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literature relevant to the problem under study is
given, whereas Section 1.4 gives a concise statement of
the problem together with a list of specific

objectives of the study. The envisaged significance
of the results of the study are mentioned iIn Section
1.5.

Chapter 2 deals with the properties of
separating systems of a finite set Sn. Some useful
properties of separating system proved by Renyi (1965)
are given iIn Section 2.1, whereas binary minimal
separating systems and non-binary separating systems
are discussed iIn Sections 2.2 and 2.3 respectively.

In Chapter 3, random search models based on
binary structures are examined. Properties of binary
search models proved by Renyi (1965) are given in
Section 3.1. Section 3.2 deals with random search
models based on Tfinite plane projective geometries
while random search models based on Ffinite plane
Euclidean geometries are discussed 1In Section 3.3.
Search models based on random 0O-1 matrices are given in
Section 3.4.

Chapter 4 1s concerned with search models
for detecting more than one unknown element from a
finite set. Section 4.1 iIntroduces two types of search
designs namely; the 2-Complete search design and the
partition search design. A detail study of the

2-complete search design is given 1In Sections 4.2 ana
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4.3. Section 4.4 considers construction and properties
of the partition search designs. The problem “ of
detecting more than two unknown elements from a Tfinite
set is discussed iIn Section 4.5.

In Chapter 5 duration of the search process
for detecting two unknown elements 1is studied. Examples
to i1llustrate the computation of the duration of the
search process for detection of two unknown elements
using the 2-complete search design and the partition
search design are given iIn Section 5.2. In Section 5.3
some results concerning the duration of the search
process for detection of two unknown elements are
derived.

Search models for the detection of unknown
element(s) iIn the presence of noise are studied In
Chapter 6. The possibility of an observed function
being In error 1is introduced In Section 6.1. Section
6.2 deals with separating systems which determine one
unknown element iIn the presence of noise while Sections
6.3 and 6.4 deal with the problem of detecting two
unknown elements in the presence of noise using. a
2-complete search design and a partition search design.

Chapter 1, contains a brief summary of rore
concluding remarks together with a list of e

problems that require further investigation.
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CHAPTER 1

INTRODUCTION
1#1 WHAT IS RANDOM SEARCH?

Consider a set Sn = {at,az -..... ,a"} containing n
elements and a system F of test-functions defined on
S Suppose that k of the elements, say X4 ,x2 ,
........ XN (k <n) In Snarenot known. Then the
problem of search is concerned with determining the
identities of these unknown elements using the
test-functions In F. It iIs assumed that 11t 1is not
possible to observe these unknown elements directly but
one can choose a sequence of functions 4,12 ™
from the system F and observe the values of these
functions at each of the elements xt>x2>......... and
X\, until enough iInformation is obtained to determine
the 1i1dentities of these unknown elements.

A method for the successive choice of the
test-functions f ,f,, ...... ,F from a system F of
functions, which lesds iIn the end to the determination
of the unknown element(s) 1is called a strategy of
search. A strategy can either be pure or mixed. It 1is
called pure iIf it uniquely specifies the choice of the
test-functions and 1t is called mixed if the choice of
these test-functions depends on chance. In a mixed
strategy, test-functions are chosen according to some
probability distribution. A mixed strategy 1is therefore
called random search. A pure strategy 1i1s said to be

predetermined if the number N and the choice



of each of the test-functions 1is determined before
beginning the observation. It is called sequential if
only the choice of is determined in advance and the
choice of fk (k > 2) 1is made only after observing
fr(x), F2<X),.... ,fFk *(X) and may depend on these
observed values. When observed values may be in error
due to noise the search process 1is called noisy.
Otherwise the search process is called noiseless.

IT the system F of functions contains a function
which takes on different values for different elements
of Sn- then a single observation of this function at
the unknown element(s) will 1i1dentify the element(s).
In practice the number of different values taken by a
test -function In F is much smaller than N. In the
special case where each function can take only two
values 0 and 1, the system of functions F is called a
binary search system. A search strategy based on F is

then described as binary search strategy.

1.2 BASIC CONCEPTS AND NOTATIONS.
rhe folicwing are some basic concepts and notations
Vi- = Vv Ir useful In our discussion of the search

problem.

Types of search systems.

A system F of functions defined on the set Sn 1is
celled a separating system if for every pair of
distinct elements aa. « Sn there exists a function f

J

in F such that f(@“) * fCa”.

/<



A separating system F can also be defined as
follows:
Let

M- (ft@p)), v=1>2,..... m §j=1,2,.... .n
denote an mxn matrix whose (1,j)-th entry is fi(aj)
Then F iIs a separating system if and only if all the
columns of the matrix M are distinct. We shall call M
the search matrix of the system F. A system F of
functions 1is said to be a minimalseparating system if
no proper subset of F Is a separating system on S

We shall a_so need the notion of homogeneity of a
separating system ot functions iIn the situation where
all the elements iIn Sh have the same chance of being
the unknown element, that i1s, when we assume that,

Pr(x = a.) = 1I/n, 1= 1,2,..... ,N.

For any choice of k(2 <k <n) distinct elements all,
al2>o--->a1i< of S]l’ let R_ denote the number of
functions T In F such that f(a 1) = f(a/g) = =

f(a k-) Then If R does not depend on the choice of

he k elements, F i1s called a weakly homogeneous system
of order k. The system F 1is called a strongly

homogeneous system of order k, if for every k

distinct elements .o of S and a
2. 13V >==>aly n
sequence of k numbers y ,y ,... y where
1 2 WK
yu,s are values taken on by members of F and they

J
are not necessarily all different, the number



functions f in F for which
t,....,f<a = VY. , does t
Y 2 k) y\ no

of elements a,, - | but
L% K

may depend on the values of y. y. .._.._._.
1 2

Efficiency of a separating system.

Let the range of the function * ,F ..___. T in F

be a finite set ¥ = (y » ......... , y yand let k , be

the number of points In SO such that

fjla>ryv 0 - 1>2,..... . m
* - 152 L] - ,q) a<
and
E K. =n
IT the element a® e iIs assigned probability p and

the function g F i1s assigned probability p*", then

the entropy of a e IS given by
H(@) = - E1 P(a = a)log P (a = &)
V=
= -.E plogp (1.1

and the entropy of f e F is

H(F) = - E Fr(f - f.)log Pr(f = )

- - E p"log p. (1.2)
J-1

flus H@ and H() gjve the average uncertainty



associated with the selection of at from Sn and
from F respectively.

The joint entropy of a and f is given by:

H(a,f) = H(a) + H(P) a.3)

since the choice of any element &
is stochastically independent of the choice of any

function fj e F.
Now, the probability distribution of T(X)

conditional on f = fj is

Pr(f(x) =yz\f =) = Pr(f.CO =yH = p”

and so the conditional entropy of f(x) given f = f 1is

/
given by

= -E Py/- forp *O0
and

HCFIT )

I
o

for p” = 1.4

Renyi (1965) has proved the inequality

m
E H (F |fJ) 2 log,n (1.5)
N=
for any separating system F on S . The ratio
m
log2n/E H(F|TF)) (1.6)
J J /<

Is used as a measure of the efficiency of the
separating system F. The closer this ratio is to one,

the more efficient the system {f,.f ......... £ 3 is



in separatir}gg. the elements of S .
i k; iiigfx N

The Duration of a Search Process.

We shall Ffirst consider the duration of the search

process for detecting one unknown element. Let F be a

system of m functions defined on the set
Sn="al,a2”....... >an} which separates the elements
of S]l' Let x be an unknown element in % and let us

suppose that we search for x in the following way: we
choose first a function T from F at randomso that each
function of F has the same probability 1/m to be
chosen. We observe t7~x), the value of fat x and
after this we choose again a function f2 from F so
that the choice of T is independent of the choice of
fJ &d each element ¥ of F has the same probability
1/m to be chosen as f2. We observe f2(xX) and continue
with the process until  is selected and its value at
X observed.

We shall denote the probability that the sequence
N\<x),R2(xX), --... ,MN(X) determines the unknown element
X by PI(N,x) and the probability that the process of
detecting x terminates exactly at the Nth step by
P1(N,x). The expected duration of the search process

for detecting the unknown element x is then given by:

(e5]

Et(X) = _E N p <N,x). a.n

Next, we consider the duration of the search

process for detecting two unknown elements. Let F be



a system of m functions defined on the set
sn=<VV ... pair of
elements of'Sn- Let (u,v) be the unknown pair of
elements and let us suppose that we search for the
pair of elements in the following way: we choose first
a function  from F at(random so that each function
of F has the same probability 1/m to be chosen. We

observe f at u and v. Each observation specifies a

subset of S5, say Ay, and A , . where

A,Uu =

and

Alv = (1.8)

Next, we choose T at random such that the choice of
2 1s i1ndependent of the <choice of T and each

function f iIn F has the same probability 1/m of being
chosen as f2. Again by observing f at u and v we
obtain subsets A and The process is continued
until we are able to determine the unknown pair {u.v}

uniquely; that is, until
n Aujuf n w] = {u,v). i.9>
Gy AMJuTng 2w = W (

IT this happens then we require the sequence

>N of functions In order to detect the

Pair {u,v}

We shall denote the probability that the sequence

? 4



ft.f2 .......... ,f.Ndetermines the pair (u,v) of the
unknown elements by Pi(N,u,v) and the probability that
the process of detecting (u,v) terminates exactly at
the Nth step by pi(N,u,v). The expected duration of the
search process for detecting a pair of unknown
elenents 1is ‘then given by:

E4(u,v) =

N

N PE(N ,u,v). (1.10)

(0]

II|-|-|8

The concepts and notations of the duration of the
search process stated here will be useful iIn Chapters
3 and 5, In the computation of the. duration of the

search process for detecting the unknown element(s).

Finite Plane Projective Geometries: PG(2,s).

In plane projective geometry, a point is defined
by an ordered set of three elements (x0 X1 % ) not all
zeros belonging to GF(s), where s is prime or power of

prime and a line 1is defined by the equation
%% &1 &% =0, GF(s>-

This geometry is denoted by PG(2,s). In plane

projective geometry the following basic properties

hold .

©O) Two different points are incident, with one
line, that is, given two points there exists
only one line through them.

(i) Two lines are incident with one point, that

IS, they Iintersect.

(i) Not all points are 1incident with the same



line.

(iv) There are at least three different points 1iIn
the same line.

~) The number of points incident with at least
one line is finite.

The following results are derived from the above

properties of PG(2,s).

©O) The total number of points is s2+s+l-
() The total number of lines 1Is s2+s+l.
(i) Each line 1is incident with (st+l1) points.
(iv) Each point is incident with (s+1) lines.

Let n - s2+s+l, then with PG(2,s) we can associate
an nxn matrix M = ((@a )) where a L, T O or 1 depending
a. whether the i1th point is iIncident with the jth line
or not ¢=1,2,. ..,n, J=1,2..... n). This matrix M

iIs the 1incidence matrix of PG(2,s).

Finite Plane Euclidean Geometries. EGCP.s).

In plane Euclidean geometry, a point is defined by
an ordered set of two elements (X™» ) belonging to
GF(s), where s is prime or power of prime and a line is
defined by the equation

o+ar +a* —0. agmajsay  GF(s)

(0] 2

This geometry is denoted by EG(2,S). In plane
Euclidean geometry the Tfollowing basic properties
ho id .

©O) Two distinct points are incident with one and

only one common line.



(i) Through every point not incident with a given
line there passes one and only one line which
has no common point with the given [line.
This line is said to be parallel to the given
line. AlIl other lines through the point

have one common point with the given line.

(nin) Not all points are iIncident with the same
line.

(iv) There are at least two distinct points on the
same line.

The following vresults are derived from the above

properties of EG(2,S).-

() The total number of points is s .

(i) The total number of lines is s +s.

(iin) Each line 1is incident with exactly s points.

(iv) Each point 1is 1incident with exactly (stl)
lines.

Let m = sz+s and n = s2 then with EG(2,s) we can
associate an mxn matrix M = ((a)), where = 0 or
1 depending on whether the Ith point is 1incident with
the jth line or not & - 1,2,..,n, jJ= L1,2,..,r> This
matrix M is the iIncidence matrix of EG(2,s).

We shall make use of the incidence matrices of
EG(2,s) and PG(2,s) In the study of the homogeneity
of separating systems iIn Chapter 3.

A t-Complete search design.
A system (S1,S2 ST} where m=1,2,..,t) 1Is

a subset of the set S . is said to be a t-Complete
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search design if for every t distinct elements

a a; ,---a e Sn, we can select subsets (SJ, J e 1N,
i 2 t

where T = {J] av e S., for k = 1,2,-——-1t}, such that

_U S§— S ~ {ay >an---- fa, }.
jear J 1 2 t

This definition was given- by Bush and Federer (1984).
A t-complete search design can also be defined in terms
of the iIntersection of the subset @, J T .
We shall use this approach to define a 2-Complete

search design iIn Chapter 4.

A Balanced Incomplete Block design

A balanced incomplete block (BIB) design 1is an
arrangement of v objects iInto b subsets (blocks) such
that each block contains Kk distinct objects, each
object occurring iIn r different blocks, and each pair
of distinct objects occurring together on X different
blocks. For construction of these designs see
(1967) and Bose (1969).

An arrangement of v objects in b blocks suer, the
each block contains either k~"k™, . ..... or r?
objects and every pair of objects occurs iIn exact,,

blocks 1s called a pairwise balanced design of iIndex

X. It is denoted by PWB “; k4 ,k2, Ky ;
bl’b2’ ; where bj denotes the number of
blocks of size k,. All the blocks of size form the
equ iblock component D, of the PWB design D. PWE

designs In which all the objects have the same number
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of replications are called equireplicated PWB designs.
The balanced incomplete block designs and the
related designs will be useful in the construction of

2-Complete search designs in Chapter 4.

A t-(v,kdesign.

An arrangement of Vv objects into b subsets
(blocks) such that each block consists of k distinct
objects i1s called a t-(v, ) design. A balanced
incomplete block design 1is a special case of
t-(v,k,X ) design with t = 2.

A t-(v,k \ ) design will also be wuseful iIn the

construction of 2-Complete search designs in Chapter 4.

Some concepts from Coding Theory*

The basic concepts and properties of codes
mentioned here will be useful in discussing
error-correcting search systems iIn Chapter 6.

Consider the set {a;.3 --....-. ’all} of p symbols.
In coding theory, these symbols are referred to as code
characters. A finite sequence of code characters
called a code word and the number of code characters in
a code word s the length of the code word. For example
the code word 1101100 has length seven. The collect!
of all code words 1is called a code; and the collection
of all code words of the same length is called a blobkC*-.
code.

