'

( V a 1 « > > < a e ■ V 2 ( s e 2:a , o ) > ( a e ’a 1 ! )

< a e> a . 2 ) ' < a 8 ‘1 8  1 3 ) , ( a 8 > a i 4 ) ' ( a e * a > S '

( a e* a )1 <5 7

A , A3 4 ( a,, a3 ), ( a!, ao ) , ( a,, a_), ( , a8 )

( a2 , a5), ( a2 , a<5 ) , ( az , a? ) , (a2 , ae ) 
(a3 , a5 ) , ( a4, ao ) , ( a4 , a7 ) , (a4 , aB ) 
(V  a5). (a5. aa) , ( a,, a7 ) , ( a4 , a8)
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A , A3 4 (as>,ai5),(at>,ai<5),(aio,ai3),
(a10,a,4),<ai0 .al5>,(ai0,aia)

^ai.’aio),(a«2’ai3^,(ai2’a14)

(a.2’ai=)'(ai2'a1«>-(at>'a13)

A , A5 <5 <at, a3 ), (at, a4 ), (a2 , a3 ), ( a2, a4) 
(a5,a7 ),(a5 ,ae ),(a<5,a7 ),(a<5,ae) 

(a8 .a i1),(ap ,all),(a4.,al2) 

(a1o-all>>(ato'a,2)><a13’a1 = >
<a.3-a i«)- (a,<>a 1=>

A ,A
7  8 (ai,a2 ),(a3 ,a4 ),(a=;a<5),(a7,ae)

<ap'a 1o )'(a.i>a i2>'(a,3>a ,4)
(a , a ).15 1 <5 7

Suppose that the set Sn consists of n elements.

Then we construct the subsets A ,A , .... ,A by1 2 '  m
partitioning the set S into x equal parts for n rn
kx and x parts not all equal but with a maximum size

kdifference of one for n * x . The parts formed in

the partitioning of the set S forr the subsetsn

1 2
•*\ • 

X

That is, V

> S = A U A U .......,U A
n <• i i

1 2  x

and

n \  = 0' i * j'-
J J'
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We proceed to obtain other subsets by considering 
each of subsets A ,A ,..,A as the set S and then. v v l  'H1 1 2 x 11
partition each into x parts. The union of the first 
parts of each of the subsets A. ,A A formsl l V1 2  x
(x + l)-th subset, that is A ; the union of the 
second parts of each of the subsets A ,A ,...,A, V V t1 2  x
forms the (x+2)-th subset, and so on. This process 
is repeated until all pairs of the • elements of the 
set have been separated into disjoint subsets. 
This procedure of partitioning a set into x parts is 
called j - procedure.

Theorem 4-6 The number of subsets, m in the 
^ - procedure is;

m = x{log^n}

where {y} denotes the least interger greater than or 
equal to y.

Proof
Suppose the set S. consists of n = x elements, 

then the set ' * it ioncd into x equal
parts. Each partition produces x subsets
consisting of n/x el ments. Suppose the first 
subset is the: n/x' elements are taken from it
to form part of subset A , n/x3 elements taken

X  +  l

to form part of subset A . This process is 
repeated until the elements taken from A to formi
part of a new subset is n/x^ = 1, that
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is l - log2n . But each partition produces x 
subsets, thus the total number of subsets is,

m = xlog n.
X

For n * x , the set Sn is partitioned into x parts
not all equal but have maximum size difference of 1.
Let k be the size of the largest part, then k -1 c i
is the size of the smallest part.The following
inequality therefore holds:

(kt - l)x < n < k4 x , (4.21)

Next, we partition the largest part (size k ) into x 
parts, again not all equal but have a maximum 'size 
difference of one. Let k2 be the size of the largest 
part, then k? - 1 is the size of the smallest part. 
Again the inequality

<k» - 1 )x < k < k x 1 2 (4.22)

holds.
But

ki > (k2 - 1) x

imp] i e s that

<k,p
- 1) V ( k 2 -  1) X (4.23)

s in ce k , (k 1) and x are all i n tegers.
Thus, from (4 • 21) and (4.22), we have

n < k x < k x 2
2

(4.24)

and
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n > (k - 1 )x > (k - 1) x2 (4.25)i ■ ^
This process is repeated until, we have the 

inequalities
, z , u Ym' ~ln < ktx < k2x  ..................< Km'-i x

9 ^  ̂

n > (kt - O x  > (k2 - l)x2 >...> < km, _4- l)x

and
2 < k , 4 < x .

That is,
m'n < x

and
m # -1

n > x

which implies
m' > log n

X

and
m' < log n + 1.

X

But m ' is an integer so
m' = {log^n} .

Each partition produces x subsets, so the total

number of subsets is

m = xm'= x{log^n) 
which completes the proof.

Theorem  4.7: An 1/x procedure, with x = 3 gives 
the minimum number of subsets, m .

Proof
From Theorem 4.6, m is given by 

m = x logxn •
Differentiating with respect to x and equating to
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zero, we get

dx = log.n( log^x “ (log^x)*) = 0 

which gives,

log^ x = 1 or x = e;

and

.2d m  , _2 = l0g„n ~( 1 og^ X )2- 2(loge x - l)(log& x)
dx (log X)4L ° J

which is positive when x = e.
Thus, x = e gives minimum number of subsets, m . But 
x must be an integer so x = 3 would give minimum m, 
that is

m = 31ogan . (4.26)

4.5 DETECTING t C t > 2 2> UNKNOWN ELEMENTS.
In this section we study a strategy for

detecting t (t > 2) unknown elements from a finite 
set S . The strategy we propose to study is called a 
t-complete search design defined in Section 1.2 of 
Chapter 1. For purposes of our study of the

Pt-coraplete search design we define it in terms of
the intersection of the subsets A ,A1 2 ’ A ofm
the finite set S , as a system n {A , A , . . . V
in which for any arbitrary set of t elements
(a.t ’ai •••• ,a } e S there t n exists a set of

1 2  t
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indices fiz ' * ‘ 'lk} c (1,2, ...,m) such that
{a. ,a ....,a } g A for * = 1,2, . . . , k and
v 1 2 t V
n Ai
Z— i Z

= (ai , â  at } . Without1 2  t loss of

generality we will assume that the subsets A
V

(* = 1,2,...,k) are the only subsets which contain
the set (a , a. ,...., a } .

1 2 \
To identify any t unknown elements, say

a , a , . . , a , we determine subsets A ,A ......,A
1 z  1 i  x i

1 2 k

(v,>v2>....>vk) c (1,2,3,.... ,m} such that
a4 > &2 at g Â  for j - 1,2,...., k . The identity

j
of the t unknown elements is then given by the 
intersection of these subsets A ,A , AX. \. ' * V ’

k 1 2 k

that is n Av = (ai,a2, . . . ,at) .
j = 1 j

The following example illustrates this strategy.

Example  4 . 6 : -  Suppose the system {A ,A , A ,

A 4 , A 5 ’ A o ' A 7 ’ A b ' A p ' A i o ' A i , ’ A . 2 ' A , 3 ; s , 3 > constitutes
a 3-complete search design for separating the
elements of the set S { a , a, a , a , a . a , a. ?

1 ^ 3 3 O ? S

af'aio)an ,ai2,ai3^  Then one possible configuration 
of the subsets (A , A , A , A , A , A , A , A , A ,A . ,-A

1 2 3 4 5  a 7 8 S> l O  1J

Ai2,Aj3} is the following:

A = (a .a .a .a .a .a .a .a .a }
1 3  5  <5 7  8  P  11 1 2  1 3 j >

A„ = (a ,a ,a -a .a ,a ,a .a .a }
2  1 4  <5 7  9  P  l O  1 2  1 3  »

Â  = (a .a .a .a .a .a .a .a .a }
3  1 2 5 7 3 P 1 0  11 1 3 J ;
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A 4 — {  a  * a  » a  • a  * a  • a  # a  » a  . 1 2 3 a  s  p  10  11

A 5 = {  a  , a  . a . a , a . a  . a  . a
2 3 4  7 P  ° 1 0  11 12

A
<5

= { a  . a  . a  . a  . a  . a  . a  . a
1 3 4 5  8 l O  11 12 •a , 3 > >

A 7 = { a  . a  . a  . a  . a  . a  . a  1 2 4 5 <5 p  11 . a  . 12 a , 3 > <

A
8

= { a  . a  . a ’ . a  . a  . a  , a
1 2 3 5 * 5 7  1 0

. a  . 12 S i 3 > -

Ap = {  a .a .a .a .a .a .a 1 2 3 4 <5 7 a
.a , 

11 8  ) ,  13 J 1

A10
- {  a .a .a .a .a .a .a

1 2 3 4 5  7 8
.ap a  ) * 12

A
1 1

{ a .a .a .a ,a .a .a
2 3 4 5  <5 8 P

.a , 
10

a } ,  1 1 J

A12 = { a .a . a  .a ,a ,a .a
1 3 4 5  <5 7 P

.a . 
1 0 a  } .1 1 J ’

A - {a .a .a .a .a .a .a .a . a }.
13  2 4 5  <5 7 8 l O  11 12 J

Thi s design will detect any arbitrary group
of three elements from S13 That is, for any group
of three elements â ., â » , â ,/ (Z * V * V 4 ) of the
set S13 there exist subsets Ai -Ai > • • • 

1 2
•>\ , k

•>lk} = {1,2, . . . . , m } , such that

V ar ' ar„ e A
1 . , for 3 - 1,2, . . . , k and

n A. = >Bf '  }• Thus, to detect any three
j=* j

unknown elements of the set S , we determine

subsets amongst A^, Az,...., Aj3 which contain the

three unknown elements. The intersection of these 

subsets gives the identity of the three unknown 

elements.
More explicitly, we have the following display

of detectable pairs of elements and the 
associated subsets.



Elements ElementsSubsets
A A  , A  , A  ^ a

4 8 P  l O l

A A  , A a
7 P  1 o i

A A  , A  > A  ^ a
3 7 * 8 l O i

A A  , A  , A rt a
4 7 8 P i

A > > > a
3 8 ' P  l O i

A > > > a
3 4 P  l O i

A > > > a
3 4 '  7 1 O i

A A , A o a
3 4 8 i

A A , A  , A a
3 4 7 P i

A A  , A , A  % a
4 7 8 10 i

A A  , A  , A ft a
3 7 8 P i

A A , A  , A a
<5 8 ' P  1 O i

A A  > A  , A a
<5 8 > l O  12 i

A A , A  , A  , a
4 8 P  12 i

A A  , A  , A a
a P 1 O 12 i

A A , A , A a
4 8 P  1 O i

A A , A a
4 1 0  1 2 i

A A ,A ,A „ a
4 <5 8 12 i

A A , A , A a ,
4 <5 P  12 i

A A , A a
£> 8 1 O i

A A ,A , A a
4 <5 8 P i

A A , A , A a
<5 7 1 O 12 i

A , A , A a
‘ J2 7 P  12 i
A A , A , A a' o P  l O  12 i

A A , A , A a2 <5 P  1 0 i

A A , , A a
2 i

A A ,A , ►a
2 <5 1 2 i

A A , A  , A a
<3 7 P  12 i

A A , A , A _ a2 <5 7 lO i
A > > > a2 <5 7 P i
'a A ,A , a7 8 12 i
A > > > a3 8 ' 1 O 12 i
A A , A a3 <5 * 1 O i
A A , A , A a3 7 * lO 11 i
A > > > a3 <5 ' 8 12 i
A A , A , A o a3 <5 ’ 7 12 i

a a2 3
a a2 4
a a.2
a a2 <5
a a„2 7
a «a2 8
a a _2 p
a a2 1 o
a a2 11
a a „2 1 2
a a2 1 3
a a3 4
8 a3
a a3 <3
a a3 7
a a3 8
a a3 p
a a3 1 O
a a3 11
a a3 1 2
a a3 1 3
a a

4 5
a a

4 <3
a a„

4

a a,4 8
a a _

4 p
a a

4 1 o
a a

4 11
a a „

4 1 2
a 8 _

4 1 3
a 85 <5
a a5 7
a a„5 8
a a _5 p
a a _5 1 o
a a5 i i

Subsets
A ,A , A , A a , a , a<5 i* 5 * 12
A ,A ,A„,A a ,a„,a3 <3 7 B i 5 13
A , A , A , A a , a , a2 * 8 * f>* 12 i *<5*7
A , A , A , A a , a , a

2 4 P 11 i
A , A , A , A a , a , a

2 i <5* P

A , A , A , A a , a , a
2 i <5* I O

A , A , A , A a , a , a4 i <5* 11

A ,A , A a , a , a2 i <5* 12
A , A , A , A a , a , a _

2 i
A > A , A , A a , a , a2 3 P  1 O i 7 8
A , A , A , A a , a . a _2 3 1 O 12 i
A , A , A , A a , a„ , a2 * 3 6 1 2 i 7 1 o