The Hamming distance between two code words v and



Vs is the number of places iIn which they differ. The
Hamming weight is the number of non-zero co-ord inates
in a code word. For example, the code word
v = 1101100 has a Hamming weight of four, The minimum

distance d of a block code s i1s defined by

The following two properties of block codes will

be useful 1In discussing error-correcting search

systems.

©O) A block code with distance d 1i1s capable of
correcting all patterns of t or fewer errors
and detecting all patterns of t+jJ,0< jJ < s
errors If 2t+s <d, S >0-

(an The minimum distance of a block code 1is the

weight of the minimum weight code word.
For a more complete discussion of these results

see for example Blake and Hullin (1975).

3.3 BRIEF LITERATURE REVIEW.

The problem of search was 1In tie fe y sdages
concerned with developing models for 1: 1:/ .e.-i1fic
problems. For exgmple Bose and Nelson (1962)
constructed a network for sorting n tier nos 7ney gave
an upper bound for minimum number of comparators
needed in an n-element sorting network and
conjectured that this upper bound 1is the exact

minimum number of comparators needed 1In such a



network. Subsequent construction by Floyd and Knuth
(1967) showed that this upper bound given by Bose and
Nelson can be improved for all n>8. In a later paper
Floyd (1972) proved that the Bose-Nelson conjecture
was correct for n"8.

Other authors who developed models to solve
specific problems include: Bose and Koch (1969) who
studied combinatorial i1nformation retrieval systems
for files with multiple-valued attributes. They
developed a model for filing systems which is capable
of handling large volumes of data and permitting
efficient information retrieval. Koch (1969) extended
this work by studying a class of covers for Tfinite
projective geometries which are related to the design
of combinatorial filing systems. He gave a method for
selecting a certain subset of m-flats from a Tfinite
projective geometry PG(N,gq) which cover all (t-1)
flats. His results have application in the problem of
designing efficient information retrieval systems.

In an attempt to unify the various models that had
been jroposed before to solve specific problems,

1966,1969, 1970) developed a mathematical model
for s general search problem. He examined in detail the
usry, of a rooted directed tree of degree q with n
vertices as search system with a sequential strategy
for noiseless search. He also defined separating
systems of functions and introduced different notions
of homogeneity of separating systems.

Katona (1966) also studied the separating systems



of functions. He gave lower and upper bounds for the
number of functions required to forn a separating
system under some specified conditions. Dickson
(1969) later extended the concept of separating system
when he defined a completely separating system. He
considered the problemtof finding the cardinality of a
minimal completely separating system and showed that
this cardinality is asymptotic to the cardinality of a
minimal separating system. The cardinalities of
minimal binary separating systems and non-binary
separating systems under various conditions 1is studied
in chapter 2 of this thesis.

After developing a model which solves a general
search problem and iIntroducing the concepts of
separating systems and different homogeneities of
separating systems, the next problem was the
application of this model to solve specific problems
and the construction of these designs. Chakravarti
and Manglik (1972) considered the problem of applying
the random search model developed by Renyi (1965).
They used binary search systems derived froir incidence
matrices of PG(2,2) and PG(2,3) to determine the
identity of one unknown element in a finite set Sn.
However, their study did not cover other known
geometrical structures Jlike Euclidean geometries,
fandom 0-1 matrices or general projective geometries.

Manglik (1972) on the other hand studied the
construction of different homogeneities of separating

systems. He related strongly homogeneous systems of



order 2 to incidence matrices of equireplicated
pairwise balanced designs. He also studied and gave
properties of weakly homogeneous binary systems of
order 2. Strongly homogeneous and weakly homogeneous
systems of higher orders were not considered 1iIn his
paper .

An extension of tﬁé work done by Chakravarti and
Hanglik (1972) and later by Manglik (1972) 1is given 1In
chapter 3. The chapter mainly concentrates on areas
not covered by the two papers, namely: the use of
binary search systems derived from incidence matrices
of Euclidean geometries, random O0-1 matrices and
general projective geometries, to i1dentify one unknown
element In a Tfinite set Sn and the relation of
strongly homogeneous and weakly homogeneous systems of
higher orders to incidence matrices of equireplicated
pairwise balanced designs.

In applying Renyi®s model to detect one unknown
element iIn a finite set SR, Chakravarti and Hanglik
(1972) assumed a noiseless search model. A noisy
search was later studied by Chakravarti (1976). He
constructed search systems and strategies which are
separating iIn the presence of noise. He also gave a
statistical decision rule for identifying an unknown
element which maximizes the probability of correct
identification in the presence of noise. A
combinatorial approach of solving this identification
problem in the presence of noise 1is discussed iIn

chapter 6 of this thesis.
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After applying Renyi®s model of search to detect
one unknown element iIn a finite set S»> the attention
was directed at detecting two or more unknown elements
in the set Sn. Tosic (1980) considered the problem of
detecting two unknown elements iIn Sn. He developed an
optimal search procedure which identifies two unknown
elements iIn Sn by testing some subsets of Sn which may
.contain all the two unknown elements or just one of
the unknown elements. The same problem of detecting two
unknown elements wusing subsets of Sn was later
studied by Bush and Federer (1984). They examined the
case where each subset of S contains the two unknown
elements and called such a design a 2-Complete search
design. They also discussed properties of these
designs. Construction of 2-Complete search designs
which was not considered by Bush and Federer (1984) is
given iIn Chapter 4 of this thesis.

A more general design for detecting more than one
unknown element was given by Sebo (1988). He considered
the problem of detecting an unknown subset of
cardinality k (k = 1,2..... ) of the finite set Sn and
developed a probabilistic strategy of detecting the
unknown subsets u®sing minimum number of subsets.
Although Sebo (1988) gave a method of detecting the
unknown subset of Sn with a small error probability,
explicit detection of two or more unknown elements 1In
the presence of noise was not given. A model for
detecting two or more unknown elements In the presence

of noise is given iIn Chapter 6 of this thesis.



In this study we take up the problem of developing
search strategies for identifying one, two and three
unknown elements iIn a finite set. The search models
will be based on logical extensions and generalizations
of geometrical structures like projective and Euclidean

geometries and 2-Complete_ search designs.

3.4 STATEMENT OF THE PROBLEM.

The present study investigates some properties of
binary and non-binary separating systems studied by
Renyi (1965) and Katona (1966). The relationship
between separating systems and incidence matrices of
projective geometries, Euclidean geometries and random
0-1 matrices are also iInvestigated along the line
of Chakravarti and Manglik (1972). Duration of
the search process for detecting one unknown element
in a finite set Sn using these incidence matrices as
separating systems 1is also discussed.

The problem of detecting two unknown elements was
studied by Tosic (1980).and later extended by Bush and
Federer (1984) and Sebo (1988). The present study
attempts to develop search models for detecting more
than one unknown element. In particular, the study
gives a method of rconstrueting 2-Complete search
designs introduced by Bush and Federer (1984) and
develops new designs which are capable of detecting
two unknown elements. The duration of the search
Process for detecting two unknown elements using a

2-Complete search design and the newly developed
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designs are also calculated.
Lastly, the study examines the problem of
detecting one unknown element and two unknown elements

in the presence of noise.

SPECIFIC OBJECTIVES OF THE STUDY.

The specific objecFives of the present study may
be summarized as follows:

(1) To obtain some useful properties of
separating systems.

(i) To use the existing geometrical structures
like projective and Euclidean geometries to
construct search systems for detecting one
unknown element iIn a finite set.

(i) To compute duration of the search process for

detecting one unknown element.

(iv) To develop models for detecting two unknown
elements.
W) To compute duration of the search process

for detecting two unknown elements.
(vi) To investigate detection of one unknown

element and to unknown elements 1In the

presence of noise.

1.5 SIGNIFICANCE OF THE STUDY.

The results of the present study are expected to
provide useful search models for detecting one or nmore,
unknown elements iIn a set under 1iInvestigation.

Also, the results demonstrate further use of



projective and Euclidean geometries as separating
systems.

The search models derived iIn the study presume
both noiseless and noisy conditions, thus widening the
scope of practical applications of the results of the
study.

Examples of practical problems iIn which the search
models proposed iIn the study are expected to be
usefully applicable include: identification of an
unmarked chemical iIn a laboratory, searching for a
mistake iIn a computer program, decoding a received
message, searching for failure 1iIn a complicated
mechanism, diagnosis of a disease by clinical tests,

forensic identification and so on.



CHAPTER 2

ON SEPARATING SYSTEMS OF A FINITE SET.
2.1 INTRODUCTION.

We recall here the two definitions of
separating systems given iIn Chapter 1 as follows:
©O) A system F of functions f ,f ._.... ,F defined
on a finite set Sn IS a separating system 1if for
every pair of distinct elements a ,a&* e Sn there
exists in F a function f such that f@) * f @Y.
(i1) A system F of functions T ,f ,...,T defined
on Sn is a separating system if an mxn matrix whose
(v,))~th entry is (@.) has distinct columns.

An example of a separating system is given

below.

Example 21: Consider a system F = {fj.ffg}

defined on the set Sg = {a”a”™a”™ as follows;

if v =

()

ftfa } = \'O
J m iF i, i=1,2,3; j= 1,2,3,

For any pair of distinct elements a,a. e S there

exists a function f.1 in F such that fu(al) = 0 and

1? ‘(aj.) = 1, that is fx-(av) * f (aJ )- Thus, the system

F = (fl’f .f3} IS a separating system.

The search matrix of this system is;



The columns of the matrix M are distinct as
expected, since the system is a

separating system.

Some properties of separating systems.
The following are some useful properties of
separating systems; see Renyr (1965).
(i) Let F be a minimal separating system of
functions separating the elements of the
finite set S having n elements. It m
denotes the number of functions in F then
m <n - 1c
(i1) The minimum number of functions m which
separates n elements of the set S is
{logmn},where (X) denotes the least

integer greater than or equal to x.

2.2 BINARY MINIMAL SEPARATING SYSTEMS.

We call a system F of functions defined on a
finite set Sh a binary minimal separating system if
the system consists of the minimum number
functions which separates any two elements of the
set Sn and each function takes only two values L and

1. It has been proved by Renyi (1965) that the



minimal binary separating system of a set of n
elements has exactly {log2n} functions, (Where {X}

denotes the least integer > X).

Example 2.2.* The minimal separating system of
a set consisting of, 8 elements has logzZ8 = 3
functions and one possible search matrix of the

functions which separates the 8 elements 1is

i 92 93 %4 %95 %5 97 %
T 1 1 1 1 o 0 0 O
f17. 1. 1 0 O 1 1 o0 O

1 0 1 0 1 0 1 O

A minimal separating system in which
m
£ H(fF X)) = log2n 2.1D)
=i

where H(f) denotes the entropy of fe F, is called

an optimal separating system.

Lemma 2.1: Every optimal separating system 1is
a minimal separating system. However, a minimal

separating system iIs an optimal separating system if

and only if the random functions . ¥ ,...fp are
independent.
Proof

Suppose the functions fi,f2>_____. ,fm form a

minimal separating system, that 1is the vector /s’

(fl(x)zf (x),---,fm(x))' which 1s a column of the



search matrix M of the functions fl’f m takes
on different values for different values of x e Sh-
Assuming that the vector (fF<X).T (X)) ,-.,T X" IS
equally likely to be any of the m columns of the
search matrix M, the probability that the vector
0. T O, --..,F ,(XD)# is the ith column
Gma= 1,....,n) of the matrix M 1is = and the
entropy of (F(X),FA( x ) F (X)) is

n

H(E(XD)5 F(X) , - - -, T (D) =V51 = logn = logon.

But
m

EH(Fv(X)) > H(FI(X),F2(x)>..,F (x>) = log n
with equality if and only if fl(x)zf (x),..,fm(x)
are iIndependent. Thus an optimal separating system
corresponds to a minimal separating system with

OO F, (X),----- ,F_(X) independent.

Remark: An optimal separating system F can oe
characterized by saying that the partial bits of
information obtained by observing dirte tilL
functions f belonging to F do not overlap. Thus an
optimal separating system corresponds to a most

economic strategy.

Lemma 2.2: Suppose F = (fq.% mt Is a

separating system for the set Sn = {al .zi*.-.,and}
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with m = log2n, then F is an optimal separating

system.

Proof

Since m = log2n, the number of columns of the

search matrix M of the functions fl’f .- ,fF

m,n m

consists of all possible combinations of Vv ones
(zeros) and (m-O0 zeros (ones), 1= 1,2,..... Ja To
determine the number of ones In a row, say the jth

row of M we form a matrix M* whose columns

m,n mon-
are all the columns of the matrix M,, with entry
1 in the j-th row. That 1s, the J-th row of the

matrix M consists of all ones, with n” giving

mn’
the number of ones in the j-th row of an

With the jJjth row of the matrix MFn,n’
consisting of all ones, the vremaining rows which
consist of ones and zeros is (m-1) and the number
of columns of the matrix Mm,n" n" is given by the
number of all possible combinations of Vv ones

(zeros) and (m-1-O zeros (ones). Thus, the number

of ones iIn the jth row of the matrix an is:

and the number of zeros iIn the jth row of Mm,n is;

2M—- 2m1 = 2m 1.

Using the relative frequency interpretation of

/%



probability we have:

Pr( f.(x) =0) Pr(ft(x) = 1)= 2m/ z m= 1.

The entropy of f iIn F is thus;

H(FV) = log2n + -]Jlog2n = log2n
and
m
E H(F) =m = log2n
\/:1() g

which is the required condition for the separating
system F to be optimal. Thus F 1san optimal
separating system.

Next, we consider the problem of determining

the lower bound of the integermfor which there
exists a binary search matrixml\/ln , In which each
row contains Kk ones and no twocolumns are

identical. We shall denote this integer by m(n,k).

Theorem 2.1: The 1i1nteger m(n,k) described

above satisfties the i1nequality:

log2n
m(n k) k n n-k n
o log2 | n 1092
Proof
let F = (F; fa,.-...F,} be a system of

functions defined on the set Sh = <va2....>8]
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whose search matrix is the matrix Mm,p and the
element a" e corresponds to the 3th column of
Hpn  ASsuming that the function f  takes the

values 0 or 1 with equal probabilities we have:

Pr(r<x) = 1) = £

and

Pr(fv(x) =0) =1 - -

since each row of n consists of k ones and (n-k)

zeros. The entropy of fte F is then given by;

n-k .o n
HC Tv) n 1992 i .
But
m<nje n + njt n I
E, HED = k) Mogs i 3 2 nokj
> Iogzn , (see Renyi (1965)
Therefore,

c(n,k) > lcg2n/ ~ logy  * NAY 109, - I 2-2)

Which 1s the required result

Corollary 2.2 For k close to but Iless than
or equal to ™ -1, the iInteger m(nh,k) satisfies the

, . /
inequali ty:

i.(n,k)>log2n /7 /7 [Jlog2[-T ™ rTr)) + ~“oe2(FFk))" (@ 3>
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Proof*

From 2.3

But

n-k, 1

n Ing n-k = nlklog2n ~kloS2k + (n-k)log”™n

- (n-k)log,(n-k)

2r
” [™'nlog2n-klog”k-nlog2(h-k )

+ k lo2..(n-k

fcr k Ciose to but less than or eoual ro

!
I
[

we have,

lo + n“k " 71
?I %2 & nklo?2 = - -C f-n"°SEn - 2n idogin-k

+ e l0s.(n-k)- 21los

2ni2n*: nicg
+ 2log, nlos k

= 7T='N10" oo~
-nL «  vEH-KJ oo

" 0, iniy ¢ 7leg,; /<
Thu

m,n’kl 1 los2n/ 1ji°c g2(-~Tr)) +
nenoe the proof of Corollary (2.2).