A , A ,A a , â  , a
3 P  ' 1 2 i 7 11

A , A , A a ,a„,a ,2 ’ 8 1 O i 7 1 2

A , A , A , A a , a_ , a2 i 7 1 3

A , A , A , A a , a , a
2 * 3 4 1 0 i 8 P

A > A j A f A a , a , a2 ' 3 * 4 * <5 i 8 1 o
A , A , A , A a , a„ , a3J 4 <5 P i 8 11
A , A , A , A a , a , a2 i 8 12
A , A , A , A a , a , a2' 3  <5 P i 8 13
A , A , A , A a , a , a7 i P 1 o
A > A , A , A a , a_, a3 i p ii
A , A , A , A a , a , a2 i P 12
A , A , A a ,a_,a o2 * 3 * 7 i P 13
A , A , A , A a , a  ̂, a3 i 1C 11
A , A , A , A a , a , a „2 i 10 12
A , A , A , A a , a _ , a2 * 3 ' <5 * 8 i 1 O 13
A ,A ,A a , a , a ,

4 ' c5 * 7 i 11 12
A > A , A , A a , a , a „

3 i 11 13
A , A , A , A a , a . a

2 i 12' 13
A .A ,A ,A a ,a^,a ̂5 * p’ io' 11 2 3 4

A ,A , A a ,a^,a.
8 J i o ’  1 1 2 3 5

A , A , A , A a ,a„,a^
4 2 3 <5

A .A ,A ,A a„ ,a ̂
5 * b  p i o 3 7

A , A , A , A a„ ,a .a.
4 * p * io’ 11 3 8

A , A , A , A a ,a„,a^
4 '  5  * I O  ’  11 2 3 P
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Subsets Elements Subs e is Elements
A , A A a a a A A A , A a a ,a4* 5 11 2 3 IO 4 8 ' 1 1 ’ 19 2 <3 * 1 o
A , A A a a a A A A , A a a ̂ ,a4 3 p 2 3 11 A 7 * P ’ 13 2 a i i
A , A A , A a a a A A A , A a a ̂ ,a, „4 3 8 * iO 2 3 1 2 7 8 * p * ii 2 a 1 2
A , A A , A a a a A A A , A a„ a ̂ ,a. ̂3 e p ii 2 3 1 3 7 8 * p '  i i <3 1 3

A . A , A , A a a a A A A A a a„ ia
7 '  1 o 2 4 5 3 5  * I O  1 1 2 7 8

A , A A , A a a a A A A a. a ,  > a _
7 ' p l l ’  13 2 4 <5 3 3  * 1 o p

A , A A .A a a a A A A , A a a ,  > a ̂ _
3 p ’ 1 O  13 2 4 7 3 3  * 8 '  1 3 2 1 o

A . A , A , A a a a A A A .A_ a„ a_ ,ap' 1 o’ 1 1 13 2 4 8 3 3 P 13 11
A . A , A a a a A A A , A a. â  ,a. ̂5 1 o* 11 2 4 p 5 8 * 1 O 13 7 1 2
A , A , A a a a A A A., Art a a, ia, „5 il* 1 3 2 4 1 O 3 3 * 8 P 2 7 1 3
A , A A , A a a a A A A , A a a„ >a3 7 P 13 2 4 11 3 7 * io' 11 2 8 p
A , A A , A a a a A A A , A a. a5’ 7 1 O 13 2 4 1 2 3 4 * 11 13 8 1 o
A , A A , A a a a A A A ,A „ a. a- > a5 7 p ’ ii 2 4 1 3 3 4 * P 13 a 1 1
A , A A , A a a a A A , A a„ a ,a7 8 ll’ 13 2 3 <5 4 1 O 1 3 8 1 2
A , A A , A a a a A A A a„ a ,a3 B lo’ 13 2 5 7 3 7 11 2 8 1 3
A . A , A , A a a a A A A , A a a ,a3 1 o' 1 1 13 2 3 8 3 A * 3 11 2 p 1 o
A , A A , A a a a A A A . A_ a. a_,a ,3’ 7 IO ’ 11 2 3 p 3 4 ' 3 7 p i i
A , A A , A a a a A A A , A a. a_,a, „3 B 11 ’ 13 2 3 1 o 4 5 * 7 * 1 O p 1 2
A , A A a a a A A A ,A a a ,a3 7 1 3 2 3 i i 3 3 * 7 11 2 p 1 3
A , A A , A a a a A A A , A a a > a7 8 1 O 13 2 3 1 2 3 4 * 3 ’ 13 2 1 o 11
A , A A , A a a a A A A , A a a > a,,3* 7 8 * 11 2 5 1 3 4 5 * 8 * 13 2 1 o 1 2
A , A A a a a A A A , A a„ a. ̂ , a8 p 1 3 2 <5 7 3 3 * 8 ' 11 1 o 1 3
A , A A , A a a a A A A ,A a a ̂ ,> a4 p 11 ’ 13 2 <3 8 4 3 * 7 13 2 11 1 2
A , A A a a a A A A , A a a » 6

4 * 7 11 2 <3 p 3 3 ' 7 P 2 11 1 3
A , A A , A a a a A A A , A a a ̂ _ , £<5 p 11 12 3 4 5 4 5 ’ <3 12 3 1 o 11
A , A A A a a a A A A , A a„ a. ̂ > ai a 1 O 11 3 3 7 4 3 * 1 o 1 2
A , A A , A a a a A A A , A a a , a „i’ <5 16 ii 3 3 8 3 <3 ' 8 ’ 11 3 1 o
A .A A Ar a a a A A A , A a a „ > ai 1 o 11 12 3 5 p i 4 * 3 11 1 2
A , A A .A a a a A A A , A a a , a „

<5 1 B 1 i 12 3 3 1 o i 3 * <3 P 3 11 i a
A , A A ,A a a a A A A , A a a „ „, a „i <5 7 * IO 3 5 11 i 3 * <5 ’ 8 3 1 2 1 3
A , A A , A a a a A A , A , A a a a- ia ̂i <5 8 * 1 O 3 5 1 2 7 1 1’ 12 13 4 ? f
A , A A , A a a a A A A a „ a  ,a„i <5 8 * 11 3 3 1 3 1 o 1 2 1 3 7

A , A A , A a a a A A , A , A a a ,a8 P ’ 12 3 <3 7 <5 1 O* ll' 13 4 3 a
A , A A , A a a a A A , A ,A a a ,ai 4 p ii 3 <5 8 7 1 O 4 5 p
A , A A A a a a A A , A , A a a ,a _i 4 11 12 3 <5 p <3 1 1 4 1 o
A , A A A a a a A A , A , A a a ,a „4 a 11 12 3 <5 1 o <3 7 12' 13 4 3 i i



1 0 8

S u b s e t s E le m e n t s S u b s e t s E le m e n t s

a

a
A A , A a a > a A ^ A„ J A A . a a , ,

4 p* 1 2 3 <3 * 11 <5 7 1 o 1 3 4

A A a a , a A ^ A_ ) A a  4 a _ ,
4 * e 3 <3 * 1 2 <3 7 11 4 5

A A , A a a , a A , A }A A Q a  4 J a  ^ ,
8 * p * i  i 3 <5 1 3 2 p 1 2 1 3 4 <5

A A a a , a A A yA < , A o a J a  ^ ,
p ' 1 o a 8 2 p 11 1 3 4 <5

A A , A a , a , a_ A A„ yA , , Pi49 a J a  ,
5 i o 12 3 '  7 p 2 7 i  i 1 2 4 <5

A A a a ,
*

a A A , A „ , A o a J a  ^ ,
e * 1 2 3 1 o 2 i i 1 2 13 4 <5

A A , A a a , a A A rt > A A a a > a  .
5 * p * 1 2 3 7 11 7 p 1 2 1 3 4 <5

A A , A a a , a A A y A a ya  ^ ,
• 5 1 o 3 7 1 2 2 7 1 3 4 <5

A A , A a a  , a A A A , A a ya  ^ ,
5 0 p 3 7 1 3 2 7 p 1 1 4 <3

A A A a a  , a A A ^ y A A a ya^  ,
4 * 1 o i  i 3 0 p 2 p 1 o 1 3 4 7

A A a a , a A A A , A , a ya„  ,
<3 * i  i 3 1 o 2 5 1 o 1 2 4

A A , A a a , a A A yA , > A a ya -, >4 * <5 ' p 3 i  i 2 5 1 2 1 3 4

A A ,A a a > a A A yA A a ya ,
4 > <5 ’ 1 o 3 8 1 2 5 p 1 2 1 3 4 7

A A ,A a a ,a A A yA A a a ya_  ,<5) p  ’ i  i 3 8 ’ 1 3 2 5 1 o 1 3 4

A A A a 8 > a A A yA a y a -, *5 i  i 1 2 3 P  ’ 1 o 2 5 p 4

A A , A a a , a A A , A a ya ,
4 1 2 3 p 11 2 1 o 11 4 8

A A , A a a , a A A y A « > A a y a «  >4 1 o 3 p * 1 2 2 <5 l  i 1 3 4

A A a a , a A A y A o a y a «  >
3 11 3 p  * 1 3 <5 p 1 3 4

A A , A a a , a A A y > > a y a o ><3 1 o 1 3 4 1 2 i 4 P 1 3 <5

A A . A a a , a A A , yA , A a a o >
<5 s>* 11 4 8 1 3 i 2 4 1 3 <5

A A A a a , a A , A > > a a  ,
5

>
i  i 1 2 4 p * i o l 2 P 1 1 <5 8

A A a a , a A„ A A , A a ^ y a rt,
7 i  2 4 p 11 2 4 i 1 2 <5 p

A A , A a a . a A A y > i > a ^ y a ^>
5

> 1 o 4 p ' 1 2 i 4 7 1 2 <5 p

A A , A a a , a A A y A , A a y a ^ >5 * 7 J 11 4 p 1 3 i 2 4 7 (5 p
A A A s a , a A A y n> i > a ya. ,