Remark: Corollary 2.2 gives a weaker but easier to

compute estimate of the iInteger m(n,k).

Example 2.3: Let n = 11 and k = 4, then k = 4
is close to (n-2)/2 = (11-2)/2 = 4.5. Thus corollary
2.2 could be applied »to obtain an estimate for
m(ll,4). This estimate is:

log21l
3.52 =

|10g2(121/4x7) + ri-log24/ 7

That 1s, m(11,4) > 4, since m(n,k) must be an

integer.

2.3 NON-BINARY SEPARATING SYSTEMS.

A system F of functions fl’f ,....,frn
defined on a finite set IS a non-binary
separating system If for every pair of distinct
elements a1 a:]e Sn, there exists a function T e F
such that f (@) * f (ap and each function 1In F

takes p values 0,1,2,....,p -1 (f >?)m

Example 2.4- Consider a of two

functions fl end f2 defined on the set

,apl- as follot
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W = V a> = W = F;<a3>= W

w =2 -
Then the system IS a non-binary separating

system. This can be seen easily from its search

matrix given as follows;

4 a2a3 &% a 34 a 83 a,
y= 0O 00 1 1 1 2 2 2°
2 0 12 0 1 2 0 1 2

All the columns of the search matrix M are distinct:

thus the system (f ,f } Is a separating system.

Theorem 22¥ Suppose F = {f{.§ f.} is a

separating system on the set Sn and each function
fe F takes the value 1 @ = 0,1,..,p-1) at k points
inS ,that Is n = kp. Then m the number of

functions iIn F satisfies the inequality;

m > log n.

Proof
Let M = ((f*Ca )) be an mxn search matrix of
the functions fl,{ ...... ,F rrTThen the columns of
the matrix M are distinct since 1 I ,F
IS a separating system. The joint entropy
of {f,,f2,._ ..... f } is;
....... fm> =
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And the entropy of f e F 1is

P-1
1
E Pr(F X)) = l)log2 Pr(f (0O >
Iog2 rp(
= log since pk = n.
Bat
H<ft> + H(F2)+....+ H(fm) > H(F4,f2. ... ... ,fm).

That is,

m log2 ~ > log2n.
Changing from base 2 to base p, we have
1 1
Y L
gIO J P
mlog. - > log.n
P k P

| > |
m ogpp ngn

m > Ioan

which 1is the require”™ result.

Theorpnn 2.3: Suppose F = (F1.F -....fp} Is a
separating system on the set and each function
feF takes the value v & = 0, 1,..... ,p-1) at / <
KK --,k points in S .where k < k_<..... < k,

and [ kj = n. Then m, the number of functions in F
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satisfies the inequality:

"1 laZpn/ lo6p £ =

Proof

Let M = ((ft(aj)) be an mxn search matrix of

the functions fl’f , ,fm—Then the columns of the

matrix M are distinct since fl,f,,, ....... ’fTI is

separating system. The joint entropy

(Ft,f2,=e>fm) is>

And the entropy of T e F 1is;

H(F > =E_r log iIr

But
H(fl) + H(fz) + ———+H(f @ >_H(f1,-§ y —— ,f nr)
= loe2n -
That is
f-1:'«sl +V log™ +---+ -f logd ) i log2n
l.e

K, logn + k log,n + ... +kp log, n)

- <kilog2kl+ k2log2k2+. . .,+kplog2kp) | > log2n

Now, since k <Kk <....< kp

“nlog2n - nlog2 kj > 7"j"(kilog2n + k2log2n+

+ k log n)-(k log k

of



33

Therefore,
. [n N T I
Changing from base 2 to base p, we have

mlogpa ~ 10gpn

logp2 logp2
and
in logpn/logp n
Hence the proof.
Example 2.5: Let F " A1 xnp*x¥xx
separating system on the set - {a4,a2,..., )

and each function ¥ * F takes the value 0,1,2 and 3
at 4,12,20 and 26 points 1In respectively.

Then the minimum number of functions, m satieties

the inequality:

> logd 6 4 logd 64/4

= 1.5.

That 1s, to separate the elements of the set

a minimum of two functions would be required.



CHAPTER 3

RANDOM SEARCH MODELS BASED ON BINARY STRUCTURES
3.1 INTRODUCT I ON.

The search models we are going to study 1In
this Chapter consist of a system F of functions
which i1dentifies any unknown element x of the set
Sn = {a4,a2 an), and each function In F  takes
only two values 0 and 1. Each function divides the
set Sn into two subsets. The iIntersection of subsets
in which the unknown element x belongs gives
the 1i1dentity of Xx. These search models were
described in Chapter 1 as binary search models.

Renyi (1965) obtained the following
properties concerning binary search models.

(1) A system F of binary functions which is
weakly homogeneous of order 2 1is also weakly
homogeneous of orders 3.

(1) If R denotes the number of functions In
F and R, denotes the number of functions for which

f@) - ftd@), 1 * j, T e F then
R2Z/Rj > (n-2)/2(n-1). (3.1

(iii) ITf the system F of functions defined on
the set Sn iIs weakly homogeneous of order 2, then

for all x e n

Pt(H,x) > 1 - (n-1)[R2/RIN (3.2) A
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where P (N,x) denotes the
sequence of functions TiI#f2>.
unknown element x and R and
above.
(iv) IT the system F of binary functions
defined on the set iIs weakly homogeneous of order
2 and thus weakly homogeneous of order 3, then for

all x In Sn
PI(N,x) <1 (3.3)

where Rg denotes the number of functions for which
f@)=~f@)=Ff@)1*jJ*k feF.

We also recall that the expected duration
of the search process for detecting the unknown

element x is given by;

8

Et(xX) =

z m

Npi(N ,x) c.t.(1.7)

with p4(N,x) denoting the probability that the
process for detecting x terminates exactly at the
N th step.

The following i1s an example i1llustrating the
crnputation of the duration of the search process

for detecting one unknown element.

Example 31: Consider a set S3 consisting of
three elements a;,4 and ag and suppose that we

wish to determine one of +these elements. Let



set of three functions defined
as Tollows:

O f 1=13

w -

if 1*~3 i-1,2,3, J=1.2,3.

Then, the search matrix of the system F is;

ai 32 a

fo 1 1
M=Ff 1 0 1
3l 1 0

We notice that the columns of the matrix M
aie distinct, therefore, the system F of functions

frfz"f3 is a separating system. For any choice of

two distinct elements a ,a<in S there 1is only
1 12

one function in F such that f(a ) = f(a ). So F is
i 24

a weakly homogeneous system of order 2 with R2 -1
Further, F is a strongly homogeneous system of order
3 with P2(1,1) = R2(1.0) = R2(0,1) = 1, R2(0,0) = O,
R (0,1,1) = R3(1,1,02 = R (1,0,1) = 1, where Rl’ 2R

: * , are as defined iIn Section
and RK(yi, W )

1.2 of Chapter 1.
Now, let us compute Pt(N,x) 1f the unknown
element = i1s a¢. The following tv TSI

not detect Xx;

Thus* the probability of not detecting x within N

steps is;

tr~ G-



Therefore, the probability of detecting x within N

steps 1is;

P,(N,x) =1 - 2[ [IN. 3.5)

Hence the probability of detecting x iIn exactly N

steps 1Is;

p,<H,x> = [1;2(1]1"]-[1-20)"-"]

* 1 &)'mee » 1 N
and

Pt(l,x) =] > for N =1

since the function f identifies the unknown element
X. Using Equation (1.7) iIn Chapter 1, the expected
duration of the search process Iis;

00

Et(X) = Z N.PI(N,x)

N=1

E N.Pi(N,x)

That is, to determine X an average of two

test-functions would be required.



3.2 RANDOM SEARCH MODELS BASED ON FINITE PLANE
PROJECTIVE GEOMETRIES: PGC2, s).

We recall that the 1incidence matrix of
PG(2,s) is an n x n matrix M = (@ )), where n =
s +s+ 1and a™ = 0 or 1 depending on whether the
tth point is incident with the jth line or not
(- 1*2,....»n, §J - 1D)2; ... n).

Identifying the points of PG(2,s) with the
elements of the set and the lines with functions

of F, the incidence matrix M of PG(2,s) fTorms a

search matrix.

Lemma 3.1: The system of functions (lines) F,
derived from PG(2,s) 1is weakly homogeneous of order

2.

Proofe

Let M = (f(a )) be the search matrix of  the
strategy based on the system F. Then F will be a
weakly homogeneous system of order 2 1f R which

is the number of functions iIn F for which
s. * a-,
AN

iIs constant. That 1is, the number of functions ijn F
for which f(a) ="f(at) r 1 or fCa® = T(.,) = o,

aj * aj IS constant.

But, the number of functions In F for which

f@.)) =f(a.)=11s



B Fe S 4

E rCa.) f.(a, ), aj. * aj'

and the number of functions iIn F for which

f(@a.) = f(@.,) =0 1is

2

8 + S +

E <l-r(a DA-F.G., )).

Thus,

2
S +S+1r

Bz= E. ft(a)fta.) + (1-f/a ))(I-f.(a., ))3

v=1 L

2 .
S +s+ip

m = E I- ft(a> - f.,<a .) + 2Fi(aj)fi<aj.)
V=1 L

(s2+ s+ 1) - 2(s+ 1) + 2

-s2-s+ 1. (3.6)

which Is a constant as required. Hence r is a weakly

homogeneous system of order 2.

Lemma 3.2:- The system of functions (lines)
F, derived from PG(2,s) 1is weaki> homogeneous of
order 3.
Proof

The system™F will be weakly homogeneous of
order 3 if R , which 1is the r.umber of functions in F

for which

f@) = f(as ) = f(ag ), &) * * apv



J1 constant. That 1is, if the number of functions iIn
F for which f(@) = f(apg) = f(ap#) = 1 or fCar =
f(aj, ) = f(ajln ) - O ?’\ %, F a.,/ 1Is constant,

J
But the number of functions In F Tfor which

fap = fap) = fla, ) = 1 is

2

£ fo@bfi(a, )f@a.,, ). aj* a, * a,
i=

6

and the number of functions iIn F for which f@")
f(aj,) =f(a., ) -0is

2
s +s*I|

E <I-f @))Q-f(a.0N-f, .. D=

1=1

Thus,
R = ) +ES+&Ff @)<f @, )@, )
v1 L1 v L J J
a-f. @ HXI-f. (a,,)) Q- (a,, N1
Vgl JTf.@p - f,.@.) - f@.)
+ f_(aJ)fSaJ,) + fv(anga,j, )
S~y >
ii -3 (s +1)+ 3
s2- 2s + 1 = (s-1)2 @G3.7)

which 1Is a constant as required. Hence the proof of

the lemma.
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Example 3.2:- Consider the incidence matrix

of PG(2,3) given as follows;

Pi p2 P3 P4 P5 P<s P7 PB p* P1oPilP 12R10.
u 1 1 0 o O 1 O o o 1 0 0 O
‘2 1 o 1 o O O O o 1 o0 O 0 1
| 1 o 0 o O O 1 O O0O o0 1 1 O
u 1 o 0O 1 1 O O 1 0O 0 0O 0 O
Is o 1 1 1 o O 0O 0O ©O 0O 1 0 O
. o 1 0o O O O o 1 0o 0 o0 1 1
M=177 o 1 o o 1 0 1 0O 1 0 0 0 O
Is o o o 1 o© 1 1 0 O O 0 0 1
lo o o o o o 1 o0 1 1 0 1 0 O
Uo o o 1 0 1 1 o 0O O 0O o0 1 O
.10 0 0 O 1 o 0o o0 O 1 1 0 1
vz O 0 O 1 0 O o o 1 1 0 1 O
v o o 1"0 0 O 1 1 o 1 o o0 o

Identifying the points of this geometry with
the elements of the set S, and the [lines with
functions of F = ﬂfl’fz’--’f]S}' the incidence

matrix H forms a search matrix.

Taking any two points, say and P2 which
correspond to elements ai”32 € S13> equal to
the number of functions in F for  which
f(ab5) = f(a2) = 1 or f(as) = f(@a2) = 0. But, the

number of functions iIn F for which f(ai) = f(a2) = 1

and the number of functions In F for which

fap = f@ay) =T is;

-1~



13 13
13 - I f,>a, —_I fl( 0
i »l

1«1

&

-+

f;@Df;(@9)

Tf=a¢

=1

13-4-++1=6

Thus ,
R2=1+6=17

which @Is constant for any pair of elements
(@_a_.), implying that the system of functions
(IJine;) iIs weakly homogeneous of order -e
Theorem 3.1:- The expected duration of the
search process based on the 1incidence matrix of
C; fcr detecting one unknown element
denoted by E (X), satisfies the inequality:

+ +s+ s-1)(sN-23+1
E.Ix) < (s+D(s +s+H 4 )és

£1s~"— (4s + (s2+s-1)(s"-2s-1))
®(G +s 1
fr of
From Kauail ions (3.6) and (3.7), R9=s - s + 1

S, s + 1 respectively. Substituting these

values and S+ s 1 in (3.2) and (3.3) we
otain:
N ( 1s7_
s -S+1 w+s) 1sZ-2s+11IS
P X)1n 1 - (s + s
S ¢ Ist+s+V n NS“eS+1
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(N_I,x) > 1 - <s*™ s) Q{r;LIJMi

B!
But
(N, x) =P™N.x) - P,(N-1,x)
f82—s+l 1N /32+s\ f52—234—11n
1- (82+S) ) T I 2 3 2
+S+ 1] ¥S +S+1 J
fsz—s+i N-1
1-( S2+S)
+S+ 1y
r.2 N-1f 2
= s(s+l) ° -s+l nosfos+l (32+ s)(sz+ s—1
ks% s+1, N S2+s+ IJ 2
- SZ” 2s * 1 52—25 + 1 N-1
X 32+s+1 ,52+s+1
2 s~(s+1)s sFf1 N-1
s+ S+l s +S+1
s(s% 1)(s"+s-1)(s2-2s+1) s -2s 1 -1
5 , for N > 2
2(s™M+s+l) [s"t S+1
9 9
and

P1(1,x) =0 , for N = 1
since no single function derived from PG(2,s) can detect t -

unknown element.The expected duration cf the search m Cc -

IS;

s<x) =1 N.p~ANLx) FQ
N=

Vhich implies that

. N-1
[N 252(stl ) € s+l

E,X <
0 N=2  s2+s+1 rs2ist 1 j

S (s+1)(s*'+s—1)(32—23—1)f52—25+ lAN_ 1

2(s2s8341) I52+S+1' J
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2s (st1) q1_ s-s+1 2 (s+1)
(s +s+l) s?ist1 sZ+s+l
T
+ s(s+l)(s2+s-1)(S2-2s+1 1 - ° ~2s*1
2(s2+s+1) S +S+1

S(s+1) (s%hs—-1 X S™2S5+1)
2(s2+s+1)

(s2+s+i) 4s 2(s +s+1).9s
SCSHH) (4s R {QZQS-F)XEZ-QS-FQ}
2(s +s+1)

= (st1)(shs+ 1) 4 sSs—-1)(s2-2s+i)
9s

- =Lk - (& + (°+s-1)(s2-2s-1)) (.9
2(sN+stl)

which 1s the required result. The upper bound of the expected
duration of the search process given 1In (3.9) clearly

increases with increase iIn s.