<5 > 1 2 1 3 4 1 o * 11 i 2 r 1 1 <5 p
A JA a a , a A A , A „ a ^ y a - ^

‘ 5 J n <3* 1 3 4 * 1 o 1 2 4 1 2 1 3 <5 1 o

A A A a a j a A o A A , A a y a . ^3 } <3 J i i 4 1 o * 1 3 2 4 8 1 3 1 o
A A ,A

f
a a , a A„ A yA a y a

<3 > 1 3 4 1 1 * 1 2 2 8 i <3 1 o
a A ,A a a , a A A y > i :*» a _ y a

<5* p 4 1 1 ’ 1 3 i 4 ✓ 1 3 o 1 1

A A , A a a , a  „ A A yA a ya
3 } <5 » 7 4 1 2 i 3 l 7 p <3 1 1

A A . A a a ,a A A , y > i > a ^ ya „s ) 12 13 5 <5 7 l 2 7 8 <5 1 2

A . A a a , a A A yA , A a y a o ,
i 1 '  1 3 5 <3 * 8 i 2 3 1 O 7

A A , A a a , a A A yA 4 a ya o »
7 ) u ’ 1 2 5 <5 p 2 3 1 3 7

A . A . A a a . a A A yA , A a ya o »
i 1 '  12 1 3 <3 1 o i 3 4 1 3 7

A A , A a a , a A j A yA A a ya  ,
7

) 12 1 3 5 <5 ' i  i i 2 1 o 1 3 7 8

A A ,A a a , a „ A 1A, y > > a „ y a o ,
7 1 8 ' 1 3 5 <5 1 2 l 2 3 P 7 8

1 2
1 9

a

a

i o
a 11
1 2
1 3

1 O
1 1
1 2
1 3

IO
1 1
1 1
1 2

a 1 3
1 O
i 1
i 2
1 3

1 2

P

1 O 
i 1
1 2 
1 3
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Subsets Elements Subsets Elements
A .A .A ,A a a a _ A ,A << a„ a . a _i' 7 * 8 * 11 3 7 1 3 2 ' 3' 5 12 P 1 o
A , A . A , A a a a A , A > > a„ a . a.i 3 10 13 5 7 8 i 3' 5 ' 12 p it
A , A . A A a a a A , A , A , A a„ a . a „i 5 7 p i 2' 5 ' IO 7 P 12
A .A ,A .A a a a A >A, ,A . Ak a_ a . a, Q3' B' 12' 13 5 7 io i 2 3 5 7 P 13
A ,A .A . A a > a > a A , A , A , A a_ a  ̂> a.i'3* 12' 13 5 7* 11 3' 5 12 13 7 10 11
A ,A .A , A a a a A , A , A , A a„ a, . ai' a ' 10 is 5 7 1 2 2' 5 a 13 10 12
A . A .A a a a A > a q >A , A a„ a. ̂  > a. oi' 3 ' 8 5 7 1 3 2 3 s e 7 10 13
A ,A , A .A a a a A > A , A a„ a_ » a.,i' a’ io’ i 5 a p i 5 1 3 11 12
A , A , A , A a a a A > A , A .A a„ a ̂ „,aja3' tf’ 12’ 13 5 a 1 o i 3 11 13
A .A ,A .A a a a A , A ,A , A a„ a , ai' 3 ' <5 * 13 5 8 11 i 2 5 8 7 12 13
A ,A .A , A a a a A , A , A ,A a„ a , ai' <J* io' 13 5 a 1 2 2' 3 •4 11 a P 1 o
A > > > a a a A , A a a , ai' 3 ' <5 11 5 a 1 3 i 3 4 a p ii
A , A , A a a a A , A , A ,A a a , a3 11 12 5 p 1 o i 2 4 1 O a P 12
A ,A .A .A a a a A , A , A , A a a^,aioi' 3 ' 7 ' 12 5 p 11 i 2 3 11 a P 13
A , A . A a a a A > A ,A .A a an a, , a.2 7 1 O 5 p 1 2 3 4 <5 13 a 10 11
A .A ,A .A a a a A , A , A , A a„ a , ai' 3 ' 7 * 11 5 p 1 3 2 4 <5 13 a 10 12
A , A , A , A a a , a A , A ,A ,A a a , a3' <5 12 13 5 1 o’ 11 2' 3 <5 11 a 10 13
A ,A , A a a , a A , A , A , A 0 ao a , a<5 a 13 5 1 o 1 2 i 4 <5 13 8 11 12
A .A ,A .A a a , a A , A , A ,Art a a , a3' <5 ' P ' 11 5 1 o’ 1 3 i 3 <5 P a 11 13
A > > > a a > a A , A , A a a , ai' <5' 7 13 5 i1 1 2 i 2 <5 a 12 13
A .A .A ,A a a > a Ao, A ,A .A o a^ a , ai 5 i1 1 3 3 4 5 12 p 1 O 11
A .A ,A ,A a a , a A , A , A a_ a > ai' <5 ’ 7 ' 8 5 1 2 1 3 2 4 5 p 1 O 12
A ,A .A ,A a a a A , A ,A , A a_ a , ai ' 2 P 13 <5 7 e 2 3 5 11 p 1 O 13
A , A , A a a a A , A , A ,A, a a , a ^i' 2 ’ 12 <5 7 p i 4 5 7 p 11 12
A .A ,A ,A a a a A , Ao, A ,A„ a j o2’ 8’ 12’ 13 <5 7 1 o i 3 5 7 p 11 1 3
A , A , A , A a a_ a A , A„ ,A .A„ a a , _ > a ,i' s> ’ 12 13 <S 4 i 5 7 p 12 is
A ,A ,A ,A a a a A , A A A o a , 4 , a_i' 2 a is a 7 1 2 4 5 f © 13 1 o ii id
A .A ,A .A a a a A , A , A a , a4 , zi' 2 ' a ' p <5 7 1 3 3 5 © 1 o 11 1;
A , A A , A a a a A , A , A , A a y a j ai’ 2 4* 11 <5 8 p 2 5 ci 0 1 o 12 IS
A .A .A .A a a a A , A , A , A a , a, ,2'-i'll' 13 <5 e 1 o i 5 <5 7 ii 12 IS

The display shows that every set of three 
elements can be detected by a unique set of subsets. 
For example, if {a^a^a^} is the unknown set of
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elements, then we determine subsets amongst
A . A ...... A,a which contain a , a_ and a . The1 Z  13 X 5 11

intersection of these subsets gives the identity of 
the three unknown elements. In this case, the 
subsets which contain a ,a and a are A ,A ,A , 
and A,„. The intersection of these subsets A ,A ,

12 ’ 3 <5

A? and Aj2 gives the identities of the elements.
{ a , a , a }

1 5  11 JThat is, A3 n n A7 n \ 2 -

We can further characterise this arrangement in 
terms of the incidence matrix of the search design.

H =

5 is an m x n matr ix H = ( (n»-j)), where;

r 1 if a. € A , i = 1,2,.. • • • , rn
n — J
1 j l 0 if at Aj , 3 COT—4II . . , n ,

In the above example, we therefore have :

a
( 1 a2 a3 a4 &5 a a<5 p a a a a a p i o li a a12 1 3 x

Ai 0 0 1 0 1 1 1 1 1 0 1 1 1
A2 1 0 0 1 0 1 1 1 1 1 0 1 1
A3 1 1 0 0 1 0 1 1 1 1 1 1 1
A4 1 1 1 0 0 1 0 1 1 1 1 1 0
A5 0 1 1 1 0 0 1 0 1 1 1 1 1
Ao 1 0 1 i 1 0 0 1 1 0 1 1 1 1
A? 1 1 0 i 1 1 0 0 1 1 1 1 1
A8 1 1 1w 0 1 1 1 0 0 1 0 1 1
Ap 1 1 1 l 0 1 1 1 0 0 1 0 3
A,o 1 1 1 l 1 0 1 1 1 0 0 1 0
A11 0 1 1 l 1 1 0 1 1 1 0 0 1
a,2 1 0 1 l 1 1 1 0 1 1 1 0 0
A 1 3 0k. 1 0 l 1 1 1 1 0 1 1 1 0 J

(4.27)
From this matrix, we notice that every element
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of the set S appears in nine subsets, every pair
of elements appears in six subsets, any three
elements appear in four subsets and any four
elements appear in at most three subsets N o w, for
any three elements to be uniquely detectable, the 
number of subsets in which they appear must be 
strictly more than the number of subsets in which 
any four elements appear. This is because if ■ the 
number of subsets in which any three elements appear 
is the same as the number of subsets in which any 
four elements appear, then the intersection of these 
subsets will consist of four elements, not three as 
required for correct-identificat ion of the unknown
three elements. This requirement is satisfied i n
this example, so any three unknown elements can b e
uniquely detected.

Suppose N = ((n ) ) , t - l , w , . .. . ,m,j — 1,2,.
....,n is the incidence matrix of a search
design {A{ , A? ,..... ,A ;S } consm  n i s t i n g of m
subsets A ,A ,.......1 2 . , A of 4 hC- £ •m 5 . Letn the
elements in A correspond to 'hol ies of Is i n
the v-th row of the incidence r:atri>; N and T. bej a

9
set consisting of all the subsets A.'s which are
not incident with the j-th element, a «= S . Thatj n
is, T. corresponds to the entries 0's in the j-th 
column of the matrix N. For example in the incidence 
matrix (4.27) of a 3-complete search design given in
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Section 4.5 of this Chapter

T {A , A , A , A } .
1 5 ' 11 '  1 3 J

The following theorem 
sufficient condition for 
t-complete search design in

gives a necessary and
the existence of a
terms of T.'s.

j

.Theorem 4.8:- A necessary and sufficient 
condition for the existence of a t-complete search 
design (A ,A ,.....,A ; S } for detecting an

1 z m  n

arbitrary set {ai,a2>.....,at) of t distinct
unknown elements in S is thatn

t
T, $ U T .k t

i  =  l

Proof.

Let the system {A ,A ...... A ;Sn} be a1 2  m U
t-complete search design. Then, consider two sets of
elements {a ,a ..... ,a } and {a ,a ,..,a }.

li 12 vt J1 J2 Jt
Since (Ai,A2,...................... ,Am; Sn> is a
t-complete search design there exist subsets
Ah , Ah .......... Ah , {hi, h2,..... tw) c { 1,2 , . . , m}

t 2 i
such that {*a , a ..... , a } e A, for q =

v v 1 h1 2  t a

1,2, .
t

,1 and n Ah = ’a. >---.â  } . That

is, the
9 = 1 9

subsets A, , A, ,.n n

1 2

....* v are incident

with each
1 2

of the points a ,
i

z

\  • 2 t
But from the definition of T . we know that T C

j j
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is a set consisting of all the subsets 
are incident with the jth element, and so

c c c

A's which

(4.28)

That is, the subsets Ah , Ah ........,A which
i 2 t

detect the set , â  } of unknown elements
1 2 l

are given by;

n tk = l k (4.29)

Similarly, the subsets A.,,A.,,n n1 2 , A, , which

detect the set {a ...... ,a } of unknown
JtJi J2

elements are given by;

t c
n Ta .

r = l  r
(4.30)

Now, since {A ,A , ....,A ;S } is a t-complete searchi / in [(
design

n Ak = {a, ,a ...0=1 Q l  V.1 2 . . }t

and

r
n * ~ { ia, >. •

9= 1 9 1 2
> } > V * j

and so

l l'
n \  * n Ah. .

9 = 1 9 9= 1 9
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That is,

n t' * n t
k =  1 k r = l

which implies that

(4.31)

1 1 ,U T. $ U Tj vr = 1 k = l (4.32)

Inparticular, if the pair of sets are

£. ....... a,J2 l
and (â  , a a 

1 2 ■i •a,} t-l l
then (4.32) reduces to:

t -1 t
U T U T t U T

l  J  V
r =  1 r l k = l  k

which implies that

T $ U T .
Jt k * .  'k

(4.33)

Conversely, suppose that T $ U T , then wej i
t k n  k

have to show that the system (A , A A ;S ) is a

t-complete search design. That is, for a n y  se*
(a , a } of unknown e 2 erne: ts there

1 2  t

subsets A , A ..... . A } , {<x . a ....., a } c•OC CX OC *■ 1 , 2 T J1 2  T
(1,2,....,m) such that;

( a ^  , a .  , . . . , a t }  c  A w  f o r  r
1 2  t r

1 9

n Aa ; <ai • • •
r = l • * « i  >T

a n d
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t
Now, T. $ U T , implies that

Jt k = l Vk
t t
U T £ U T. (4.34)
r=l V k=l k

for other sets T. ,T. ........,T , which in turnj j j1 2 l-l
implies that ,

t i
n $ n T<T . (4.35)k= l k r=l J r

1 C

But, n Ttk =  1
gives

k
subsets of Sn ’ which are incident

with the points K  - a . • • • 1 2 >ai 3 t
, say Aa. , A^ , . . , 

1 2
A .

CX
T

Thus , for any set of t elements say

K i■ai > ■ 2 ••a, 3t
there exists subsets of V say

Ac -l
A , .CX2 •>A« 3 T

such that (a , a. ,..,a }V L X.1 2  t
c A ,CX

r

for r = 1 , 2 ,  . ....,t . To complete the proof we
show that

T
n Aa - -a. ..... a, ) •

r =  l  r  1 2  t

Now, suppose that
T
n Aa  ̂ {a. ’ a. ------3 •r = ) r 1 2  l

That is, p| A = 0 or a set consisting of one or
r  =  1 ,  r

more elements of the set {a ,a a } or a
1 2  t

set consisting of the set (a ,a ......,a } and
1 2  t

T ? <
some other element(s). Now, p) Aa cannot be an

r  =  l  r

empty set or a set consisting of one or more 
elements of the set (a ,a  ..... ,a } since

V  \ V1 2  t
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<a. -a. >1 2 A^ , r = 1,2,...
r

T

Thus,

possibility that p)
r = l

AOCr
is a

, â  a } and
l2 ll some other

element(s). To investigate this possibility we let 
{ a. , a( , . . . , a. , a. } c A/

That is.
X. l1 2 \ \ OC

{a, ’a, ....a. >aj  ̂ A
1 2  t - l  Jt r

r = 1,2 , T

and so

{A„ .A* ,..,Aa }
1 2  T

is a subset of the set of subsets which arc incident 
with â  , â  , . . , â  ,a . This set of subsets which

1 2 t - l  Jt

incident with a , a ,. . , a

mc
i  i  1 2 t--

„ aT n Tt n  ■ • ■ •• n  Li 2 t -

Thus,

(A ,L OC1
A , . .OC2

..,Aa }
T

t

= n  tr = l
t-iC  _ mc

This contradicts (4.34), hence n A is not & set1 1 Ok

scr c ci he rconsisting of a ,a ..... ,a
C V V.1 2  t

r  =  l  r

and

element(s). We therefore, conclude that
T

f! Aoc - {â  , â  , . . , â  } which completes the poof /
1 2

C o r o l l a r y  4 . 2 : -  Let the cardinality of the set 

^  - l,2,....,n) be tp 4 l where t and p are
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positive integers, and let the cardinality of the 
intersection of any two sets T. and T, i * } be
equal to or less than P • Then the system
(Ai> \ , Ag , . .• .>A ;S } is am n t-complete search design.

P r o o f  •

We are given that for any distinct indices i
and j ItL n t | < P, where I| denotes the

cardinality of the set concerned. 
That is,

Tj fl T I < p, for k r 1,2, . . ,t.1 k 1
Then,

l(T> n \ ) u(Ti n tJ u  ...ujr n t.J| < tP.

That is,

t n f u  t )| < tP .
k = 1 I

But

= tp 4 or 5 = 1,2,...,t

Therefore,

Tj * U T, ■ for k - 1,2___t.k - 1 'k
Thus, from Theorem (4.8) and relation (4.33), the
system {A , A a . ei V  IS a t-complete search
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design.

Example  4-. 7:- Consider the BIB design
(16,4,4, 20,1) whose blocks are given as follows:

Bi = (4, 13 ,8,11} B = 11 {6,15,7,10}

B* = {7,1,11,14} B = 1 2 {9,3,10,13}

B
3

ii i—
i o V—» >—> B =

1 3
{12,4,13,1}

B
4

- {13,7,2,5} B =
1 4

{15,9,1,4}

B5 = {1,10,5,8} Bi z> {3,12,4,7}

Bo = {5,14,9,12} B
i  6

{16,1,2,3}

B7 = {8,2,12,15} B =1 7 {16,4,5,6}

B8 - {11,5,15,13} B,„ = {16,7,8,9}

Bp = {14,8,3,6} B,* = {16,10,11,12}

6io = {2,11,6,9} B2o = {16,13,14,15}

If we let the j - t h  block B̂ to correspond to

the set T ei.o the points in the blocks to

correrp: ic t c J ’• i t u b s e t s A »A.V S SUCh the point j
c o r r esponds to the subset

t»
A ,j then we ha ve :

T =i < V A, . ' V A«> = {A , A  , A , A }1 1 lO 5 8

T - 2 { A 7 , A 4 , A t i , A 1 4 } = {A , A , A , A o }1 3 ' 14 P  12 J

T -3 t\o 'A4'A,4'V -  < V A2, A , A  }
* 12 * 13 J

T =4 { \ . ' W V T b = < V A5A A , A }» is 13
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T P  = , A a ' A 3 ’ A 0 ^ T15

T =lO {V A, . - W T
1 <5 = Â>a'Al’A2'A35

T =  
i  i  ̂A<s ’ A15 '  A7 ’ Al0) T17 =  ^ l d ' A 4 , A 5 ’ A S ^

T =  12 { V \ ' A w V .
T18 =  {Ao,A7,A8.Ap}

T =
1 3 <A« - W V T =

i p : { A . « ' A . o ' A t l ’ A 1 2 >

T =
1 4 < A , =  ’ V W

T20 =  < A , B * A „ * A 1 4 . A 1 B >

Now, the cardinality of the sets 

Tj 0  = 1,2,..., 20) is four and the cardinality of 

the intersection of any two sets T and T1 j
(l * j) is at most one. Thus, using corollary 4.2,

the system { A ^ , ..... ,Altf; S2Q} is a 3-Complete

search design.

From our definition of the set given earlier, 

as a set consisting of all the subsets A.'s which 

are not incident with the j-th element, a of S
J 2 0  ’

we see that the subsets A A ,A , A, , for example 

are not incident with aj and , A2 , Aa , A< , A ,

A<5jA7^A8 ,Ap ,Aio,Ai2,Ai4 ,A1 5 'A1<3  ̂ £ ives subsets which 
are incident with a.̂ . Using the information

provided by ^ ,T2, . . . ,T2Q. we get subsets 

A .A A,^ as follows:1  ̂ lO

A1 " ( a i ' a3 , a 4 ’ a£ l ' S ' a8 ' a s > ' a i o ’ a i l ' a i 2 '  a !5 '  a !7 '
a „ , a , a }

10 I P  1 2 0  J
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A2 = < W W W a.i'«lu'ai9*\«*»19-
a , a .a }

17 I B  2 0  J

- { ai, a2 , a3 , a4 , a5 , â  , a.̂,, aiQ , an , ajg , ai4 , a£? ,

a .a , a }
IB  I P  2 0  J

- {a2 . a , , ^  , ap , a? , 8e , a o , a ( , aj2 , al<#, alB ,

I
I

%
■t

a

a , a }
I P  20  J

A5 = {al,a2,a3,a7,ap,ajo,aii,al2,ai3,at4<ai=,

a , a , a , a }IP IB IP 20

' a  '  { V  V  V V V V  V V a i 2 ' a i 9 a , « ' a i S '

a , a , a , a }
1<5 3 18 * I P  ’  2 0  J

7̂ * a i  '  S  '  %  ’  a <5 '  %  '  %  * a i P  '  a i2  '  a i3  '  a i4  '  &1<5 '

a . a , a }
17 I P  2 0

A 8 ^ a 2 '  a 3 '  a 4  '  a <5 * S  '  a 0 '  a i O  '  a i l  '  a i 2  * &13 '  * 1 *  '

a , a , a , a }
1<5 * 17 I P  2 0  J

A p { a± , a2 , a3 > a4 , a5 , a? , a (* ap, a41, aig , aj& , ss

a , a  , a  }
17 I P  2 0

A l O   ̂ a i  '  3 2 '  a 4  '  &P  * a 7 '  a 8 '  a p  '  * 1 0  '  * 1 3  '  S i 4  '  5  '

a , a , a , a }
I P  * 17 * 18 2 0  J

A = {a. a, a. a, a, a, a , a .a ,a .a .
11 *■ 3 '  4  '  5  '  P  7 * P  '  11 '  12 J 13 ’  14 '  15  '

- / <■' —

a , a , a , a }
I P  * 17  I B  * 2 .0  J
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A 12 =  (  a i  > a 2 > a 3  * &4  '  S 5 '  %  '  a p  '  a i O  '  a i i  '  a i 2  '  &14 '

a i<3 * a i 7  * a i 8  * a 2 0  ^

A 13 =  ^ a 2 '  a 3 '  \  > S <5 '  ^7  '  &P  ' a i O  '  a i l  '  a i 4  '  &15  '  &1<5 '

&17 * a i 8  * a i P  ^

A 14 =  (  a i  > a 4 > a 5  > S  '  R8 '  a i O  '  a i l  '  a i 2  '  a i 3  '  &15  '  \ < S  *

a i 7 ' a 1 B ^ a i P }

A15 = { at , a2 , a3 > a4 i , a0 , aio > a12 > a13 ' al4t *

a i 5  ’  S i<5 * a i 7  * a i 8  * S 1 P  ^

A i  <5 =  ( v v  v a 4 > v v

a i 3 ^ a i 4 ^ a i 5 }

The incidence matrix of this design is;

r ai a2 a3 a4 a5 a<5 3  7 a8
Ai i 0 1 1 0 1 1 1

A2 i 1 0 0 1 1 0 1

A3 i 1 1 1 1 1 1 0

A4 0 1 0 1 1 1 1 1

A5 i 1 1 0 0 0 1 0

A<5 i 1 1 1 1 1 1 1

A7 i 0 1 0 1 1 1 0

A8 0 1 1 1 0 1 1 1

Ap 1 1 1 1 1 0 1 1

Aio 1 1 0 1 0 1 1 1

Aii 0 0 1 1 1 1 0 1

A1 2 1 1 1 1 1 T3 0 1
A13 0 1 1 0 1 1 1 1
A14 1 0 0 1 1 0 1 1
A13 1 1 1 1 1 1 0 0
A1<5 1 1 1 1 1 1 1 1

p a
I O
ai i a1 2a13

a1 4a 15 a1 <5a17 a 18 a ai p 20

1 1 1 1 0 0 1 0 i 1 1 1
1 0 1 1 1 1 1 0 1 1 1 1
0 1 1 0 1 1 0 0 1 1 1 1
1 1 1 1 0 0 0 1 0 1 1 1i
1 1 1 1 1 1 1 1 0 1 ',1 1
0 0 0 1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 0 1 1 0 1 i

0 1 1 1 1 1 0 1 1 0 1 i

1 0 1 0 1 0 1 1 1 0 1

1 0 0 1 1 1 1 1 1 1 0 X

0 1 1 1 1 1 1 1 1 1 0 l

1 1 1 1 0 1 0 1 1 3 0 1

1 1 1 0 0 1 1 1I 1 1 1 i

0 1 1 1 1 1 1 1 1 1 1 D

1 1 0 1 1 0 1 1 1 1 1 0̂
/ <21 1 1 1 1 1 1 0 0 0 0 b

This 3-complete search design can detect any
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three unknown elements, 
are the three unknown 
elements are detected 

That is , A2 n A7 n Ap n Aj2

For example if a ,a .a
1 3 P

elements, then these
by A2,A7,Ap ,Ai2,Ai5,Ai<5.

n *15 n A,
t < 5 { W V -

v'..
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CHAPTER 5

DURATION OF THE SEARCH PROCESS FOR DETECTING TWO 

UNKNOWN ELEMENTS

5.1 INTRODUCTION.
In this chapter we are interested in the duration

of the search process for detecting two unknown
elements using the subsets A ,A ,..,A of a finite1 2  m
set defined in Section 4.1 of Chapter 4. In the 
computation of the duration of the search process we 
will use the notations introduced in Chapter 1. That
is, we shall use Pi(N,u,v) to denote
the probability that the sequence
A , Al X. 1

, . . , A^, , . • , A^, A^, . .
1 1 2  2 3 - V  • •3 ' Ai.> • • » A k k

determines

two unknown elements (u, v) within N steps and
P1< N , u Jv )  to denote the probability that the 
process for detecting the two unknown elements 
terminates at exactly the Nth step.

The formula for computing the duration of the 
search process for detecting two unknown elements is

oo
Ea( u , v ) = £N.pl(N,u,v). c.f(l.lO)

N  = 0  *

*
5. 2 SOME EXAMPLES.

Exam p le  5.1^“ In this example we illustrate 
the computation of the duration of the search 
process using a 2-Complete search design.

Now,consider the 2-Complete search design of
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Example 4.1 in Section 4.1 of Chapter 4. The
conf iguration of the subsets A1#A ,...,A7 of this
2-complete search design is

A, = < V W a7}'
A = {a .a .a .a },

2 L 2 3 <5 7 J '

A = {a .a .a .a },
3 2 3 4 5  J

A = {a.a.a.a},
4 1 3 5  7 J

A = {a ,a .a .a },
5 L i  3 A  <5 J '

A = {a.a.a.a },
<3 i  2 4 7 J

A = {a.a.a.a },
7 i  2 5  a  J

The incidence matrix of this design is;

M =

a a a a a a a
s  l  2 3 4  5  <5 7

A. [0 0 0 1 1 1 1
0 1 1 0  0 1 1  
0 1 1 1 1 0  0 
1 0  1 0  1 0  1 
1 0  1 1 0  1 0  
1 1 0  1 0  0 1 

A^^l  1 0 0  1 1 0

Suppose the unknown pair of elements we wish to 
detect is (ai,a?), then since { ,  Az, . . , A7; S?} is a 
2-complete search design, we determine subsets of S

7

a m o n g s t  , A 2 , . . . , A ? which contain the pair ( a  , az ). 
The intersection of these subsets gives the identity

9

of the unknown pair. In this example, the subsets 
which contain (a ,a ) are A and A with

1 2  <5 7

A p) A„ = (a, , a,}. Thus, the unknown pair of
elements (a ,a ) would be detected if and only if 
the subsets A and A„ are selected. It therefore 
follows that the pair (a , a2) cannot be detected in



one step. That is, the process of search cannot
terminate at N = 1.

The process of search will terminate at N = 2,
if the following sequences occur;

V A7 0 r  A7 ' A0 -

Thus, the probability of terminating the search 
process after selection of two subsets is

PJ(X,U,V) = i . y + J . y

49
The search process will terminate at N = 3 if the
following sequences occur:

Sequences Number of possibl 1e wa ys
A , A , A 1 X 1 X 1 = 1a’ 7A, .A 1 X 1 X 1 = 1
A , A , A 5 x 1 X 1 = 5
Av Â7>Ac5 5 x 1 X 1 = 5
A<3' A t > A 1 X 5 X 1 = 5

1 X 5 X 1 = 5

where = 1,2,3,4,5. The probability of terminating 
the search process at N = 3 is, therefore,

p (3,u,v) = 22

and the probability of terminating search process at
N < 3 is

Pi(,3 , u , v) = 222 +?2 y3
36

For higher values of N, we consider the
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complementary event; that is, the event that the 
search process does not terminate in N steps and use 
Lemma 3.5 which gives the number of ways of placing 
N balls in m cells such that all the m cells are
occupied as

E (-1)“ [”](m-k)N.
*

The search process will terminate in N steps if and 
only if the subsets A^ and A are both selected. 
Thus the search process will not terminate in N 
steps if any of the following sequences occur:

Only one subset Ai is selected N times; in
that case there are 7 sequences.These
sequence are :
A , A , .i i ......- V az,az,. . . .—  - a2 :
W - ......-AS > a4,a4, . . .....* A«'
w ......-A= ; a<5,a<j’ • • •.....A^
A7,A7>........ A7 •

(ii) Two subsets Â  and A^ are selected x and 
x times respectively, where x + x = N; 
i e {6,7} and « e {1,2,3,4,5}. Using the
formula above, the number of such sequences 
is
' 2 x 5(2n- 2) = 10(2n- 2).