Example 3.3: Consider the incidence matrix of PG (2,3) given

as;

[
o

O

(62

O(DCDHIAPAOCDC)Q(DCD#ﬂg

P*O(DC)OFAPAOCDC)HCDC)E

ROOOROOXALC OOT

owOOHOHonoomO%

WWROO0O00OO0O0OOWT
B

OCORPOROOOROXOO T
=
=
*

RPOO WL OOO N
1

£10
til
Li D
ti3

>
O000O0000OO0 R LT
OO000O0O (OO0
RPOOROOEO=OOWO
OO RO OROO ROOOT
ORrO O0OO0OO0OrRO » Ow
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identifying the points of PG(2,3) with t} elements

27 .. a3 of the set S, and the lines
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wjth functions ,f2,..,f13 -of -the— by™u.»—-F, the
incidence matrix M of PG(2,3) forms a search
matrix. The system F = {fx,f2,..,f13) would detect
any unknown element x In S since the columns of
the incidence matrix of PG(2,3) which 1is a search
matrix H are distinct and thus, F 1is a separating
system in Sia.

Using the 1incidence matrix of PG(2,3) as a
search matrix, the probability that the search
process for detecting one unknown element, X
terminates in exactly N steps, PI(N,x) and the
duration of the search process Ei(x) satisfy the

inequalities 3.8 and 3.9 respectively. That 1is,

2x9x4 F 7IN"t, 3x4x12x4 4 1

PICE™) 13 U3J ox13 L 13J
72 1 + 576 N
13 T 13J 26 L 13]
and
E; (O < 72.2.

The exact values for p"(N,x) and Ei(X) have been

computed by Chakravarti and Hanglik (1972) and found

to be:
2 f7r 66x9 4 .
PEN.X) 13 113 | 13 1nf
9
+ 72x10 f 3] . 23x32Fn
13 113 13 U3j
and

Et(x) = 49.64



Clearly, the exact expected duration of the search
process given above satisfies the inequality given
in (3.9).

We note here that the formula given above
gives an upper bound far from the exact value, thus

an improvement on this bound is necessary.

3.3 RANDOM SEARCH MODELS BASED ON FINITE PLANE
EUCLIDEAN GEOMETRIES: EGC2, s).

Again we recall that the incidence matrix of
EG(2,s) 1s a mxn matrix M - ((aAJ)) where m -
s+s, n=s" and a* = 0 or 1 depending on whether
the j-th point 1is incident with the i1-th line or not
& 1,2, ...m, J- 12, ...,n)

Identifying the points of EG(2,s) with
elements of the set Sn and the lines with functions
of F, we see that the incidence matrix M of EG(2,s)

IS a search matrix.

Lemma 3.3: The system of functions (lines)
F, derived from EG(2,s) 1is a weakly honoger.€.;*?

system of order 2.

Proof.

Let M = (fta )) be the search mat: = cf the
strategy based on the system F. Then F will be a
weakly homogeneous system of order 2 1f R , which

is the number of functions iIn F for which
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f@@.) = f@", ), aj * ay;

is constant. That is, the number of functions iIn F
for which fCa® = f(af) = 1 or fCa® = T(a,) =
n, a.* a, IS constant.

J J

But, the number of functions iIn F for which
f@) = f@O =1 is

S2+s
E fu(apfeal, ),

and the number of functions iIn F, for which
f(a) = f(apf) = 0 is

R s

zZ (- &)@ - fe¢ ) -

Thus,

=VS p V V)

a - ficGNa - >]

82+S
- (-F/a) - f(

= Ks S) - 2(s
=s® - s. (3.12)
which is a constant as required. Hence F is a weakly

homogeneous system of order 2.
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Lemma 3.4: The system of Tfunctions (lines)
F derived from EG(2,s) 1is weakly homogeneous of

order 3.

Proof

The system F will be weakly homogeneous of
order 3 1f R , which is the number of functions iIn F

for which

@) = f(@a® = f@a...-) aj* aff * apf
is constant. That 1is, the number of functions In F
for which f(a) = f(ag) =f(ap ) =1 or T7n) =
fa@a,)=T(@W ) =0 , aj* ajf * apf iIs constant.

But, the number of functions in F for which

f(a) =f(a,) = f(a,) = lis;

s°+ s
z @) @.)f@E. > a*a,* a,

J J

and the number of functions iIn F for which f(a)

fa,)=f@, ) - C s;

s’+s
E [<I-fi(a)))<I-Fi(a]- Di-

Thi;s .

e " kcvfFrof /v >
Irl1 L

A-f @IU-F, (3. ) -F (& / N}
S +5r

A NOIERACH IR ACD

f.a)f (a.) f (a)f.(a,.,, >



= (s2+ s) -3(s + 1D + 3
- s2 - 25 (3.13)
which 1s a constant as required. Hence the proof of

the lemma.

Example 3.4: Consider the incidence matrix of

EG(2,3) given as follows:

- P11 p2 P3 P* P5 RGE P7 P8 ppl
u 100 1 01 1 00
Iz 11 1 0 O 0 0 0 1
Is 10 00 0 1 0 0O
U 100 1 1 0 O 0 1
trs 01 00 1 0 010
M = == 0 0 1 9_ O 1 0 1 1 °

£7 O 0O 1 1 0 0 O
Is 001 10 0O0O10O0
OO0 1 10 1010

g0 0 O OO O O 1 11
1 01 00O 1 100
g2 00 1 0 1 0 1 0 1

Identifying the points of this geometry with
the elements of the set - qo>*=-,a } and  the
lines with Tfunctions of F {n. 2,5 : I
incidence matrix M forms a search matrix.

Taking any two points, say Pt and P2 which
correspond to the elements a ,a2 of , R2

equal to the number of functions iIn F for whie.n

f(at) = f(a2>= 1or f(at) = T(aE) = 0. But, the
number of functions In F for which f(at) = f(a2 - 1
iSs;

Z fiaDfi@) = 1 > <



50

nCj the number of  functions in F which
fa> f(a,) = 0 is;
12
I.
12 12
= 12 - E fl(aD)-E_ft(a2>
V=1 ( )v.:l S
12
-E _ fkal)fi<a2)
=2
=12-4-4+1 =5
Thus

which is constant for any pair of elements (a”a” )
implying that the system of functions F is weakly

homogeneous of order 2.

Theorem 3.2: The expected duration of the
search process based on the incidence matrix of
EG(2.s) for detecting unknown element Xx, E”X)

satisfies the i1nequality

E4(x) £ [(s-1) (s+1)ZIZJ J+2( - 2)(s - 2)/9]-

Proof
From (3.12) and (0.13), F, s and

rg T sz 2s Substituting these values and

R =s2+ s iIn (3.2) and (3.-3) we obtain.



PE(N,x) 1 1 D + >
S. LS + Sj

and

PE(N-1,x) > 1 - (s"- D |m

But
PE(N,x) = PE(N,x) - Px(N - 1,x)
_ N -1
<G -1 s - s
s+ s
rs’-n rs2_9gi"
123 2
(s -1).2s s°- s "
s+ s S+ s
c(s2-1)(s2-2)(s -2) s -25 "7
2s(stD) s+ s
That is,
ss- s !
pt(Nn,x) £ 2(S - 1) 5
s+ s
(s-1)(s -2)(s-2) %"
Si- Si

The expected duration of the search process 1iIs given

by :
®
Ei(x) = £ N.pt(H,x) c .F(1.7)

(0]

which implies

2 <2



which
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> rSZ_ SiN- 1
« EN 2(s-1) 2
N«O Is + s)
2 Al
(s-1)(s ;2 )(s-2) 52—28
' Is™+ g
s?. s
= 2(s-1) 1- -, - 2(s-1) +

S +s

(s-1)(s -2)(s-2) q_ SZ-2s
9

s +s ,

(s-1)(s2-2)(s-2)
9

= 21s-1 )d< s+1)2 + (s-1)Is“-2 )(3—2 >sU s+U

ich 9s

@ + (s2-2)(s-2))

(s-1 3(541)2[| + 2(S"-2>1£-2,1

-1

is the required result. Hence, the proof

5 @+ (s2-2)(s-2) 3-15)

O:

the theorem. From (3-15) we see that the expected

duration of the search process based Cn

thc

incidence mat rix Of FG (2 »S ) i ncreases -~ .1th i ncrease

in

£ .

Example 3.5: Consider the incidence matrix

EG(2,2) given ns foliovs;

FPi PO
I\

13

b

O~ O O+ O
- OO0 O O T
O O+ O O

Ib

O O+ = = = T
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Identifying the points of EG(2,2) with the

elements alta0,a3,a4 of set and the lines with
functions F1,# .. _...... . f6 of the system F, the
incidence matrix M of EG(2,2) Tforms a search
matrix. The system F = (f ,f ,..,f } would detect
any unknown element x In S4 since the columns of the
search matrix M are distinct and thus, F 1is a
separating system on S4. Using the 1i1ncidence matrix
of EG(2,2) as a search matrix, the probability
pi(N,x), that the search process for detecting one
unknown element X, terminates iIn exactly " steps,

and the duration, E (X)) of the search process

satisfy the inequalities (3.14) (3.171
v . That 1s,
1
PIN.x) < 2.4 (3.16
and
To obtain the exact value ci .. d
E1(x), we substitute P - s« s,

R3-s -2s in (3.2) m:d (3.3) tc

F(N,x)’\l—(s'—lig_cr -18)
\V? +

1'Es.z— o
PINX)E£ 1 - (-1 Lﬁ

"s2- fs2- Lg
S + S

3.19)
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3 » the expressions (3.18) and (3.19) reduce

AW C oo n Jik&a Vo> |
/. \N #SL
Pt(N,x) > 1 - 3[%j
and
PE(N,x) £ 1 - 3
GBY f)"
Thus
Pt(N,x) = 1 - 37}
and from
PI(N>x) = PI(N,x) - PE(N - 1,
we get
o 5 . N-14
X) = 1 -3 - - -
[w]J r|_l 3I 3
I~ ¢
= 3(
, 4 (“nv £ 2(3 N2
and
P1(1.x) = O.

since no single Tfunction (line) can detect the
unknown element.

The expected duration of the search process

~N(x) is then given by;

9 X @NUL
ftft Nft)
(
= 2

Thus» the expected duration of the gsearch process
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for detecting one unknown element using the
incidence matrix of EG(2,2) as a search matrix is
2.5 test-functions. This expected duration of the
search process satisfies the 1inequality given 1iIn
G.17).

We note here that although the formula given in
section 3.2 gives an upper bound far from the exact
value in example 3.4, the above formula gives an
upper bound which concides with the exact value 1iIn

this example.

.3.4 SEARCH MODELS BASED ON RANDOM 0-1 MATRICES.
Consider an mxn matrix M = ((a.lj)), whose
entries a.*,J G =1,2,. ..,m; J =1,2, ...,n) take only

two values 0 and 1 with equal probabilities. That is

Prob,(a.i.j = 0) = prob. (a £y = 1) = 5

Then the matrix M is called @ randon™0-1 nmatrix.

Identifying the ith column of the matrix M
with the element a4 of the set Sn = {a\,gz,.-,an}
and the ith row with the function fj of the system
F = {fi’f—t‘ ......... - t‘i}’ the random 0 - 1 matrix M
gives a search matrix of the s; stem F.

Let x ~ S , be the unknown element whose
identity we wish to determine by choosing a sequence
of functions f ,f ...,f, from the system F and
observing the values of these functions at the
unknown element x, until enough information is
obtained to determine the unknown element. The

unknown element, x would then be determined iIn any



of the following mutual exclusive cases:

~1) only one function iIn F, say Is selected. The
unknown element would be determined it in the
submatrix consisting of the jth row of M there
exists "I 1n the xth column and O"s 1iIn the
remaining (n-1) columns or "0 on the xth column and
I's on the remaining (n-1) columns. The probability

of such arrangement is

and the expected number of such functions (rows) is

mKT.

(i1) Two TFTunctions in F, say ¥ and T/ are

selected. Then the unknown element would be
determined i1f in the submatrix consisting of the

,1th and j2th rows of H, the xth column 1is different

from any other column. Possible columns of the
submatrix consisting of the ~th and Rth rows of M
are :
0
Prob. [*]; Prob. [q]= Prob. [°]= Prob. 41,

Thus, the probability that a column

different from all other columns 1is



And the expected number of pairs of rows with a

column different from all other columns is

n-i
(iii) Generally a sequence of k functions
f_f_ T ,F. will determine the unknown element if
ri 3 k
i

n the submatrix consisting of k rows of M, the xth
column is different from any other column, possible

columns of such a submatrix of M are:

. <
1 o Oi
d d.!
with
ri o
il 0 ?
Prob_(E - Prob. .Prob.g ;k
uJ uJ LoJd

Thus, the probability that a column will be

different from ail cchtjr columns is

A LG nor
U o
T n"e1
t >t i g- 2kJ

and the expected humber of k rows of M with

a column difzerent ":-om all other columns 1is



Termination of the search process.

To determine the probability that the search
process will terminate at the Nth step, we consider
the complementary event that the search process will
not terminate iIn N steps. To do this we require

the following counting lemma.

Lemma 3.5: Let t be the number of ways of
placing N balls in m cells such that all the m cells

are occupied, then;
t = E <-DK[’]<in-K)N .

For proof of this lemma see Renyi (1970).