(iii) Two subsets A^ and A^ are selected x̂  and 
xz times respectively, where xt + x2 = N;
and ex,/? e {1,2,3,4,5}, cx * (3. Number of"
such sequences is
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( | ] ( 2N -  2 ) = 10( 2n - 2 ) .

(iv) Three subsets Aa,A^ and A. are selected

V  X2 and X3 t imes respectively, where

\  + X2 + X3 = H; oc,{3 e {1,2,3, 4,5};
oc x (3 and i € {6, 7}. Number of such
sequences is

[2) • (i)(3n -3.2n+3) = 20(3n-3.2n +3).

(v) Three subsets Â , and Ax are selected 

xijX2 and x 3 times respectively, where

xi + x2 + xa = N; € {1,2,3,4,5};
<x x (3 x \ . Number of such sequences is

[3]  .(3N-3.2N+3) = 10(3N-3.2N +3).

(vi) Four subsets Â , A^, A^ and A^ are selected 

xi,X2,xa and X4 respectively, where
xi + x2+ x3+ x4= N: oc, (3, \ } r €
{1,2,3,4,5}; <x x (3 x \ x y . Number of such 
sequences is

[4] <4*- 4.3N+ 6.2N- 4)

= 5(4N- 4.3N+ 6.2N- 4).

(vii) Four subsets Â , A^, A^ and A. are selected
X , X , X X 2 * 3 and x4 times respectively, where
X + X + 1 2 X + X = 3 4 N; o c {1,2,3,4,5} . ex X

(3 x \ and t € {6,7}. Number of such
sequences is

(4N-4.3N+6.2N-4) t 4 '
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= 20(4n -4.3n+6.2n-4).

(viii) Five subsets . A2, As,A4and As are selected

W V X, and x5 ti®es respectively where
xt+ x2+ x9+ x«+ x5 = N; the nunber of such
sequences is

[5](5N-5.4n +10.3n -!0.2n+5)

= (5n -5.4n+10.3n -10.2n+5).

(ix) Five subsets Aw , kft, Ax, A and Â  are
selected x,'x2'x3>x4 end times

N

x + X + x + X + X1 2 9 4 5 = N;
5, } oc fi * \ * Y and
f such sequences is

N+10.3n+10.2N + 5)

.4N+10.3N-10.2N+5) •

A ,A , and A3 4 3 i are
x .x_ and x4 3 (J times
X + X + X + X + X +x 1 2 3 4 5 <5 = N;

selected

and v e {6,7}. Number of such sequences is

(6N- 6.5*+ 15.4n

- 20.3N+ 15.2N- 6) 

= 2(6N-6.5N+ 15.4N

- 20.3N+ 15.2N- 6).

Therefore, the probability of terminating the search
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process in at most N steps is

P4< N , u , v) l-[7 + 20(2n- 2) + 30(3n- 3.2n+ 3)

+ 25(4*- 4.3n + 6.2n- 4)
+ 11(5n-5.4n + 10.3n - 10.2n + 5) 
+ 2(6n - 6.5k + 15.4n - 20.3n

And the probability of terminating the search 
process in exactly N steps is

P1( N , u , v ) = Pt(N,u,v) - Pt(N - 1, u , v )

■  [ - ( « " *  ( ? n  -  [ - ( « “ *■ '

■ H T '  - ? R T -

The expected number of tests required to detect the
pair of unknown elements is

00

E! ( U , V ) = £ N.pi(N,u,v)
N  = 1

= y x 147/4 
= 10.5.

00

E N.
N = 0

N - i

]

Thus, to detect a pair of unknown elements (u,v) 
Sn an average of 10.5 tests would be required.

of

*
Exam p le  5.2:- In this example we illustrate 

the computation of the duration of the search
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process using partition search design.
Now, consider the partition search design of

Example 4.2 in Section 4.1 of Chapter 4. The
conf iguration of the subsets A ,A , 1 * 2* ..... .A„ of this
partition search design is

A = (ai L i'a2’V a4}> A2 = {a='a« 'S7’V ’
A3 = {a '®2 ' a7 ' aS}, A« = {a3'a4 ' V '
As z K ' 8= ' a7}/ A<5 = {a2’a4 'a«5,a8}.

incidence matrix of this design is

a a a a a a a ai 2 3 4 5 a 7 8>1Ai 1 1 1 1 0 0 0 0
A2 0 0 0 0 1 1 1 1
A 1 1 0 0 0 1 1 1

H = A34 0 0 1 1 1 1 0 0
t

A5 1 0 1 0 1 0 1 0
A .o 0 1 0 1 0 1 0 1 .

Suppose the unknown pair of elements we are to 
detect is (a .a,). Then since (A ,A , A . A , A, , A ;S }

1 £ 1 2 3 4 D <5 8

is a partition search design, we determine two
disjoint subsets A and A such that a e1 4

A and
i 2 i

a„ e A . In this case,2 v * 2 the two disjoint subsets

are A and A . That is, a A , a1 5 2 A and<5
A n A = 0. The unknown* * O pair of elements ( a , a )
would then be'separated if and only if the subsets

and a^ are selected. It therefore, follows that
the pair (ai,a2) cannot be separated in one step.

/That is, the process of search cannot terminate at
N = 1.



1 31

The process of search will terminate at N = 2,
if the following sequences occur

AS'A0 or W

Thus, the probability of terminating the search 
process after selection of two subsets is

Pi(2,4.v) = t g * 0  + | x |

-" 36
The search process will terminate at N = 3 if

any of the following sequences occur
Sequences Number of possible ways

1 
1

x
x
X
X
X
X

X
X
X
X
X
X

where i = 1,2,3,4. The probability of terminating 
the search process at N = 3 is therefore,

P (3,u,v) =
1 63

and the probability of terminating search process at 
N < 3 is

P4( 3 , u , v)

For higher values of N, 
complementary events; that is, the 
search process does not terminate

we consider the/
event that the
in N steps. We



will use Lemma 3.5 to get the number of sequences of 
length N which do not detect the unknown pair of 
elements.

The search process will not terminate in N steps 
if subsets A and A are both not selected. Thus,5 <5

the search process will not terminate in N steps if 
any of the following sequences occur:

(i) Only one distinct subsets Â  is selected N 
times; in that case there are 6 sequences. 
These sequences are:

A , A , . . . i ' i ....- V a2,a2,... • • ' ,A2 -

A3,A3>... ....- V a4,a4>... ....a;.

A<s' A,,* • •......V A .A . . . .<5 O ,...,A0.

Two subsets A and Av oc are selected x andi
x times 2 respectively, where x
v e {5,6} and ex «= {1,2,3,4}. Possible
number of such sequences is

0 - G K - 2) - 8(2N- 2).

Iwc subsets A and<X A^ are selected x̂

f-nc x2 times respectively, where

\  + x2 = N; v ^ {5,6} and <x,ft <e {1,2,3,4}.
PPossible number of such sequences is

|̂2j (2n- 2) = 6<2n- 2).
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(iv) Three subsets A^, A^ and A^ are selected 
x4,x2 and xg times respectively, where

xi+x2 + x 3 = N; °^>x € (1,2,3,4}. Possible
number of such sequences is

[ g j ( 3 N- 3 . 2 N+3)  = 4 ( 3 n- 3 . 2 n+ 3 ) .

(v) Three subsets A^A^ and Â  are selected 
xt>x2 and xg times respectively, where
Xt + x2 + x3= N; oc./? e {1,2,3,4} and
i e (5,6). Possible number of such 
sequences is

[g) [i]<3N-3.2N4 3) = 12(3N- 3.2N+ 3).

(vi) Four subsets Aa,A^,A^ and A are selected 

xi'X2,X3' and x̂  times respectively, where 
XA+ x2+ x3+ x4 = N; and oc,f3}\,r e
(1,2,3,4}. Possible number of such 
sequences is

(4N_ 4.3N+ 6.2N-4)

=(4N- 4.3N+ 6.2N- 4).

(vii) Fourr subsets Aa,A^,A^ and are selected 
x ,x ,x , and times respectively, where1 Z 3 4

Xl+ X2+ X3+ X4 = N; and X> €
(1,2,3,4} and v € {5,6}. Possible numbers'., 
of such sequences is
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E K l ) * 4” '  4 . 3n+6 .2n- 4 ) .

= 8 (4N- 4 .3N+ 6.2N- 4 ) .

(viii) Five subsets A1#A2,A3,A4 and Av are 
selected find times

respectively, where x1+x2+x3+x4 + x5 = N; 
and v e {,5,6}. Possible number of 
such sequences is

C!][l}(5N~ 5'4" + 10-3N- 10.2n+ 5)

= 2(5N-5.4N + 10.3N- 10.2n+ 5).

Therefore, the probability of terminating the search 
process in at most N steps is

Pt(N,u ,v) = 1 -^6 + 14(2*- 2) + 16(3N- 3.2N+3 )

+ 9(4*- 4.3*+ 6.2N- 4)

+ 2(5N- 5.4*+ 10.3*- 10. 2n + 5)J

* - (§)"* (i)"'

and the probability of terminating the search
process in exactly N steps is

Pt(N,u, v) = P±(N , u , v) - P,(N - 1,u,v)

■  M i r  *  u n - H u n  » n

5  I f f

N - l N - l

]•



The expected number of tests required to separate 
the two unknown elements into two disjoint subsets 
is

00
E4(u ,v = E N.Pl(N,u,v) c . f (1.7)

N=0

= | x 27 = 9.0 .

Thus, to separate the two unknown elements (a ,a )1 * 2
into two disjoint subsets, an average of 9.0 tests 
would be required.

5.3 DURATION OF THE SEARCH PROCESS.
In Section 5.2 above we have seen two examples 

dealing with the computation of the duration of the 
search process for detecting two unknown elements 
using a 2-complete search design and duration of the 
search process for separating the two unknown 
elements into two disjoints subsets using a 
partition search design. In this Section we look at 
this problem in general.

Theorem 5.1: Let Pr be the probability that r 
subsets Â  , ..........,Â  selected from the set

1 2  ' r

(A ,A .........,A } will detect the unknown elementsl  z m

(u,v) e S , in N or less steps. Then
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Proof.

The search process will terminate in N or less
steps if all the subsets , A. , A. , . . .i t 1 2

• A r
which

detect the unknown pair of elements, (u, v) are
selected from the subsets A 4,A z A m . That is,
if we select one or two or three or ... or (m-2) or
(m-1) subsets from A , A , * 2,...,A , whichm do not
include all the subsets * ’ ' * * } 

1 2  r
then the

unknown pair of elements will not be detected.
Possible number of ways of selecting the subsets 
which do not detect the unknown elements in N steps, 
that is, under the sequences of one or two or
three or............(m - 1) subsets of length N,
which do not include all the subsets A ,A ,...,Ai t t1 2  r

obtained by applying Lemma 3.5 to be as follows

( v )  [ 0 * 0 i 2 " - 2 > *  [ i ]
|(3N- 3.2N+ 3) +  ...

+ [r-l] [<r_1)N ' <r-D(r-2)N+. . .. +  < r-l j

(v ) [ ( ; m ; k - 2> *  0 (3N-3.2N+ 3) +  ---

f ' ' ' N  . . . N  
H | i_r - r < r - l )  + 0 < - 2 > " - r ) ]

+ [ “  ~r ] [ [ ^ j ( 2 N- 2 )  + ( i ) ( 3 N - 3 . 2 N+3)

+ [| }<4N- 4 . 3 N+ 6 . 2 N- 4 )  +, . . .

+ [r^j [<r + l)N- (r+l)rN + ---+ (r + 1)]1 f <
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+.... + [m-r] [(oj (m-r)(m-r-l)N+...

+ (n-r)J + [i] [(m-r+l)N- (m-r+l)(m-r)N +

....... + (n-r+l)l +.......

+ (r-l)((”'1>N* (n"l)(in-2)N+ . . . .+

The coefficient of (m - 1)N is

■ *>

the coefficient of (m - 2)N iis

(t : 2] *

2(m-l)+ r(r-l) (m-rW 
2

r(r-l)
2

■ - R ) ‘

the coefficient of (m - 3 )N is

C  W  [ V ]  •

= U )

■

and in general, the coefficient of <m-0N is



C-ir* It then follows that,

P / ,  X N<m-l) + (j]<n-2>N- [gj(m-3)N+

± ( r ) (,n- r  >” ] / < ”

= E (-1)1i. =o

as requ ired .

C o r o l l a r y  5.1: Let Pr be the probability that r 
subsets A .A ,..,A. selected from the collectionl l v

1 2  r
{A , A ......,A } will detect the unknown elements1 2  m
(u,v) in exactly N steps. Then

/
L (-1)V+1i =i m

N - l

Proof.