Lemma 3.6: Let P (N,x) be the probability
that the sequence

f 1fV1--1f\1_1:|1f 1--1f|1;f 1-1fV1--1f|2--1f
1 2 2 3 3

v,
11 2 1 z

of length N will not detect the unknown element

X . Then,

Proof

Taking , the functions § 1\f/ ,e- to be

o barid the length N & be number of balls in

Lemma (3.5)> we find that the number of ways of

/
arranging the sequence
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o> SIS et

IVII

functions such that all the functions

of
I’l‘fw.,fvappear at least once in each sequence
is

\go ( J( )

/\
But From (3.20) the expected number of rows of
matrix M with a column different from all other

columns and thus detect the unknown element is

so the expected number of ~ rows of matrix M which

do not detect the unknown element is

Thus, the expected number of sequences

f . f,..,1 ,ft,=_,fv. cee>  eee>fV

[ 1 2 2 3 3 *

which do not detect the unknown element is

and the probability that the sequence

will not detect the unknown element is therefore,

P <N,x) = m



which completes the proof of Lemma 3.6, We
illustrate this Lemma by computing the expected
probability that the search process will not
terminate within N steps for I = 3. That 1i1s, a

sequence of three functions

T RS PP U R T i
11 12 2 3 3

in F = (fl ,f2 ,fng w¥ill not detect the unknown

eleraent.
Now, the unknown element x will be detected

by three functions f ,f ,f if in the submatrix

1 2 3

consisting of the t-th, »2-th and ig-th rows of M,
the xth column is different from any other column.
Possible columns of such a submatrix of H consisting

of three rows are:

M rn rn (©) N rol rol ro]

i i 0 i 0 i )0 >0

i) i O 5 ¥ 55 n

with

rn 1l rn i ol 1]

i =Pr. 1 =Pr.0 =Pr. 1 =Pr. O

uJ bJ bJ uJ ud
fo] ro]

=Pr. 1 :Pr.igl =Pr. C <

bJ i [°J 23

Thus, the probability that a column will be

different from all other columns is;

HdHr:R.H o



t'y i>-p o] (*'4 0 “

The expected number of three rows of M with a column

different from all other columns 1is;

~%_r ( 3.21)

Taking the functions ¥ ,21 and fl3 to be
1

cells and the length N to be number of balls iIn
lemma 3.5 we Ffind that the number of ways of
arranging the sequence

AC TP S B

i1 3

of funct ions such that all the functions

fi ,fi ,F, appear at least once iIn each sequence 1is
17 h'Y

E(-1)JP][3-0IN = 3N- 3.2N- 3.

But from (3.21) the expected number of three rows
M with a column different from all other columns -

thus detect the unknown element 1is

so the expected number of three rows of matrix
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which do not detect the unknown element is

0
Thus, the expected number of sequences

f.,fv,.... v, F ... Te - T
i i 2 2 3

which do not detect the unknown element is

and the probability that the sequence

W - Fyr .= F
i 1 Tyl - Tl

will not detect the unknown element is therefore:

A eSS = 3 *=]] X"

Remark: The probability that the search process does
not terminate within N steps, P~(N,x) given iIn lemma
3.6 is the average of the probabilities that the
search processes do not terminate within N steps.
That 1s, If a number of random O-1 matrices are
considered then the average of the probabilities
that the search processes do not terminate w:inin N

steps 1is given ,in lemma 3.6.

Corollary 31 The probability that the

search process terminates iIn N or less steps is

I
PE(N,x) =1- E <-Du
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Proof

From lemma 3.6 the probability that the
search process will not terminate in N or less steps

IS

Thus, the probability that the search process will

terminate In N or less steps is

Pt(N,x) =
Hence the proof of Corollary 3.1.

Example 3.6:- Let M = ((@?)) be a 5x5 matrix

constructed from Ffive rows and Tfive columns oi

random numbers such that:

/ 1 1f (v, pth random number is even
a =1
D to if (v.p)th random number 1is odd-

Then one possible such matrix is:

1 2 o ©
0 0 1 X
1 1 0 1 X
0O 0 1 O i

O 1 0 i

Now, since random numbers are even or ode wi;h ecual
probabilities, the prob.(a = 1)= prob.(at - 0)= %
Thus, the matrix M iIs a random 0-1 matrix.

Identifying the columns of the matrix M with



the elements of the set = (a.a.a.a.athat
is, the ith column corresponds to the element e
S, » and the functions f ,f,f  ,f >f* with the rows
of M, that 1i1s, the jJjth row corresponds to the
function T the random 0-1 matrix M gives a search
matrix of the functions Tt,12,f3>F4,15.

Let a; e Sg, be the wunknown element whose
identity we wish to determine by choosing a sequence
of functions f.§ ,........ - fg from the system
F=*ff f f . f jf } and observe the values of these
functions at a until enough information 1is obtained
to determine it.

To determine the probability of termination
of the search process, we consider the complementary
event, that 1is, the event that the search process
does not terminate In N steps. We will use lemma 3.5
to get the number of sequences of length N which do
not detect the unknown element.

The search process will not terminate iIn N
steps if any of the following sequences occur:

(i) Only one function Ff el is se le "std

N timer. The ur.k:: - 1 W Wilr not
be detected because thtre is no row with
1" W) the Ffirst column and O"s In the
remaining 4 columns cr C in the Tfirst
column and 1"s an the remaining 4
columns. The number of possible sequences

is five, viz:



f«’f4” oo™ 4"
(i1) Two functions ¥ and T, are
and x2 times respectively, where Xxt-x2
N. In this case the unknown element a;
will not be detected because the Tirst
and second columns of the submatrix
consisting of the 1st and 2nd rows of
matrix M are the same. The number of

possible sequences of * and T 1is
NJ(2N- 2) = 2N- 2.

(ii1) Two functions f1 » and f3 are selected
Xq and Xo times respectively, where X1t
= N. In this case the unknown element a;
will not be detected because the first
and second columns of the submatrix
consisting of the I1st and 3rd rows of
matrix M are the same. The number nf

possible sequences of T, and f3 is

G K - = 2N- 2.

ilar & argument the sequences of the

follow ng functions will not detect the unknown
element a;.
(iv) Two functions f; and f are selected X

and times respectively, where



i)

M

bb

X1+ X5= N; the number of possible

sequences of ftand f4 is

Two functions ¥ and T4 are selected xt
and X times respectively, where
Xq + X5= N; the number of possible

sequences of T and T4 is

Two functions f and f5 are selected
Xq and X, times respectively, where
X HX 5= N; the number of pos.sible

sequences of ¥ and f5 is

Two functions f and fg are selected xt
and X times respectively, where
X1 + Xy = N; the number of possible

sequences of ¥ and fg is

Two functions fg and T4 are selectee
X “and x2 times respectively, where
Xt X5= N; the number of possible

sequences of ¥ and T4 is



(ix) Two functions f, and f  are

O

X+ and x2 times respectively,

X+ X2= the number of

sequences of f; and f; is

Three functions are
X ,X2,X times respectively,
X + x2+ X3= N; the number of

sequences of f ,F ,f 1is

[3]<"N- 32N + 3) - 3N-

Three functions f .,f .,f are
X ,X2,X3 times respectively,
X + xz+ xa = N; the number of

sequences of f ,f ,f is
(Bn- 3.2n + 3) = 3n-

Three functions f ,f ,f are
Xi,X2,Xx3 times respectively,
XH x2+ x3= N; the number of

sequences tf f ,f ,f is
t

@) (3N- 3.2n + 3) = 3N-

Three functions Ff ,f ,f are
X<,X2,x3  times respectively,

X + X2+ xa= N; the number of

selected

where

possible

selected
where

possible

3-2n + 3-

selected
where

possible

3.2n + 3.

selected
where

possible

3.2N + 3.

selected
where

possible
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sequences of f2,f3,f4 is
HI(3N- 3.2n + 3) = 3N- 3.2N + 3.

(xiv) Three functions f,,f5,f; are selected
X1.% Xg times respectively, where
Xqt X+ Xg= N; the number of possible

sequences of 2,f3,f5 is
FIJ(BN- 3.2N + 3) = 3N- 3.2N + 3.

(xv) Four functions f1»f2if3»f4 are selected

X ,X2,X3,X4  times respectively, where
X+ X+ X+ x = N; the number of

possible sequences of T ,f ,F #F 1s

ANJ(4N-4_.3N+6.2N-4) = (4N- 4.3S+ 6.2N- 4).

Thus, the probability of the search process

terminating in N or less steps Iis;

"8(2N-2 )+5(3N-3 .2N+ 3)+(4

PI(N,x) =1-J
N.X) N
_7 -L 7~ 3N +4N*
. 5n
P
i.e
N
Pt(N,x)=I1- " 1k
(MN20=1= gy ()™ (1)
and the probability of the search process-

terminating iIn exactly N steps is



PE(N.x) = (N,x) - Pi(N - 1,X)

m fi 81
- H ffI% H T -ffIm*]}

1 tin - 8 * 8)"*'(>-

itir™> m or
The expected duration of the search process

1s

00

E X =E N. p4(N,x) c .f (1.7

N=1

i 2 r i i 3f 1 1
5l dsyh T 8N 1dsS  Saassyi

%‘A 2 - 5 X gg
= 5.83.
Thus, an average of 5.83 test-fur.ctior.£
required to detect the unknown element aj.
Note tthat the probability of termination of
the search process and expected duration c¢; the
search process given here are for a specific

/
example. If a number of random O0-1 matrices are



considered then the average of the probabilities
and durations of the search processes would be given

by Lemma 3.6.

Remarks:- To compare search systems derived from
incidence matrices of PG(2,s) and EG(2,s) with
search systems derived from random 0-1 matrices, we
first note the following:

(1) In a search system derived from the
incidence matrix of PG(2,s) or EG(2,s)
the number of functions is always greater
than or at least equal to the number of
elements.

(it) The search systems derived from the
incidence matrices of PG(2,s) and
EG(2,s) are always separating systems.

(iir) In a" search system derived from the
random O-1 matrices the number of
functions can be less than, equal t or
greater than the nur.ber of elements.

(iv) The search systcnr deiivec from ihe
random O0-1 met; [ not siwa/s
sep&:ating r> 11

Now, since not all ssfgjcn iystems der ived

from random O-1 matrices a S0; J ng systems, one
would pre.er to use scare”™ systems derived from
incidence matrices of PG(2,s) or EG(2,S) Teree

such search systems aie always separating systems.
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CHAPTER 4

DETECTING MORE THAN ONE UNKNOWN ELEMENT.

4.1 INTRODUCTION.
In this Chapter, we study +two different
strategies for detecting more than one unknown

element from a set S consisting of n

n
distinguishable elements ai>&2>....... "an © We

first study strategies for detecting two unknown

elements. These strategies are described below.

2-Complete search designs.
Using the definition of t-complete search

design given iIn Section 1.2 of Chapter 1, we define

a 2-complete search design as a system
{Ai,Az, .. .... AN JSN} consisting of m subsets
Al’ﬁ ,....,Am of a finite set Sn, in which for any
pair of elements aMa®, iIn Y, there exist subsets
A, ,....,At, oe” o 1>2>eee such

12 k . t
that an,an, e for 0 = 1>2 k and

i

k

p A - (a,,8,} Without any loss of generality
=i
we will assume that the subsets A(\l,AZ(\ ...... S 2
are the only subsets iIn the set {A+,A2,........ >Am)

which contain the pair ar,aV, =
To i1dentify two unknown elements, say u,v e S ,

we determine subsets Al LA e e A,
i U2 k

{0 2N, k) ¢ {1,2 m}y. such that u,v e Ai
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for - 1,2,...,k. The identity of the two unknown

elements is then given by the intersection of these

k
subsets, that is f) At : (u,v).
I 5

The following example illustrates this strategy.

Example 4.1: Suppose the system {At, A2,
A A A A A; S } constitutes a 2-Coraplete
search design for separating the elements of the set
S? = {al,a2,a3,a4,ab,a<),a’}. Then one possible
configuration of the subsets A2 ,Ag,AN LAS

the following:

A, = {a4>V a«"ar}"

A2

{a2,a3,ab,a7}/

Aa

fa2"a3"ad4"as}"
Mz { V W ark

A5

NS1"a3°S4’asB"
AS r {al,a2,ad,ar},

A,

{ai,a2,a5,ao0}

This design will detect anYy arbitrary pair of
elements of S,. That s, for any distinct pair
(@, &, ) of €lements of the set S?, there exists a

pair of subsets A(\l,A(\Z such that aMad, e AtJ,

= 1,2 and A n\ z W >m Thus, to detect
L [ 24 N

any pair of unknown elements In the set S? using

this design, we determine subsets amongst
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Al%{JAg,A4,AD,AJ,A‘ which contain the unknown pair
of elements. The intersection of these subsets gives
the identity of the unknown pair of elements.

More explicity, we have the following display

of detectable pairs of elements and the associated

subsets.

Subsets Elements Subsets Elements
AS*A7 a ,»a, A3-A= a »a
A, <px aq,ag \ " A. a ,a
A, "A* s,-a. A2 A, 3-3 ,85
A, A7 ai’ a ,a
A, -a7 a1-85 AL.as a .a
A *Ac a .a A,-A, a4 -3
A2*A3 a .a V A« a ,a
A3 A« az ’a4 A A a="a«
A3 A7 a ,a Al°A4 a="a7
h >A7 a, a4 A, A2 a«x-a7

-The display shows that every pair of the seven
elements can be detected by a unique pair of
subsets. For example, i1f (a ,a) is the unknown pair
of elements, then we determine subsets amongst
ALSA GALA, LA LA SA, which contain both a  and & .
The intersection of these subsets givss the identity
of the unknown pair of elements. In this case, the
subsets which’contain both a and a are A and A .
The i1ntersection of these subsets, A and A? (gives
the 1i1dentities of the unknown elements. That @is,

A.n A7 : {a, .a,} =
We can further characterize this arrangement 1iIn

terms of the iIncidence matrix of the search design.
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This 1s an mxn matrix N = ((n.p) such that if

aj-a,------ g, are the elements of the set % and
A1 Az ,Am are the subsets, then:
it aVeAj 1= 12, ....,n
woo={ if a e A j=1 , 2 m
1 fi

In the above example we therefore have:

QD
o))

a

o

a

Q

i 2 3 4 5 6 37
Ai ro 0 0 1 1 1 1"
A2 0 1 1 0 0 1 1
A3 0 1 1 1 1 0 0
N = A4 1 0 1 0 1 0 1 4.1
As 1 0 1 1 0 1 0
A5 1 1 0 1 0 0 1
1 1 0 0 1 1 0

From this matrix, we notice that every element
of appears in four subsets, every pair of
elements appears in two subsets and any three
elements appear iIn at most one subset. Now, for any
pair of elements +to be uniquely detectable the
number of subsets in which they appear must be
strictly more than the number of subsets in which
any three elements appear. This is because if the
number of subsets iIn which any three elements appear
Is the same as the number of subsets in which any
pair of elements appears, then the intersection of
these subsets will consist of three elements, not
two as vrequired for the identification of the

unknown pair of elements. This requirement is



satisfied in this example, and so any pair of

elements can be uniquely detected.

Partition search design.

Here the strategy is to determine m subsets
Ai*A2* . ___*am ©OF S, such that for any pair of
elements a«,aj @ ™ &) in S,, there exist two
disjoint subsets Agand A with a e A. and aj e V
The composite set £A11A2*"’Am ;Sn} is then called a
partition search design.

To detect two unknown elements, say u,v e S

we determine two disjoint subsets A,. and \ .

i 2
{Vvb}c U,2, .--,M} such that u e AVl and w <« AXZ.
The two unknown elements are then identified
separately from the subsets Ail and A2 by
separating systems described in Chaper 2.
The following example illustrates this
strategy.

Example 4.2: Consider the set 88 = (ai,az,..,ae}

and the subsets A;.A5.A3.A,.A5 Ag described belrr:
A =(a,a ,a,a}
A =@,a ,a,a}
Az ={a i #.agh

A, = {a . ,a .2}

3 x4 7



Az = (@ .,a.,a.,ab}k

Ag = {axeaysagagh:

Then, the system {A AA A A A S1

1 z 3 4 5 0] 8

constitutes a partition search design, since for
every distinct pair (av,a.J) of elements of S, - there
exists a pair of disjoint subsets Ay and A such
that a e A; and aj - A . The configuratiom of the
elements of the partition search design can be

more explicitly displayed as follows:

Disjoint subsets Identifiable pairs of elements

A1+Ao <al ,as),(at,a<),(al,a7),(al,a8)

(a2"ab5)" (s2"a%)’<a2’a7)"(a2-aB)
(a3,ab),<a3,a0),(a3,ar),(a3,ad)

(a4 ,a5>, (ad,a0),(a4,a7),(a4 ,ae)

a3,a4d (ax,a3), (a4, ) ,(az,a3),(az,ad)
(a5,a7), (ao,a7),(ab,a8),(a™e)

ab -a* (Sl’aZ)’(aS <’il4 ),(a ,qs),(a,,,ag )

The display shows that every pair of the eight

elements can be separated int tv® = oint subsets.
To detect two unknown t . - CFV % ano
we determine two disjoint subsets A md A ,

c {1,2,3,4,5,6} such that a~ e A* and a?

AN . In this case, the two disjoint subsets

-
are A and A,. That is, a e A and a Ag- The

two unknown elements a, and a, are then identified
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separate 1y from the subsets A and A respectively.
Again we can characterise this design by its

incidence matrix M, given as follows:

ai 2 a3 a‘4 as 8.5 a? ae
Ajrl 1 1 1 0 0 0 o°
A, O 0 0 0 1 1 1 1
Az 1. 1 0 0 1 1 0 o0
A, O 0O 1 1 0 0 1 1
A1 0 1 0 1 0 1 o0

lo 1 0 1 0 1 o0 4

From the incidence matrix, we notice that In
any two columns of the matrix M, there exist two
rows such that the 2x2 submatrix formed by the
intersection of these columns and rows 1is

1 Om >0 1°
or
_0 1 1 0
and the subsets corresponding to the rows are
disjoint. That 1s, to say, for any two distinct
elements ai,aj @ * jJj) there exists two disjoint

subsets Atl’Atz’ c {1,2,3,4,5,6}, such that

s e A anda.«A, .
1 T
4.2 2-COMPLETE SEARCH DESIGNS.
Let N=(((ng)), 1=1,2,...,m; jJ=1,2, ...,n
be the incidence matrix of a search design

(Ai>Az, .. ,Am;Sn} of the set Sn. Further, let the

elements iIn A correspond to the entries of 1I°s 1In
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the 1-th row of the incidence matrix M and T be

set consisting of all the subsets A*s which are not
incident with the j-th element, & of Sn. That Iis,

T. corresponds to the entries of O0°s In the j-th
column of the matrix M. For example, in the
incidence matrix (4.1) of a 2-Complete search design

given iIn Section (4.1) of this Chapter,

The following theorem gives a necessary and
sufficient condition for the existence of a

2-Complete search design.

Theorem 4.1 A necessary and sufficient
condition for the existence of a 2- Complete search
design (At,A2,.... . AN, Sn) for detecting an

arbitrary pair of elements (a.,a ) In SR iIs that

TKE T UT

for k=1,2,....,n; kNvVvA je
Proof

Let the r_system {AA oL AP be a
2-Complete search design. Then, consider two pairs
of elements (a,a) and (a ,aL). Since
(At,A2,..,Am;Sn) is a 2-Complete search design™
there exist subsets

1} c (1.2, ,m} such  that
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V aj e K o for g =1,2,...

|

n \ = K -ap- That is, the  subsets AH
o=* 9 1
Ah ,..,Ah are incident with both a and a .

2 | a i

of Tj’ as a set

Ajs which are not

it follows that TC

IS a set consisting of all the subsets AV»s which
are incident with the j-th element aj-

Thus
’\hhl'2 * .. * J /v H ’\jJ’ “4.3)

That is, the subsets Aﬂl% - - Atht which detect

the two unknown elements & and & are given by

TF O - 4.4

Similarly, the subsets , R Vi which
ik i R

detect the two unknown elements a and a, are given
by

( nC
Now, since {Aj,Ac,-----A,:S } s a 2-Complete
search designp

| T ;

o5

={va) andgg*vgz(vv

n
9-1

and so
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{Ah AN L ekxex AN s - Ah, 4.5
172 G P SR
That 1is,

te N te $ tec n TF “4.6)
which 1mplies that

T UT $T,UT, . 4.7

*

In particular, 1i1f the pairs were (at,a™ and (ai,ak)
then (4.7) reduces to
T, UT, $ T, UT,
which implies that
Tk$ 1 UT. - (4.8)
Conversely, suppose that T, ~ T U TJ_ , then we

have to show that the system (Al’é ,....,Am ;Sn}
Is a 2-Complete search design. That is, for any

pair of elements there exist subsets

Accl',%cc ’**'A«T* ( *2lee«T) e {1,2,..,E} such that

T
ata <A, for t = 1,2, ..,t and v,aj)-
J t 1=1 t
Now, Tk $ U Tk implies that
TrU T $T;UTy (4-9)
for any other set _* K, r = 1,2,. ...,m; and
from (4.6) it follows that
tc alctt ntc-e (4.10)
Now, p T gives subsets Cl sn.
which are incident with both a and aj
a = = 1,2, ..,n) say, AN A ,.... __.A_ .
1 2% )
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Thus, for any pair of elements (@%,a) there
exists subsets of , AN_AN, (LAY such that
12 r
a,a e A for t = 1,2,..... > . To complete
13 t
T
the proof we need to show that n A = (a ,a.J}.
=1 t 1

Now suppose,

That is, pl Aa =0 or a set consisting of one
| =] T

element or a set consisting of a.,aj and some other

T

element(s) .Now p_A_ cannot be an empty set or a
=1 t

set consisting of one element since a ,a sA , for

t = 1.2,... 7. Thus, we are left with t he

T
possibility that r A is a set consisting of
=1 “t

a.#,aj and some other element(s). To investigate this

T

ibilit let a ,a ,a_, . That is,
possibility we V3 € tr—Ji A@t

vV V C A« for t 1,2, ... ,T and S0

} is a subset of the set of sus-"*s
1 2 T

which are incident with both a- and a.,

J J
subsets which are incident with both aj and £j,
iIs given by ™ d T, . Thus
(A, >A }
1 /

T

This contradicts (4.10), hence p A" is not a set
=t

consisting of al>aJ ax* some other element(s). We
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therefore, conclude that p A = {a ,a } which
=i ‘ v J

completes the proof.

Corollary 41 Let the cardinality of the
set T(i = 1,2, ..,n) be p and the cardinality of the
intersection of any two sets T, and Tj, I * j, be
less than p/2. Then the system {A{-A5 5 - - -5ALiSnY,
where Sn is a finite set and A An, ——=LA 3 is a

collection of all the elements of the set TQ/

a-1,2,....,n) is a 2-Complete search design.

Proof
We are given that for any distinct indices t
and §J, Tt A TI < Where || denotes the

cardinality of the set concerned.

That is,
Kk NntJ < | (4.11)
and
n* <1 (4.12)
Then
ITKkn <t Uut,) <p-= (4.13)
Therefore,
T, AT UT, (4.14)

since T = p. Thus, it follows from theorem (4.1)
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that the system {At,A2>__._._°Am:sn> is a 2-Complete

search design.

Theorem 4.2: Suppose the system {Aljé ...J\m:Sn}
iIs a 2-Complete search design and suppose that
a-~ 1*2,....,n) consists of 2p + 1 elements and
that [T, f] le <p for any other set Tj g * O
jJ=1,2,...,n; then n,m and p are related by the

equation:

m1p
n Cptl) 1 (m-p-1)!

Proof

Each set consists of 2p+l elements and so

the possible number of such subsets out of m 1is

(4.15)

Out of these subset any p+l arbitrary elements

appear in

f m-(p+1) _ Tm-p

-n
12p+1-(p+1)J ~ L P J (4-16)

subsets. Thi™ is obtained by considering (pt+l)
elements to have already been chosen, thus we are
left to choose ((2p+l) - (ptl)) elements from
m - (p+1).

But, we are given that [I. fl T.] <p, thus, any
P+1 elements must appear iIn only one subset. So the

number of subsets T. which satisfy the condition of
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the theorem, is given by;

4.17)

p ! (m-2p-1)1
"o@pt) ' (m-2p-1) ! X (m-p-1) 1!

D1
. (ptD

P
(m-p-1)!

. (4.18)

which completes the proof.

4.3 CONSTRUCTION OF 2-COMPLETE SEARCH DESIGNS.

In the construction of a 2-Complete search
design, we will make use of the properties of a
t-(v,k,X ) design and a balanced incomplete block
design which are defined in Chapter 1.

We recall that, a t-(v,k,Xt) design 1is a
family B of subsets B , called blocks, of a finite
set X contain®ing v points, such that every has
the same cardinality k and every t elements of X are
contained in exactly X blocks of B. A Dbalanced
incomplete block design 1is a special -case
t- (v,k,X ) design with t - 2.

Taking the subset Bj to represent a set
consisting of all the subsets A/s which are not
incident with the Jj-th element of S , T.
@G =1,2, ..,n), we see that a t- (v.k,X ) design with
parameters t = P+1, v =m, k= 2p+tl and X =11ds a

2-Complete search design. This 1Is because each set
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N\ (ET) consists of 2p+l elements and since every
p+l elements is contained iIn exactly one & = 1
subset, it follows that jt. N t I <p, which are the
requirements for the exsistence of a 2-Complete
search design, according to Corollary (4.1).

A necessary and sufficient condition for a

t- (v,k,X ) design to exist states that the quantity

be an integer for s=0,1,2, ..,(t-1); see Renyi (1970)
In the following theorem we give a

necessary condition for exsistence for a 2-Compiete

search design.

Theorem 4.3: Suppose the system
(Ai Agse AL ;Sr? iIs a 2-Complete search design and
suppose that T (v= 1,2,....,n) consists of 2p+l

elements and that |[T g T | <p for any other set
™j *Vv), J - 1,2,...,n; then the quantity

iIs an integer for s = 0,1,2,....,p-
T

Proof

Let X be the number of subsets in which ptl-i
elements appear, that is is the number of subsets
in which pt+l1 elements appear, X is the number of
subsets iIn which p elements appear and so on.

Then from Theorem 4.2 together with the fact



that any (p+1l) elements appear Iin " sets and p

elements appear In sets and so on, we have
But.~o = 1, since [ | <p, so
fm?3I -p-1+s
P+s
(zp+ij

-p- 1+s¢ o
ps XD (4.19)
which must be an integer. Hence the proof.

Example 4-3: Let the cardinality of the st. f
T &=101,2,....,n) be 2ptl and the cardinality of
the intersectioh of any two sets and T (G * P
be less than or equal to p. Then for p - 1, ewr.-
pair of elements appears iIn exactly one subset and
each subset consists of three elements. The system
{?11T2»*==*e»T } forms a simple triple system and

thus a BIB design in which k =3, X =1, b - n and



V —in.

As a particular
{Al(Az. ... .Ap,St2} then
{11,712, ...,1,,} forms a
k=3, X=1, b = 12
configuration of the
these parameters is;

- {1,2,3}
B; = {1.6,7}
B - {2,4,7}
B7 r {2,5,8}
Bp = {3,7,8}

By - {4.6,8}

case, consider the system
with P = 1, the set
simple triple system with
and v = 9. One possible
simple triple system with

Ba = {1.4.5}

B, - {1.8,9}

B« = {2.6.9}

B8: {3,5,6}

B,O = {31419}

sp = 15.7.9}

IT we let the block Bv to correspond to the set
T and points in the blocks to correspond to the
subsets At's, that i1s, the J-th point corresponds
to the subset Aj} then the sets Tjs are as

T, =< W V To- ax

T2 - tAj,A4,A5} .  Bp afct

t3 = {ai,a5a7} To - {pa’A77Ae}

T4 = {A,<Aﬂ,AA} ﬂ-IO {A3,«4 ,Ap}

7= = {A2,M A7} Tii = {A<’A0*Ae>

= (A2< W Tw=(w v
Now, the cardinality of the
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v G =1,2,... ,12) is three and the cardinality of
the intersection of any two set Vand ™\ (v * J is
at most one. Thus, using Corollary 4.1, the system
{Ai A2, ... ,Ap;Siz) 1s a 2-Complete search design.
From our definition of the set T. given earlier,
as a set consisting of all the subsets A{s which
are not incident with the j-th element, & of : we

see that the subsets A1.A5,Ag, for example are not

incident with & e S , and T¢ = (A, sA5sAg.A7, Apl
consists of subsets which are incident with a;.
Using this information, provided by T3 ,----T12
we get subsets A A .. . A as follows

A: - {a .a . a,a.a,a .a ,a },

AT {a ,a a.a.,a.,a .a ,a }

Az - {a.,a . a.a.,a,a a ,a }

A - mfa,a_ ,a ,a_,a ,a . a ,a 1,
L 1 3 4 5

A5—{a ,a ,a ,a ,a .a ,a ,a §

A5: {al ,’az %8, ~8, .a7.8, .48, ’alz}

Ay = L3,1.23 |34«5,. »a .a ,a .,a }

Ag {4 . a a a a.a,a . a
Ap {al,.az,,a3,,a5,a7, a.a  a, }

The iIncidence matrix of this design IS
therefore;
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aio

ali

A 0 ] 0 0 1 1 1 1 1 1 <:Ig.LIZI
Az 0 1 1 1 0 0 1 1 1 1 1
A3 0 1 1 1 1 1 0 0 0 1 1
A4 1 [0] 1 1 1 1 1 1 0 0 1
As 1 0 1 1 1 0 0 1 1 1 0 !
A« 1 1 0 1 1 0 1 0 1 1 [0] 1
A? 1 1 6] 1 1 1 1 0 1 1 0
Ae 1 1 1 0 1 0 1 0 1 0 1
Ae 1l 1 1 1 o0 0 1 1 1 o 1 e /'
(4.20)
Now, any pair of elements will be detected
according to the following scheme:

Subsets El ements Subsets Elernents
5*A7 *Ae A'O aj a, A, YA, A a,>ag
42 SAQ Ap aj ag ALJA AglA ay ap
. N A A aj ay ALYAs g A, ayJdaqq
5 ,AéﬁAo Ap a; ag A2 JAa A5 .A7 a4)a11
. 1A5,A7 Ao a a, A, >Aa Ay A a, }a12
4 *’A@ ;’A7 )Ap a a, Ai Ag 5 AO ana,
s A A A a a ALA A A a,a,
4. AgsA, AL a, a A A A ag) a,
5:44:4; Ao 8j 810 Ai A5 axBp 35 3p
51A; Ao aj a Aj Ag AgAe 35 A
43's 8 aj agp Aj Az Ag.Ap  amag;
21ApJ<0 p a, ag A Az Aghg  aglap
2 PR ay ay Aj Az A A, aga,
3=A g 3A 89Ap #dy ag Ai A4 A7-,>A8 a_yag
3IATR, ay ag Aj A s agyay
3"A5A, A ap &, Aj AsIAPA, a,¥a1g
2 ’*A7 :AO Ap a2 as Ai A3 )A?A7 a yall
» TAEIA, a, ap Aj A YAz>Ao agya, ,
2 3A§>A7 >AO a2 alO Ai AgyATPAO a7ya8
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Subsets Elements Subsets Elements
Ap RAg3A74A, 23ji Agha-AeE 2.8,
Ag+Ag A siig 8.8 Aiho"7 & 2jo
A i3 Agihs ag>ay Ai N3 A 8734
AyA5A.$p agsag Aj N3Ng.Ag az,aqp
Ag WAy A3 A agxdg A Ao /\4,Ap ag »ap
AgigAp agxay Aj 2 A7ihg  ag.ayg
A2:A4,A8*Ap ag ,dg Ay Mo Al,AE ag,a; ;
A2,,,A4,A5,Ap agsay, Aj No N glAg ag,aqp
ApsAgAg a3.81g Aj N2 N5Ag  @palp
A2*A3,A5, ; ag,aqq Ai’AZ’AS’AE ap’all
Ap sz A Ay %, »219 AiA2-A Ao 8ps2q9
Agihs g 2, -a5 AiAgABA  3p.an
Az, yhips, 3, -2g AiA2AsA, 31081
AB”‘A4 ?aﬁ'?p‘? a, -4, A1-A2 A, an -ap

We can also construct 2-Complete search
designs from the theorem given by Bush and Federer
(1984). Before using this theorem we state it and
give an alternative proof.

Theorem 4.4. A BIB design with parameters

(v,r,k,b,k) 1i1s a 2-Complete search design if

- 2A >

Proof

Let M oe the incidence matrix of a BIB design

with Vv objects ey ---Q, and b blocks
B ,B ,... "Eb' That is, M = <(n..)), ™ = 1,2, . ee v
0 =1,2,. ---,b, where;

it aye B.

J

» , — a
J [o it a e BJ_ -
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Now, let the complements of the blocks

BtIB2, ..... ,Bb of this BIB design correspond to the
subsets Ai,A2,...., Ab, ofF the finite set S , that
is, Bg:/ corresponds to AV for v=1,2,....,b and Tj

is as defined earlier, that is, a set of all subsets
A/s (B*s) which are not incident with the element
a € SN Then || iIs *the number of subsets A%
which are not incident with the element &, that is,
the number of complements of the subsets At‘s which
are iIncident to a.. But the complements of the
subsets Afs correspond to the blocks Bijs so T3]

is the number of blocks which are 1incident with a
particular object (element). That is [I.] = r and
™ AdTj]l =X (™ J). Using Corollary 4.1, this
design will be a 2-Complete search design If X <

r/2, that iIs r-2X > 0.

A BIB design with 2-Complete property will have
b >r. In search problems we need designs with
b < r. These designs could be obtained from
BIB designs by deleting q objects (treatments) and

all the blocks iIn which these objects occur.

Theorem 4.5: Suppose a BIB design has the
2-Complete property, that is r-2X > 0. Then the
number of objects (treatments) q which could be
deleted together with all the blocks In which they

occur without affecting the 2-Complete property
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satisfies the inequality:

Proof
IT g objects are deleted together with all the

blocks iIn which they occur, then the minimum number
of blocks in which ariy object can occur IS r-xgq.
Therefore, for a design to retain the 2-complete
property after deleting ¢ objects r - xq - 2X >0
That 1is,

q<£ - 2. (4.21)

Example 4.4: Consider the symmetric BIB
design (13,4,4,13,1). Here r = 4 and X = 1, thus the
number of objects which can be deleted without
affecting the 2-Complete property 1iIs less than
4-2=2_. That i1s, only one treatment and the blocks
in which 1t occurs can be deleted without affecting
the 2-Complete property.

Consider the BIB design (13,4,4,13,1) whose

blocks are:

B - (1.2,4,10) B - (4,0,7,13)
B, - (1,3,9,13} B - (4,8,9,11)
- (1,7,11,12) B, = 828 %1
B, - (1,5.6,8) B - (6,10,11,13)
B, - (2,3,5,11) ., - (5,9,10,12)
., - (3,7,8,10)

B - (2,6,12,13)
B. - (2,6,7,9}
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If one treatment, say 13 is deleted with all the

blocks in which it occurs, we obtain?

B x {1,2,4,10} ., = {4.8,9,11}
B, - {1,7,11,12} .. = {3,4,6,12}
B, - {1,5.6,8} B, = {5,9,10,12}
5. {2,3,5,11} B. - {3,7,8,10}
. = {2.6,7,9}
Let the element correspond to the j-th

treatment, then the subsets A\s which are the

complements of the blocks Bis are:

fVvvVvVVvVvyvVv VvV V alee\2},

A,
<vV VV W ap~a,ot

A< = {a2,a,,a<,a’ ,ap,aio0,aij,ai}

{VRK*"VV V @ a0 a2k
{al,as ,d ,as ,ae ,aio0,all,ai2}.

> »
I n

Apb =4{v V.V W w " 8.
10 = K-a.,,a, . a 8,ap,al0,au ),
» = {ai<az,a3,a ,ag,a7 ,ae ,ali).

Ala = {W W Van.a™.a"}.
And the sets T, that i1s, sets of all subsets

A/s, which are not incident with the element aj are:

i Cwov t7

To = {AL,A=,AT} Ts = {pa~aP-A13
3= <vA a13) TP = A7 “Ap "AlZ)
47 < w Ao Tio™ fa17A12 A2}
T3 — {M,A=,A2} Th T {A3*Ag*Ap}
T -

0 Tp= < V A,0"A«>
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Each subset T(t = 1,2,....,12) consists of three
elements and [V T3l 11 C * > Using Corollary
4.1, which states that if the sets V a = 1,2,..,n)
contain the same number of elements p and if the
intersection of any two sets contains less than p/2,
then the system {A1 QA _____ A m;S I} is a
2-Complete search design, we conclude that the
system {A ,A LA LA LALALA JA A ;S } is a

2-Complete search design. The incidence matrix, N,

of this design is

ajdaza a aga;, 8 ag ajgage
Ai o o 1201 11 1 1 0 11
A3 0111110 1 1 100
A4 011100 10 1 111
A5 0O 001 0 11 1 1 101
A7 10 1 1 1 0 0 1 0 1 11
AO 11 1 0 1 1 1 0 0 10 1
Aio 11 00 1 0 1 1 1110
A12 11 1 1 0 1 1 1 0 0 1o
A 11 0 : 1 1 0 O 1 0 11

A given pair of elements will be detected
according to the following SCheme

Subsets Elements Sub sets > razt
Ag-AL ApAlz3 81-82 Azgra-A3m1z 2, .3
A ,A ,A12 a ,a A3 ,A ,A5 ;'Als a.4 ’8P
Az.A7 A .Ag aq.ay AgiAg Ap A a, apq
A7-Ap SA10-A13  31-85 A K7 JAp.agz 8438y

A LA A 127A13 ag.,a_ A, Ny .A7.Aq3 ay.a,
A3 'AO ,A ,A al,a7 Ai 'Ag’AP’AlS a.3>sé\5
A= a7 A |O”A12 ai-ag A, >Ap Alo a, .



Subsets Elements
,A13 a . «fip
V A7 <Ap -A,0 aj-a,o
V A.0-A,2"Al13 S e T
V A7 >AP "A,3 a1-ai2
A3"A« >AP -Al12 a2>a3
*A12 *A13 a2 24
A3°Ap "710°713 a2 a5
A3"AP -\ 2"A13 a2 125
\<AP ,A10>Al2 a2 27
A3 A10"413 a, >ag
v A< Pi1oh13 a,z4a,
Az >\ Ap Ao a,>aj190
Agnhgg A A a2 @11
Ag AP -a13 a,>a;,
As2A4 AT " Al2 az>4a,
A -A3 *A7 "AP a3 385
A A3 AP L A7D a;>85
A1’A4 -Ap 'A,2 a3«>a7
AL Az A7 'Al2 a3 aB
Al Ag A, a3;ap
Ay A, A LA, ag>ajg
AL A4 «A7 "Al2 a;>an
A1-A4 a7 AP A354i 2
A LA A 13 a4,a
A31a5 «A12"A13 a4>ag
A4LAS ain g a7
The display shows

twelve elements can be detected by a unique

subsets. For example > if (as,ﬁ%) are

elements, then the

the 1identity of

a,n 3R A4= (4

intersection

the

-ap>_
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that

unknown

Subsets

Ai ,A3,A7 ,A10
A, *A3>A ,0«A,3
A3 <A7>Ap "A,0
A.A7 2100713
A 1mA7>Ap "A,3
A §>A3*AP"A12

AisrA 12

A i>A3"A5-A13
A3A A
AFRMEPRIST

Ai A LA A
AifAS'AIO'A12
Ai’A A LA
AaRsihpiAio
A1 *A4-A10>A.2
Ai a4 A3 Ap
A. ,A A A

A3 A5 A7 A0

A1 ,A7,A10,A12
Ai >A5 A7

A3,A AL LA

Ai’A , A A

Ai’A A LA
A4,A A
A4,A A LA

AjRaafA7 A3

pair,

every pailr

the
of Ai,A3.An
that

Elements

a3 "ae
A5 o p
45>a .0
a5>a; j
a=-ai2
33uS7
ae "a8
agxa,
agsa o
dgral
a@-a,Z
a_ 3ag
a, 3a,
a, 3a1 o
a7 33-]_1_
a7-a.2
ag-ap
a8.a .0
ag3ayg
a8 _ai2
4y ea o

ap3a]1

ap3a12

a10-a11
ajo~ a2
a; 13a1p

of the
set of
unknown

gives

is,



96

4.4 PARTITION SEARCH DESIGNS.

Suppose the set Sn consists of n elements
(al>a2>.... . an)= Then In a partiton search design,
we determine m subsets {A ,A ...... A} of S such

that for any two distinct elements a ,a e S
74 n-

there exists two disjoint subsets AV and A y such
’ 1 2

that a3 § A and a <Ay -
1 1 2 2
We describe here a procedure for constructing

the subsets AMN,Az,...,A™. We start by partitioning

the set Sn into two sets Ai and Ai .

That 1is,
A Ui =S (4.23)

and

We proceed to obtain other subsets by considering

the subsets A'i and A. as the set Sn and then

l b

partition each into two. The union of the Ffirst
part of A|1 and the first part At2 forms the tbird
subset AL3 and e wunion of the second part of
Al* and the second part A2 forms the fourth subset

Al . This process 1is repeated until all pairs of the

elements of the set SR have been separated into

disjoint subsets. This procedure of partitioning a
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set Into two is called halving procedure.

Example 4.5: Consider the set SB¥& =

{a ,a ,a3,....,ax3 then applying the halving

procedure, we obtain the following subsets of Sn,

which will separate all pairs of elements of S

Al = aZz>a3Ja4d’ ass ar &8BnN*

A2 " {ap" &io "ail "&13*

A3 = {&>a2,a3,a"} U {ap,a,0«@lt,&i2).

A4 " ~"ab5'a<b5 a7,a8} U {ai3' aid4,aib’ ai<b}.

Other subsets obtained iIn a similar manner as the

subsets A3 and A4 are :

A= = <v V a5"&Sap a.o’s.3 aul
A, r {a3-as>V v fiitaB’a,~alks-
a7 r a3 &7*v Sitazd b

™ {82 .4~ v a,omi2"SH

To detect two unknown elements, say and a,,-

we determine two disjoint subsets At . and A(\?
i :

A and
€;1>2}c {1,2,..... 8 such that < 1
a e A _In this example,the two disjoint subsets
7 i
are Agand A,. That is, a. e A and a? A, an/d
A g A - 0. The wunknown elements are then

identified separately from the subsets Ag and A
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using separating systems.

More explicitly,

of detectable

pairs of elements and

corresponding subsets:

Subsets

V Az

we have the following display

the

Identifiable pairs of elements

(a,-sp)-(»J.aio).(al,gg 1), (ai,

<a2*at).(a2.all0).(a2.ajb),(az2,

alj)

ai2)

Ca2.al3>, (a2 ,ai14),(a2,al5),<a2 ,akdb)

(as-ap)>.(a3.2,,}. (as.a11).(a3>a 1, )

<a3ea,2>(a3> 2y ), <as ’a.=)-(a32aid')
(a. aiogz(a4'a_i>'<a4'a129
v .alz),<a4.a13) '(aA.a_4>_(a_—al5

<“«'-a.16>.<a5.ap)2(a 'aiO)'(35>a:Il)

<V 'a.2>'(as'a!3)2(a1 *ad - (a5-2152%

(V a»<3>"<a<+8p>-(33.,105050-211)

(v a,2><ad 1322025, 14y (aqa2? 3

(V a10)-<s7~ pr2Ca?

2a

<a7"ai2>’<a7?

). (a?

13 "fa.4>7<a7’

(@Y al«>><aenm V 2(382:a

<ae>a.2)'<a8‘]813)'(a8>ai4)'(ae

(ae* a1459

(a,.ad), (al,a0),(a,,a_), ( ,ad)
(a2,a5), (a2 ,a5) ,(az ,a?),(a2 ,ae)
(a3,ab),(a4 ,a0),(a4 ,a7),(a4,aB)
(v a5). (a5.aa),(a,,.ar),(as,asd)

a.0)"(a7" a, t>

,ai3"

,0)>(Cae 'a1!)