From Theorem 5.1

P r = F t ( N , u , v  ) = 1 - to  t ^ r *  ®  s a " -

and
t  ( ; )  s i

- ( ; ) s T " * e ) s a “" - [ r ‘

N

P a( N - i , u ; v ) =

t  ( : ) ( “ ) ”" ■
/  4‘ \



T r . e r e f  o r e ,

Pr = P/N.u.v) - P4(H-1,u ,v )

■ C 3 M “ - G 1 P ^ '

i ( ; ) ( ¥ ) ”] - [■ - ( ; ) ( ^ )
N - l

3  ( I H 4 2 )

N  - 1

+ . . .

0  ( = ? ) " " ]

N  - 1

■ O f t 1) [ ‘ - * 5 * )

* 0  ( ¥ ) " " ( ¥  - )

• 0 M  ( ‘ - ^ )

* ..... ! ( 3 P r f >  = ? )

■  i t o M ”  .i 0 m " ~ ‘

• iii''"-3— ■* i p u — imj - in [r J [ n J
N - 1

r  r  ^  r  n  N _ 1

= L * ' 1’" i O P ? )  ■

Theorem 5.2: If r subsets A , A. ......,Ai t1 2
selected from the collection {A ,A ........,A } are1 2  m
required to detect the unknown pair of elements,
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then the expected duration of the search process 
E,(u,v) is given by

E,(u,v) = Z (-l)Ul 
i =1

n
i

Proof.

From corollary 5.1> the probability that the process 
of search terminate in exactly N steps is given by

*  I K )  f t 3
N — 1

Bu t
00

u , v ) = £  N P1(N, u , v )
N=0
00

C . f ( 1 . 1 0 )

= E N p
N = 0

CD

1 6  ) £ ■ • (  v y N=1 ^

+ ...
- N - N=1

. fr 1 “ 2 + 3 frK 212J2 + m 13 J32

.....+ if- mfrjr

N — 1

N — 1

= E ( -D
i =1 (r)f

as required .
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Example 5.3.— Consider a partition search design 
{A ,A A ;S }.To separete two unknown elements1 2  rn n

(u,v) using this design we determine two disjoint 
subsets A and A. such that u e A. and v

V V V1 2  1

e A . The two unknown elements u and v are theni2
separately identified from A and A respectively.

1 2

Thus, to separate the two unknown elements only two 
subsets A. and A are required. That is, r = 2i t1 2

The probability that the subsets A and A
V L1 2

separate the unknown elements (u,v) e Sn in N or 
less steps is, therefore

= 1 - 2 P S "  * P S " ;

the probability that the subsets A and A
i 2

separate the unknown pair of elements in exactly N 
steps is

- .  ■  f [ P S " ' “- P S " 1

and the expected duration of the search process is

Ei(u'v) r i

Remarks: Any strategy for detecting unknown elements 
will only be economical if the expected number of 
tests requirec for the identification is less than
that of the number of elements in the set S . In the

n ' <•'
of partition search design, the expectedcase
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number of test is 3ra/2, which is more than the
number of subsets m . The partition search design
will be economical if the number of elements, n, in 
the finite set is greater than 3m/2. But m=31ogzn; 
that is, n = 3"\ Thus partition search design
will be economical if n = 3m > 3m/2. This inequality 
is true for m >_ 7S That is, a partition search 
design is economical for all m >_ 7 •

The table below gives the number of elements n, 
the number of subsets m, given by the formula
m = 31oggn and the expected number of tests required
to separate any two unknown elements into two 
disjoint subsets, E (u,v) = 3m/2.

Number of elements 
n

Number of 
subsets 
= 31og m

3

The expected 
duration,E (u,v) 

= 3m/2 1
3 3 4.5
9 6 9.0
27 9 13.5
81 12 18.0
243 18 22.5
729 21 27.0
2187 24 31.5
6561 27 36.0
19683 30 40.5

Evidently, partition search design is very economical for 
large values of n .
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CHAPTER  6

SEAR C H  IN  THE P R ESEN C E  O F  N O ISE

6.1 INTRODUCTION.
In the previous chapters we considered separating 

systems for determining the identity of one unknown 
element. We also considered two different strategies, 
namely 2-complete search design and partition search 
design for determining the identities of two unknown 
elements. In all cases, we assumed that the search 
process was performed in the absence of noise. That is, 
the observed values of the functions f ,f ,...,f at 
the unknown element(s) were assumed to be free of any
error. In this Chapter, we consider again, separating
/
systems, 2-complete search and partition search designs 
except that we now assume that the search process is 
performed in the presence of noise.

For example, we are interested in problems like 
detecting an unknown element x in the set
Sn r £a, >a2>.....>an) using a binary separating system
F - {f ,f,,...., f }, whose observed values at x, may be 
in e^ror. That is, it is possible to observe f(x) as 0 
instead of the correct value 1, which leads to wrong 
identification of the unknown element(s).

Exam p le  6.1*'- Consider the set S = { a , a , . . . . , a } ,
1 2  8 /

and suppose that we wish to determine one unknown 
element x e S using three functions f ,f ,f whose8 1 2  3
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search matrix M is.

r ai a2 a3 a
4
a3 aa a

7
a8

f1 1 1 1 1 0 0 0 0
M = f2 1 1 0 0 1 1 0 0

f3 1 0 1 0 1 0 1 0

The functions form a separating system
since the columns of the matrix M are distinct.

Let the unknown element x be a^. Then by observing 
at x we obtain subsets A = (a ,a ,a ,a }

i  1 2  3 4 J

A2 = (at, a2 , a5, â } and Ag = (â  a3>a5>a7} respectively,
with

AiH A2n a3 = {&1 >.

Suppose f2(x) is in error. That is, it is observed as 0 

instead of the correct value 3. Th-v ; the sutset

A 2 = ^ a 3 *a4 > a7 > aQ} would be specified by this incorrect 
observation, with

A n A n A  = {a }
1* 1 2 1 1 3 L 3 J

which is wrong identification of the ur. krcwn element x.
In the next section we will cons'd^r separating 

systems which determine correctly -■ element x

in in the presence of noise .

6. a SEPARATING SYSTEMS WHICH DE L,
ELEMENT IN THE PRESENCE O F  NOISE.

In this section, we describe two 
separating systems. The first one detects an

ONE UNKNOWN

types of
error in
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the search process for one unknown element without 
correcting it. The second system detects and corrects 
the error in determining the identity of the unknown
element.

6.2.1. S i n g l e - e r r o r  d e t e c t i n g  system.

Consider the set S = {a , a ..... n L i * 2 * 11 the
system F of functions .....fm- Suppose that t he
unknown element x is searched for by obser v ing the
functions f ,f , . . successively at x. Further, let
\  -- V. — 1,2,.....m. Then the system

......t j will be single-error detecting system
if

\  n a2 n ........................... n« = u )

and

A, n a2 n — n a « n A\. - 1 11 t n Ai♦ , n •• n

i <_

Exarplpe 6.2s- Consider the set S
<5

r K
V â } and suppose the system F = (f,’f2' f3 '
the following search matrix:

a a a 8. a aa 1 2 3 4 if 1 1 1 0 0 0
H = fa 1 0  0 1 1 0

f3 0 1 0 1 0 1
f4 ^ 0 0 1 0 1 1

The functions {f , f , f «. 4 2 > 3,f4) form a separating
since the columns of the search matrix M are distinct. 
Let the unknown element x be a . Then by observing
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a  ̂ai we obtain the subsets

V  O W )  = {a^a^a,},

A2= f2"1(f2(ai>> = K ' W '

A a =  f  3  ^ f 3  ^ a t )  )  =  { a i , a 3 , a 5 } l

and

A4= f 4 1<f4<ai>) = U i,a2,a4};
with

\  n a2 n a3 n a„ = {a,},

Af n a2 n a3 n a4 = 0,

a, n n a3 n a4 = 0,

Ai n a2 n a3 n a4 = 0.

and

Ai n a2 n a3 n a4 = 0.

Thus, the system {f^.f.-f,} is a single-error 
detecting system; it will detect if any function f isl
in error.

Lemma 6.1:- Let { f , f .1 2* • • • ,f )m b e ci ! f»

functions defined on a finite set S =n { W ....... ’ V
and let A. = ft"‘(f.<x>), where x is the unknown
element in the set S . Thenn the system

------- >fJ
is a single-error detecting system if and only if
the intersection of any (m- 1) subsets’̂

V V " " ' Ai £V V ....> i m-i } c { 1 , 2 , .
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is x. That is,

\  n a . n..........  n \  = {x}.1 2 m-l

Proof.

Suppose the system (ft, f2, . . . , fm> is a single-error 
detecting system and the unknown element x is â . That 
is,

A, n a2 n.....................n = {a,>
and

A,n a2 n- • - n n........n Am = o,

for 1 < v < m .

Then, we have to prove that

a .  n A , n .................................n r { & , )  ( 6 . 1 )
1 2 m - l

where { i , i , ...... ...  i1 2  m-i }  C  { 1 , 2 , 3 , -------- > in;

Now, suppose

a ,  n  At n- • • .................................

C\)

COr̂~ss

1 2 m - 1

That is, A p) A p | ...................... ..............................n a  = 0 or a set
1 2 rrj -  j

consisting of one elemen t a ('a
j

a s e t
consisting of a , a  , . . j *  j -  

1 2J1 J2
.............. > ,

J/

......................*  *  £ or* a set consisting of a  . and some
other elements. But, A p|

a , n .................................  n A cannoti 2 rr. - j

be an empty set or a set consist ing cf c>ne element
a, ( a *  a.) or set consisting of

J J ^ a  . 
W1

/

; £ . 3 . . . , a ,

* i3 *■■■* l since A( n  \  fl .• n A ,r, =  W }
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and so for k = 1,2,.....v(m-l). This

leaves US with only one possibility that

A f) Al 11 V1 7 n •....n A, is a set consisting of
1 2 m- l

and some other element(s). To investigate this
possibility, we let â , be one of these other elements

in \  n \  D........n \  • That is, a.,a, €
1 2 m- i  * J

Av H \  n........  n A • This implies that a , A
' i 2 m -l J

since Aj f) Az p|............... p) = (â ) and
.........>lm) = (1,2,........m},so a, € A^

m
and n A, D ......'•......... D A fl A<~ = {a,.}.

1 2 m-l m  J

Thus, there exists j, 1 < j < m, such that,

A, n a2 n— n ^  n— n Am= (a^}, j' * i. This

contradicts, the fact that {f ,f  ....... ,f } is a
single-error detecting system; thus A p) A p). ..ftA

1 2 '’m - l

is not a set consisting of â  and some other

element(s). We therefore, conclude that A p) A. 0* • - *0
vi l2

\  = (*;}■ m-l
Conversely, suppose

J, n Ai O ......... n*. = {a,}. (6.3)
1 2 m- l

Then, we are to prove that the system {f ,f ...... ,f }1 2  m
is a single-error detecting system. That is, we have to 
show that

n Am - {a,}A, n a2 n (6.4)
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and

n Az n.....n a cn Ai n-••-n a = 0
for 1 <_ i < m .

(6.5)

But

and thus

{1,2, .

’That is,

A. =

A, = (a ))
m m m 1

m l so that

a/ e A .* im

a, e AC

Fr°” <6'3) and <6'6> ^  follows that:

A‘in AS n ....0 A, n*, = (a;)m- i
and

A‘.n As n.....n At n a'm- i
But, {it ,>'2---- >'J = {1,2,
(f'8) itpiy that there

(6.6)

(6.7)

exists j, i

A. H A  n.
and

0. (6.8)

>m}; thus (6.7) and
1 i 3 1 such that

A r (a,)

l. n a n . n a  ̂ n ... n a _ e
m
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which is the required result.

Theorem 6.1s- Let the number of elements in the set

be n, then the minimum number of functions, m for
which a single-error detecting system exists satisfies
the inequality:

m > log n + 1.
2

Proof.
Let {f4, f2, . . .,fm) be a single - error detecting

system and A , A ...... A be subsets specified by the1 2 m
functions f ,f  ..... ,f . Then, from Lemma 6.1, the1 2  m
intersection of any (m-1) subsets, A ,A ,..,A isl l  V.1 2 m-1

the unknown element x. That is, ar.v (m-1) functions

identify the unknown element. The minimum number of 
functions which separate the unknown element is
{log2n}, see Rer.yi ( 1965). That is,

(m- 1 ) > log2n
m > log2n + 1

which ir t h\ • . red result.

Exam ple  6 . ? -Let S0= { &1>a2>..........,aQ), then a

single-error detecting system for this set will contain 
at least (log 6)+l, that is four, functions. One
possible search matrix of a system of four functions

? ■<?fJ#f2,fg#f which is a single-error detecting system 
is
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alr
a2 a3 a

4 a3 a<3 a7 a
f& l 1 1 0 0 0 1 0
f2 l 1 0 1 1 0 0 0
f9 l 0 0 0 1 1 1 1

The four functions f1*f2*f9»f4 can easily be shown 
to be a single-error detecting system by taking the 
unknown element x to be’, say a4. Then, the subsets 

W A3’A4 sPecifie  ̂ by these functions are:

A - {a1,a2,a3,a7},
{a , a , a , a } ,1 2 4 * 5 J

with

A3 = {a , a , a , a } ,1 3 4 <5
A4 = {ai,a5,ao,a7};

A i n a 2 n a 3 n a , = {aA} ,
Ac

X
n  A 2n A 3n a 4 =

A i n a 7 n a 3 n a 4 = 0 ,

A i n a 2 n a 3 n a 4 = 0,
A n  a2 n a 3 n a 4 = 0.

5 i « ' ( W - W is a single-error
cn the set S .e

6 .2 *- Le. t h = be an mxn

Thus, the
d e t e -1: n r e

11k-:
matrix whese first and last columns are respectively
( 1 > 1 >....... )' and (0,0,......... 0)' and the
remaining columns consist of all possible combinations 
of j^m i zeros (or ones) and m - o n e s  (or zeros),



152

where {x} is the least integer greater than or equal 
to x. Further, let the functions f ,f ...... be1 2  m
defined on a finite set S =n {w - - . . , a } as follows n

r i if m = 1
f,( o  = <-j
u J ^0 if m . = 0.

Then, the system (f ,f ]... ..,f } ofm functions is
single-error detecting system.

/

Proof.
Identifying the columns of the matrix M with 

elements a1>a2>---»an of Sn and rows with the functions
f ,f , . 1 * 2 * ...,f , wem need to show that the intersection of
any (m-1) subsets 
functions f , f. . ,i t 1 2

\  - i \  < 2
•f.m-

• • • • *A. sp
m- i

is a single
i

■ecified by the 
element. That

is ,

Bu t,
\  nl

A.t2 n- • •—  n a .m-l
{x>.

\  nl
At2 n • •••■•mi =m-i

{x}

holds if and only if functions
f ft ' t ' 1 2 ....fim-i

form a separating c lee on Sn=

{ a , a , 1 2 *...... a . But we know that. the functions
f ft ,rt ' 1 2

. , f̂  will
m-l

form a separat:ng system if the

matrix N, defined by;

N = (f. (a )),
k

k 1 j 2 , . . , ID 1 , J , 2, . . , n ,



has distinct columns.
Now, the columns of the matrix M defined above 

differ in at least two places and so if a row is 
deleted, the remaining columns will differ in at least 
one place. Thus, the matrix M' obtained by deleting one 
row of M has distinct ’columns and so the functions 
f ,f ,...,f which correspond to the rows of M' is a
1 2  m-1

separating system. The system f ,f ,..,f is therefore1 2  m
a single-error detecting system.

Exam p le  6.4-: Consider a 6x22 matrix whose first 
and last columns are respectively (1, 1, 1,1,1,1 )' and 
(0,0,0,0,0,0)' and the remaining 20 columns consist of 
all possible combinations of 3 zeros and 3 ones The 
columns of this matrix are identified with the elements
of a f in ite set S

22
(a

. * v
• • • } a22 } and the rows are

identified with the functions f ,f ,f f ,f , f The
1 2 3 4 m '  <5

matrix M has the following form;

fa a„ a a a a a a„ a a a a a a a a a a a b & &
1 2 3 4 3 <5 p lO 11 12 13 14 15 1 <5 17 18 IP 20 21

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 r 0 ■ n

1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 3 I

1 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 3 0

1 0 0 1 0 0 1- 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0
1 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 3 0

Now, suppose the fourth row is deleted. The remaining 
matrix M' will have the form,



r * i &2 a9 a4 a3 a <5 a7 a
e a p a io a l i a i2 a !3

a
14

a
13
a a a

1<5 17 18
a

lpa z o a 2 i a
l 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

f *
l 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0

f s
l 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0

f ,
l 0 0 1 0 0 1 0 1 0 1 0 1 0 1 O i l 0 1 1 0

f l 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 0 1 1 1 0

We notice that the columns of the matrix M' are
distinct; thus the system is a
single-error detecting system. We can eas ily, verify
this by taking the unknown e lement x to be say
. Then,

A - (a a a , a , a a , a a , a , a > a } ,i i 2 3 4 5 ’ <5 7 8 p io ' 11
A - { a y a„ y a y a , a, ,a a , a ; a a , a } ,2 L i 3 4 5 1 2 * 1 3 1 4 1 5 ' 1 <3 1 7
A - { a ja y a ̂ y a -, * a y a > a ,a a ,a , a } ,3 i 2 <5 7 8 1 2 13 1 4 1 8 i p 20
A - { a ) a y a y a , a y a * a ,a , a , a , a }  ,

4 L i 3 < 5 p  t o 1 2 1 5 ' 1 <5 1 8 i p ' 20
A - { a y a y a_ y a_ , a y a , a , a _  , a a , a }  ,5 i 4 p  i i 1 3 15 1 7 1 8 i  p 20
A - { a a y a y a _ ,  a , a , a  ̂a > a , a > a }  ;<5 i 5 8 10  1 l 13 1 <3 1 7 i  p 20 ' 21

with

a, n a2 n a3 n a4 n a5 n Aa = {»,},
*f n a2 n a, n a4 n a5 o Af, = «,

a ,  n ^  n a 3 n *, n *, n a,  = 0-
Ai n a2 n 3̂ n a4 n a= n a  ̂=

Ai n a2 n a3 n a4 n a5 n A0 = 0 >
a, n a2 n a3 n a4 n a  ̂ n A0 = e ,

and
A, n a2 n a3 n a4 n a5 n a  ̂ = e.

f ,f .f,.f ,f_,f„ is a single-error detecting
1 2 3 4 D O

Thus,
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system.
In our study of the next type of separating system, 

that is one which detects and corrects the error in 
determining the identity of one unknown element, we 
will require the basic concepts of coding theory
introduced in Chapter 1. In addition, we will need the
f o1lowing property of block codes also given in
Chapter 1.

A block code with distance d is capable of
correcting all patterns of t or fewer errors and
detecting all patterns of t+ J, 0 < j < s errors if
2t s < d, s > 0 .

6.2.2: E r r o r - c o r r e c t i n g  s y s te m

Let S = {a ,a a 1 and F = {f ,f ,...,f } be a
system of m functions. Further, let M be an mxn 
search matrix of the system F. That is;

M = ( f . ( a  ) ) ,  v = 1 , 2 , j = 1 , 2 , .  . . . , n .

Let x e Sn be the unknown element which is to be 
identified by observing the functions f ,f ,...,f

1 2  m

cessively at x. By these observations we obtain a 
(f (x),f (x),...,f (x))'. The unknown element x,1 2  m

is then identified as â  (Z - l,2,...,n) if the vector 
(f (x),f (x),..,r. ,f (x))' is the £th column of the1 2  rn
matrix M.

how, suppose p functions are in error then the 
system F = {f ,f .......................,f } will be^ -

1 Z m

error-detecting and error-correcting if the vector u
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( ft(x), f2(x), . . . , fm(x) )' obtained by observing 
> f2 »...•> fm at x is not one of the columns of the 

matrix M and the distance between any two columns of 
the matrix M say v and v is at least 2p + 1. The p
errors will be detected by the fact that none of the 
columns of the matrix M is the vector u = (f (x),
f2(x),....,fm(x» and corrected by identifying the
vector u with a column v of the matrix M in which 
d(u,v) = p. The column v can easily be shown to be 
unique*, for suppose that there exists another column 
v' of the matrix M, such that d(u, v) = p. Then,

d(v, v' ) < d(v,u) + d(u,v' )

= d^u.v) + d(u,v)

= P  + P  -  2p

which implies that the distance between the two columns
y and v' of the matrix M is less than or equal to 2p.
Tti i s contradicts the earlier assumption that the
distance between any two columns is at least 2p + 1 .
. s . the column v' does n o t exist.

Example 6.5: - Consider a block code which corrects 
f errors, that is, the distance between any two code 
words is at least 2p + 1. Let these code words be the 
columns of the matrix H defined earlier. Then th£ 
system F of functions which correspond to the rows of 
the matrix M is error-correcting system since the 
distance between any two columns of the matrix H is at
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least 2p + 1.

S p e c i a l  c a se

Consider, the following code words of 
the Hamming block codes that correct one error, 
(see Chakravarti (1976)):

0 0 0 0 0 0 0 0 1 1 0 1 1 0
1 0 0 0 1 1 0 0 1 0 1 0 1 0
0 1 0 0 1 0 1 0 0 1 1 1 0 0
0 0 1 0 0 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 0 1 1 0 0
1 1 0 0 0 1 1 1 0 1 1 0 1 0
1 0 1 0 1 0 1 0 1 1 1 0 0 1
1 0 0 1 0 0 1 1 1 1 1 1 1 1

Taking these code words to be the columns of the 
matrix M, we obtain the following search matrix,

r a i
a

2
a

3
a

4
a a

<5
a

7
a

8
a

p
a a

l O  11
a a

12  13
a

14
a

1 5
a >

1 <5

0 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1

0 0 1 0 0 1 0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1

0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 1 •
0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1

0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 1

, 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 J

The distance between any two columns of the matrix M is 
at least three, thus the functions f , f f_ 1 r: 
an error-correcting system which corrects at most ont

* 4*error.
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6. 3: DETERMINING TWO UNKNOWN ELEMENTS IN THE PRESENCE
OF NOISE USING A 2-COMPLETE SEARCH DESIGN.
We first recall that a 2-complete search

design is a system (A ,A ,...,A ;1 2  m Sn) consisting of m
subsets A , A ....... ,A of a finite set S , in1 2 m  n which
for any pair of elements a^ , â , in Ŝ , there exist
subsets At > , ̂2 > • • •1 2  k .,ik) c (1,2, ....,m}

such that â , â , e Â  for
j

j = 1,2, .. ., k and
k

=j=i J W ’a<r’ }.

Now, suppose that the unknown elements (â ,â , ) in 
Sn are to be determined in the presence of noise. That 
is, a subset Â  can be declared to contain the two 
unknown elements while it actually contains just one or 
none of them. Then, the intersection of the subsets 
A ,A ..... ,A will not identify the two unknownL L I1 2  k
elements.

In this section, we consider 2-complete search 
designs which detect the error in the search process 
for the two unknown elements without correcting it.

6.3.1: 2 -C o m p le te  s e a rc h  d e s ig n  ŵ ii c:hi d etects  an

e r r o r  i n  the  s e a r c h  p rocess.
9

Consider the set S = (a ,a ......., s } andn 1 2  r.

2-complete search design {A ,A ..... ,A ;£r>.i’cxt,1 2  m ii_
consider the set of indices (i , i ,..., ik)c{ 1 > 2 ,...., m)
and let A ,A. .........,A. be the subsets of S whichI »•„ v ri1 2  k
contain the two unknown elements (â ,â ,). Then, the
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2-complete search design {At,Az> . . . .,Am ;S } will detect 
an error in the search process if

\  n  \  n ............................. n \  a,,}
1 2  k

and

a, n \  n........n * '  n.......n K  =
1 2  • j  k

or

\  n \n.n........ n \  = (a).
1 2  j k

a e  S , 1<j< k .

Exam ple  6 . 6 : ~ Consider the 2-Complete search design 
{A . A , A :S } of Example 4.3 given in Section
4.3 of Chapter 4. The subsets A ^ A ^ ...... Ap were
given as follows:

Ai = < w V ae >aP .a ,a .a }J lO’ 11 ' 12
A2 = S4>ae 'ap  ̂a , a , a 1 >1 lO 11 12J

Aa = < V V V a<5 , a j a , a 1>

A
4
= a4' J a 7 , a ,3. , a }.

A5 - {W a4'a5 '8o ; a ,8 , a },
P  lO 12 '

A« = { ai ' S2 ’a4'a= 'a7 >a j s , a }f* P * 10' 12J'

A7 - f ai*’ S2 ’a«'a« * 8 lO 11 ’
A

8
= < W V a5 'a« i 8L j £ ; 8. ,.} e 10 ±2 9

Ap = < V V V a= •a7 , a , a , a }.* 8 P 11

Suppose the two unknown elements are (a3>82), 
then the subsets which contain these two unknown
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elements are A . A , A , A witho  7 o y

A« n a7 n a8 n ap = K - 8**’

Aa n a7 n a8 n ap = {*„),

Atf n a7 n AB n Ap = {a=>,

A« n A7 n Aa n ap z <®7).

and

■ Ae  n  A7 n  a 8 n  a ^  = { a i o >.

That is,

\n \n \n \= { v a2>
1 2  3 4

and

a , n a, n \  n * c -  <a ) - a e s>2 >1
1 2  3 4

Thus , the system {k^, A2, . . . , Ap; Si2) is a 
search design which detects an error in
process.

< x < 4 .
-  4 -

2-complete 
the search

Lemma 6.3=- Let {At,A2>....Am ;Sn) be a 2-complete
search design. Forther, let ,Â  ,....,Â  be the

1 2  k

subsets of the set which contain the two unknown
elements (â ,â , ) where ( w 2,.....\ ) c
Then, the 2-complete search design {k^,k2>....>Am;Sn)
will detect an error in the search process if and only
if the intersection of any (k-1) subset's

\ *\ • ,A. is at most three elements
k - li 2
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with the two unknown elements (a^a^ ) being amongst 
the three.

Proo f.

Suppose the system {A ,A , . 1 2 . . ,Am; V is a
2-complete search design which detects an error in the
search process. That is, for any set of indices

>l2>.....>tk) c (1,2,...... , m)

A. n a, n— n \  n ........a r {a.,a } <6.9>
1 2  j k

and

a, n a. n- n a  ̂ n- • n a = or {a, >1 2  j k
a, e Sn . (6.10)

Then, we are to prove that

a . n At n- n \  n \  n -n a - { a , , a > ( 6 . u >
1 2 j- 1 J+ i k

or

a , n a , n  ' f i « ,  n * . n- n a =k { a ̂ > a ̂ , , a , }
( 6 . 1 2 )

where, {a., a., , , } e S .V II

Now, suppose that

a n a rv -n n  \  n- ■n \  *  t v v }1 2 j-1 j+1 k
and



162

Ai n \  n- n 1 2 \  n \n nj-i j-*-i k •

That is, A fj.
1 2 •n At n \  n-i-i j+i • • D \  ~ 0 ork a set

consisting of one element a orj a set consisting of two
elements (a ,a ) 

J1 J2
where a , a.

J. J2
® {â , â , } or a set

consisting of a.* j a / > • • • i 8
1 J2 J

.* where â ,
r

V 1

{a , , a , , . . . , a , } and r > 2 or a
1 2  J r

set consisting of

and â , and two or more other elements. Bu t
\  n- -n n \  n
i J-i j+i

. . p) A cannot
Lk be the empty set or

a set consisting of one element or a set consisting

of two elements {aj , a. } where aj , aj e {a^a^,} or
1 2

a set consisting of aj# , a., , . . j 
J2

a , where â , â , e
r

(a , a , . . , a ,} since
1 2  J r a, n- -oa,i j

n \ J-i
• - fl At= (a7, a^ ) ;

and so â , â , e A. for
Vj

J = 1,2,...,k. This

leaves us with only one possibility that
AL o At n ......n n Au ........ n a. is a set

1 2  j-i j+i Vk

consisting of â ,â , and two or more other elements. 
To investigate this possibility, we let aj
and â , be the other elements in the set

\  n*i n — ’••n* n \  n ......n a . That is,1 2 j-i j+1 k

W  e Av n — n*, n \  n- • n \i j-i j+i k
(6.13)

Now, (6.9) and (6.13) imply that
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a . ,  a , «r A J j v

That is ,

aj a ,j i.
j

and so from (6.13)

aj, a <= n \  n— n a n ac n a n— n a.1 2 J- i  J k

This contradicts (6.10) Thus A c<c'C

• n \  niL 2 j-i
a, n- ..................n a =: } is not a set

J+l  k

consisting of â ,â , and two or more other 
elements. We therefore, conclude that

\  n \  n ...... n a n a n.........n a = {a a }1 2 j-1 j + l  k
or (â , â , , a , ) .

Conversely, suppose

or

\  n \  n— n*i n a. n- • • n a.1 2 j-l j + l  k < W  }

a, n At n- C<c C•J
< •n a = { â , â , , a^(

1 2 j-l j+i k
where (â ,â , > a } g S <■ n . Then, we are to prove
the 2-complete search design {A ,A ,...,A ;S } detects1 2  m n9
an error in the search process. That is, we need to 
show that

\  n \  n n \  n
j

fl A , = fa., a., }
k

and
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\ n V ' n i i n Af n  \  . . . n  a = 0 or {a >
1 2 J—1 j j - i  k  »■

1 e Sn-
First we consider the case

a,n a. ...,n av n n
1 2 j - i  j - i

fl A. = {â , a } .
(6.14)

From the fact that {Ai,A2,...<Am;Sn} is a 2-complete
search design and the subsets A A A a

i 2
contain both the unknown elements (a^a^, }, we see that

e and â , «? Ac . 
J ' j (6.15)

From (6.14) and (6.15) we have

\  n A n -  • n \  n \ n  \  n n \  = { a , , a , . }1 2  J-i J j-i \ 1 1

and

■ •■ nAl n ( n *  n - n A =0.1 2  J-i j j-i vk

Thus, the 2-complete search design detects an error in
the search process.

Nex*, we consider the case

*‘v n \  n- • -n a. n  \  n- • n  = (a,,a >a, , ,
2 J - l  J * 1  k  . 4  4

(6.16)
Again, from the fact that { A ^ ....,Am;Sn) is a
complete search design and the subsets 2 

h  ’ ■ ■ ■ ■ >Al contain both the unknown elements
1 2  k

we see that {a^a^, }eÂ  and { a ^ , a . ,  } <? AC .
"j
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From (6.16) we have

\  n \  n- n \ n *  n -n< ,
t 2  j - i  j  j * i  k

and

\ n \ n — n \  0 * 1 1 ^  n -  n \  ={8,,.}.
1 2  j - i  j j + i  k

Thus, the 2-complete search design (A ,A ,...,A :S ) 
detects an error in the search process. Hence the 
proof.

Example 6.81 Consider Example 4.1 in Section 4.1 
of Chapter 4. The subsets k^,A2, . . .,Ap are:

A
1

— { a 5 , a o , a ? , a s , ap , a l Q , a tl< a i2) ,

A
2

= { S 2 ' a a ’ a « ' a a ’ ap' a i o ' a n  ’ a i2^ ’

A3 -
■̂a 2 ' ®3 ’ a < ’ a 5 ’ a <3> a 7 , a il'a i 2 ^ ’

A
4

= { a, . a 3 . a 4 , a 7 , a a . 8 5, 'a 12)<

A
3

= { a i , a 3 , a < , a s ,ao , a p ,f o , . u )

A
<3

- { a , , a 2 , , a = , a ? , a p , a j Q , a iz},

A
7

= { a i , a 2 , a < , a <3, a 2 ,ae J a i o , a ii},

A8 - ( a i , a 2 , a 3 , a 5 , a <5,a8 , a i o , a iz},

Ap = { a i , a 2 , a 3 , a 3 , a 7 , a B , a s> . a ^ } .

As displayed in the example, every pair of elements 
(aLiaj)> v * j = 1,2,...., 12, can be detected by at 
at most four subsets. The intersection of any three



subsets can easily be verified to contain atnost three 

elements. Hence the system (A ,A  ..... ,A ;S } is »1 Z  ' p' J Q
2-complete search design which detects an error in the 
search process.

6.4 DETERMINING TWO UNKNOWN ELEMENTS IN THE PRESENCE 
OF NOISE USING PARTITION SEARCH DESIGNS.
We recall that a partition search design consists 

of two stages, namely:
(i) Determining subsets A , A ......,A of the set1 2  m

Sn = ^a1»a2»....such that for any two distinct
elements (u,v) e S there exists two subsets A and A

n * i1 2
of such that u e A and v e A and A n A =0. n i v i 1 1 i1 2 1 2
(ii) Identifying the two unknown elements (u,v) from

the sets A and A separately using a separating 
1 2

system.
Now, suppose that we search for these two unknown 

elements in the presence of noise; that is, it is 
possible for an error to occur. If the error occurs in 
stage one, that is, a subset Â  is declared to contain 
the unknown element while it does not, then this error 
would be detected in the second stage while searching 
for the unknown element u or v in a subset in which it 
does not belong. If the error occurs in the second 
stage; that is the observed values of the functions
f .f ..... ,f at the unknown element may be in errors
then this error can be detected without being corrected
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by applying single-error detecting systems, described 
in Section 6.2.1 of this Chapter; or the error can be 
detected and corrected by applying error-correcting 
systems described in Section 6.2.3 again of this
Chapter.

Exam p le  6.9:- Consider the partition search design

of Example 4.2 in Section 

subsets A ,A ,A ,A ,A ,A are:

4.1 of Chapter 4.

A = {a , a , a , a }, A = 2 {v w V -

A = {a , a , a , a }. A r4 {®3' S4 ' as ’ a<5>'

A = {a , a , a , a },3 *■ 1 ’ 3 ' 5 * 7 A =<5 {a3-a4'S0 'aB>-

Let (a ,a } be the unknown pair of elements. Then 

the subsets A and A will detect the pair since a e A5 <5 1 3

a, e A and A n A = 0. Suppose, a subset say A2 <3 5 1 1 <5 4
is erroneously, found to contain an unknown element 
say a2, ther> this error will be detected without being 
corrected in the second stage, where the identity of 
the unknown element is determined. In this case, we 
will be trying to identify the unknown element from a 
set in w n i e h it does not belong.

An error in the second stage, say an error made in 

identifying the unknown a from A will be detected2 <3

without being corrected by applying single-error 

detecting system. That is, if we apply single-error 

detecting system (f ,f ,....,f }, then the intersection1 2  (5
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of the subsets A , A ,......... A .where A^f'Vf
Hi l l  be either ( a 2) or 0. It wi l l  be {a.,} if no 
is made and 0 if  an error is made in identifying,
unknown element, a from A2  <5

v >
error
the
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CH APTER  7

CONCLUDING  REM ARKS

In this thesis the problem of search for one 
unknown and two unknown elements from a set Sn
consisting of n distinguishable elements has been 
studied. The study has dealt with search models 
which assume noiseless conditions and those which 
take noise into account.

Starting with the case of one unknown element 
in the set , binary and non-binary separating 
systems which detect the unknown element have been 
studied. Properties of these separating systems have 
also been given in the thesis.

It has been shown in the study that some
geometrical structures like Projective geometries 
and Euclidean geometries are separating systems and 
therefore can be used to separate the elements of 
the set . The duration of the search process for 
detecting one unknown element using some of these 
geometrical structures has been obtairieu .

For detecting two unknown elements from the 
finite set S , two designs have been constructed. 
These designs are 2-complete search design and the 
partition search design. The 2-conplete search 
design is based on the property that the
intersection of a given number of subsets of Sn
which contain the two unknown elements consists of
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the two unknown elements. On the other hand, a 
partition search design divides the set Sn into 
two parts with each part containing one unknown 
element. The two unknown elements are then
identified separately from each part.

Two different methods of constructing 
2-complete search design have been discussed in the 
thesis. The two methods which are both based on 
properties of balanced incomplete block designs can 
be described briefly as follows:

(i) The elements of the set S are identifiedn
with the blocks and the functions
f .......,f are identified with thei  ̂ m
objects of a BIB design with some specific 
properties. These properties are given in 
the thesis.

(ii) The elements of the set S are identifiedn
with the objects and the functions 
f >f >•• • >f are identified with thei £ m
blocks of a BIB design after deleting a 
number of blocks. A simple formula for 
computing the number of blocks to be 
deleted is given in the thesis.

Methods of constructing partition search 
designs have also been discussed in the thesis. Some 
of the methods discussed are the halving and the' 
j - procedures. It is shown in the thesis that the 
- - procedure, which partitions the set S into
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three disjoint parts, provides the best results.
Probabilities of termination of the search

process after N steps, and duration of the search
process for detecting two unknown elements have been
derived for both the 2- complete search design
and the partition search design. Comparing the

1
number of elements n of the set Sn and the expected 
duration of the search process, it was observed that 
partition search design is very economical for large 
values of n .

Lastly, the study has dealt with the detection 
of one unknown element and of two unknown elements 
from a finite set in the presence of noise. The 
study has attempted to obtain designs which would 
detect an error without correcting it or detect the 
error and correct it. To achieve this, systematic 
strategies of choosing the functions f ,f ,...,f in1 2  rrt
the Case of separating systems and of choosing the
subsets A , A .....,A in the case of 2-complete
search and partition search designs has been 
proposed. In this strateg. all the functions 
f ,f ,.......,f and all the subsets A , A ,....,A

1 2  m  1 2 m

were systematically chosen in the determination of 
one unknown element and two unknown elements 
respectively. We note here that it is not possible

/ •<?to detect without correcting , or detect and correct
an error, if only a few functions or a f ew subsets
are chosen at random to determine one unknown
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element or two unknown elements.
Search models studied in this thesis have a 

variety of practical applications. A list of these 
applications is given in Chapter 1 of the thesis. 
We conclude by listing some problems which require 
further investigations:

(i) Construction of strategies which
determine one unknown element from a
finite set S in n the presence of noise
with probability 1 - £ .

(ii) Construction of economical partition
search designs which determine more than 
two unknown elements.

(iii) The relationship between combinatorial 
search models and probabilistic search 
models.

(iv) Construction of random search models based 
on finite plane Projective and Euclidean 
geometries which give sharper bounds to 
the expected duration of the search 
process.

* <?
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