*a >S*
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A (as>,aib), (at,aiv), (aio,ail),
(al0,a,4),<ai0 .al5>,(ai0,aia)

Nai.’aio),(a«2’ai3”,(ai2’ald)

(a.27ai=)"(ai2"al«>-(at"all)

<at,a3),(at,ad4),(a2,al3), (a2.,a4)

(a5,a7),(a5,ae),(ab,a7),(ab,ae)
(a8 .ail),(ap,all),(a4s ,al2)
(alo-all>>(atw"a,2)><al3’al=>

<a.3-ai«)- (a,<>al=>

A Ag (ai,a2),(a3,ad),(a=;aH, (a7 ,ae)
<apTalo)-(a.i>ai2>"(a,3>a,4)

(@15 .215)

Suppose that the set Sn consists of N elements.
Then we construct the subsets Agfes onnn A n oy
partitioning the set Sn into x equal parts for n r

k
X and x parts not all equal but with a maximum size

k

difference of one for n * x . The parts formed in
the partitioning of the set S/ forr the subsets

e*\ e
That is, v

> S =A UA_. U _...... ,U A
n Q1 2 I Ix
and
n \ =0" N
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We proceed to obtain other subsets by considering

each of subsets A, ,A ,..,A as theset S, 2 and then
1 172 X il

partition each into x parts. The union of the Tfirst

parts of each of the subsets A_I ,AI AV forms
12 X

(x + 1)-th subset, that is A ; the union of the

second parts of each of the subsets Ay 5---5A
, Ay b%

forms the (x+2)-th subset, and so on. This process
is repeated until all pairs of the eslements of the
set have been separated into disjoint subsets.
This procedure of partitioning a set Into x parts is

called j - procedure.

Theorem 4-6 The number of subsets, m In the

N - procedure is;
m = x{log™n}

where {y} denotes the least iInterger greater than or

equal to y.

Proof

Suppose the set S consists of n = x elements,

then the set "*ftioncd iInto X equal
parts. Each partition produces X subsets
consisting of n/x el ments. Suppose the TFirst
subset 1is the: n/x" elements are taken from it
to form part of subset A , n/x3 elements taken
to form part of subset A . This process is

repeated until the elements taken from Ai to form

part of a new subset is n/x~ = 1, that
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IS I - log2n. But each partition produces X

subsets, thus the total number of subsets 1is,
m = xlogxn.

For n * x , the set Sn iIs partitioned Into Xx parts
not all equal but have maximum size difference of 1.
Let k ge the size of the largest part, then ki—l
iIs the size of the smallest part.The TfTollowing

inequality therefore holds:
(kt - Dx <n <k x, (4.21)

Next, we partition the largest part (size k ) iInto X
parts, again not all equal but have a maximum “size
difference of one. Let k2 be the size of the largest

part, then k? - 1 is the size of the smallest part.

Again the 1inequality
<k» — IIX <K <ky X (4.22)

holds.

But
ki > (k2 - 1) X

imp] 1es that

<k, - D v (k2 - D x (4.23)
since k, (k D and x are all integers.
Thus, from 4 <21) and 4.22), we have

2
n <k x <kyx (4.24)

and
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n > (ki - 11X 2 (kn - D x2 (4.25)
This process 1is repeated until, we have the

inequalities

.................. 2 Reoi XM

9..
n>(kt - 0x > (K2 - Dx2 >...> <km, 4 Dx

n < ktx < k2x%

and
2 <k ,4<Xx
That is,
m'
n < x
and
m#-1
n > x

which 1mplies
m* > log n
and
m* < log n + 1
But m* iIs an integer so
m* = {log™n}.
Each partition produces x subsets, so the total
number of subsets is

m = xm*"= x{log”™n)
which completes the proof.

Theorem 4.7: An 1/x procedure, with x = 3 gives

the minimum number of subsets, m.

Proof
From Theorem 4.6, m is given by
m = x logxn e

Differentiating with respect to x and equating to
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zero, we get

dx = log.n( log™x “ (log™)*) =0

which gives,

logh x = 1 or X = e;
and
a4 _ ~(log® X )2- 2(loge x - 1)(10g& x)
dx2 = iog,.n
lo X)4
L (log _ X) ]

which 1Is positive when x = e.
Thus, x = e gives minimum number of subsets, m . But
X must be an iInteger so x = 3 would give minimum m,

that is

m = 3logan . (4.26)

4.5 DETECTING t C t > 2 2 UNKNOWN ELEMENTS.

In this section we study a strategy for
detecting t (t > 2) unknown elements from a Tfinite
set S . The strategy we propose to study is called a
t-complete search design defined in Section 1.2 of
Chapter 1. For purposes of our study of the
t-coraplete search design we define it 1iIn terms of
the intersection of the subsets A A Ay of
the finite set Sn’ as a system {A A ,... Vv

in which for any arbitrary set of t elements

@ i eeee 24} € S there exists a set of
a‘tl 3t a‘tt n
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indices fiz"**"kk} ¢ (1,2, ...,m) such  that

faa ,a ....,a} g A for * = 1,2, ...k and

vi 2 t v

i = ar ,.a® at}. Without

£_1iA|Z (C | % t} loss of

generality we will assume that the subsets A
V

*=1,2,...,K are the only subsets which contain

the set (@ ,a ,....,a }.
1 2 \

To i1dentify any t unknown elements, say
a,a,..,a, we determine subsets A ,A ...... A
1 z 1 i 1 x2 |k
V,>\2>_ . .. >K) C (1,2,3,--.-. ,m} such that
ad>82 atg A* for j- 1,2,....,k. The identity
J

of the t unknown elements 1is then given by the

mtersecktlon of these subsets AX1 ,A\z, l:,\Av »

that iIs n Av = (ai,a2,...,at).
i=1
The following example illustrates this strategy.

Example 4.6:- Suppose the system {A ,A A,
A4 A5 Ao ' A7 "Ab ' Ap 'Aio 'Ai, "A.2'A,3; s .35 constitutes
a 3-complete search design for separating the
elements of the set S {a ,a, a ,a ,a .a ,a ?
1 3 3 [e] ? S
af*aio)an ,ai2,ai3™ Then one possible configuration
of the subsets (A A L,A LA ,A A ,A,AA,A_A
1 2 3 4 5 a 7 8 s> 10 13

Ai2 ,AJ3} is the following:

Al :(631'85'5 -%87.-88. 'aP' 11 712 1a:5;1}
A =@a 283424 4,412
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A - a,*a,»a,*a *a ea #a a,, .
4 tajragragea raga #g7ay
= a a . a a a a
A5 t 2'73° 74 77 P °10° 117 12
A = {a a_.a a a_.a a a
<5 173747598710 711" " 12.5 ,3>>

a7 - tapagagagaga aggan. g
A8 - {al'az'gv'sa*'as 7 %10 %127 siss-
Ap = taymyaaagaa A,
AlO o a1 'az 'aa 'a4 'as 'a7 'as ap ajgp)”
A11 { a2 -a3 'a4 'a5 ’a<5'a8 'aP 'alo 7 all}J'
Alp= 18,-8a,.8 8588, @ ..

Ag - 18,8 4 A5, -8, 4, A, - A,
Thi s design will detect any arbitrary group
of three elements from S]3 That 1is, for any group

of three elements a.,a» ,a/ (@ * V * yga ) of the

set S5 there exist subsets Ai Al >eeee>\ |,
1 2 k
->k} = {1,2, ....,m}, such that
vV ar "arw e A for 3 - 1,2, ...,k and
n A = >Bf = }e Thus, to detect any three
P

unknown elements of the set S , we determine
subsets amongst AMNAz,....,A 3 which contain the
three unknown elements. The intersection of these
subsets gives the identity of the three wunknown

elements.
More explicitly, we have the following display

of detectable pairs of elements and the

associated subsets.



Subsets

Ay Ag e A8
Ar AR

Ag Azxhg R0
A, AL A . AR
Az "s"p Mo
As "2 " "o
Az "2 "7 Mo
Ay A, A

Ay Ay AL AL
A, AL AL A %
Ag Ag Rg AR
As A A p P10
Ag "g3fio P12
Ag Rghp Moy
Aa Pe P10 %12
A As ’AP ’Alo
A4 AlO ’A12
A, AG,AB ,Alz,
A4 A{),AP ,A12
A£> As ’Alo

A A_LA LA
A<5 A7 ’Alo ’A12
©J2 A7 ’AP ’A12
A'0 AP ’Alo 12
A2 AG’AP ’Alo
A2 A, A
A2 AG’Alé

Aa A7 A p ’A12
Ar AsA7 Ao
A N7 Np
a7 Ag-A1z

Az Ng® 10 M2
Az As 10

Az A7+A10 An
Az he" g M 12
Az Agih7 A19

Elements
a, a2 a3
a8y 8y
a. a2 a
a. @y a,
Y a,f«
a, a, ag
a, a2 ap
ai 8.2 alo
a, a2 a]l
a, 4 ajp
@ 22 213
aI a3 a4
a 83 a
a. 8.3 a{%
a, 3 a7
aI a3 38
ai a3 ap
a, ag alo
a, Az ap
4 a3 212
4 23 213
a, a4 a5
ai a4 a<3
a, a4 a,
aI a4 8.8
a a, ag
»a. a4 alo
aj a4 an
aj 8, 219
i a, 813
aj ag 85
aj @, a
aj 85 ag
aj a5 ap
aj & 19
i & i

Subsets
A‘5,A A LA
Ag .Ag.A%.Ag
A shgsh g 1o
A, AL AR LAY

A2 >A3 ?

10

Elements

dj+a5+a1)
ai ,as,als

a5+ 5y

Q

o
©

&

K
<~
mm'mmpm

%

D
4
® N B

L
[e0)
U

DD ]
B R EEFE

T DD D

[
3

ap

0 o
o
QD
7

1€ -an
-a10 -212
810 -213
aﬂ ,a12
aj-a11 213
ai ,a12.-a13
ay ,aé\,a:\

O 9O O O 9 O D Y Y D L D D D DD DD D DD

o
o
®

QD

N\
3.2 ,a3 ,a5
/\
a, »ayp 3,
a.,.33 7
a, .a, .a,

N
a2 ’a3’ ’aP
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Subsets Elements Subs e is Elements
Agshs Agn ay ag agg Ay AgA11hig 3 8,419
Ag-A3 AIO a, ag a;; Ap A, JApsAig  ar aél‘,aii
AgAz Agshjo 8 8z a1p A AgsApsAgi 8y a3.d3p
Ag-A. Ap-Aji 333 313 A Ag ALLA & ag.a
A7 A A A az a4 a5 A3 A5 *A|0A11 a2 av' ias
A7 "Ap AI I "A13 Ay a4 a4 As A3 *Alo a- a. >ap-
A, ’Ap~Alo Ay ap a4 a, Ay Ay LA A az a. -ar,
Ap= 10#11-A13 32 84 83 Az Ag Ap-fyz & a.ap
Ag Ao+~ 11 ap a4 a,  Ag AgsAn.Az a at,agd
AgAj1si13 ay 84 a19 Az Az Ag A 3y a, i34g
AgA, Ap-Aiz 8y 3, an Az A7AjonAn A ag>ap
As A7 A1p-A1z 32 34 81p Az Ag+AnsAz & g @0
Ag-A, Apshji 82 84 813 Az Ay Ap.A1g A 83>a))
A7.Ag Al1shz 32 33 83g A4 Ago-A1z & 8g.app
Az-AB AloAz 323853 Az A7 Ap 3 28g-213
Ag-A1psh11-A13 8 83 8g Az ApAg.Apl 82 3p.agg
AgiA7 AlpiA1  ap ag an Ag Ay A, Al a. ap,aii
Az-Ag Al sA1z 32 83 819 Agq Ag A7shy0 8- 3p.83p
Az-A, A3 3y 83 aj; Az AgA7,Al Az Ap.a33
A7Ag Alo-A13 83 83 31p Az Ag gz 8 Agp™ap
AgshA, Agsh11 33 85 313 Ay Ag wAgshiz 3 8107837
Ag-Ap A13 3y aga, Az AgAgiipl A a3g.ai3
A4 ,Ap A]_’L ,A]3 a, ag ag A4 A3 *A7 ,A13 as a/:l\_’lz >a19
A, ,,A7 A1l a, ag aID Az Ag A A, as aqq »13
A<5’Ap A11-A1p ag a, ag A, Ag -Ag.Ap ag ale -£11
Ajha Arohun 33383 A, AgA A & azgap
Ajshg Aghii Az ag ag Az Ag-A;sApr 8, 319.3
AiApA1 Ay Az ag ap  Aj A, <A LA ag ag >aqo
AgifB A1jA12 Az ag 8jp Aj Az A A 8, 311,84y
AijAgA7+Al0 Az a5 Ay A AgAgifg a3 agp-21g
Aj-AghAgship a8z ag ajp A AjqgsAp.Ad a a-ify
Aj-AgAgsA1y  ag ag ajg Ajgphqohig A, a8y

A Ag ApsApp Az a, a7 AgAjosinA &, 83,8,
A A, Ap’Aii az ag ag A, Aqg-A A a8, ag ,ap
Aj.A, A1Aqp ag ag ay A, A11A LA a, a ,apg
A, Ra AnAp a8z agagy A A, LApnAg 8, 83,3y
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Subsets Elements Subsets Elements
Ay Agehia 83 agrag A Aqdhy Agg 3, 2.:37D
Ay xhe az ag:dgy AR AL)A a} ag 4
Agshpe i a3 a4g5:313 Rp ALIA 1, AR aglag,
A'D.A10 a_a ,ag A2 A yAlf’Alg a4Ja%,a
Ag Ajg A1 dgna, .8, Ay An YA Pigg  a,0ag8
Ae xA12 ag a ,aj, Ay Aji A1 A8 2,493 % o
A5*Ap*A12 ag a_,aq A7 Art>A12 A1§ a4>a6.aﬂ
As A A1, a3 2,89, Ay A vAqs a,¥rs 12
Ag Ag Ay ag 2,853 Ay Ay ALAL a, Y25 a1s
A4*A10Aii a3 ao'ap AZ A/;;yAlo A13 a4ya’;,
AG*Aii a; @ 21, Ay Ag Aqg. Ay 2,V
A, #A i az; a .a, Ay AgYAip Aig 2% > 10
A sAgrhg  ag 85-8p, As ApYaip R13 a2,y 11
AgA, A ag 8985, Ay AgvAr, A3 a,ya . 12
A5 AiiA12 ag 8P *8 10 A2 ASyAp a,va.* |
A, A LAy, ag ap.ay Ay Arg Ap a,Y%

A, A A 33 8p.g2 Ry AgYA i>R13  2,vac> IO
Ay A1l a3 A .23 Ag A vAgs a,vae> 11
A, Rpp hig 8, & agy Aj AgYre "13 dsYao> 11
Ag AgiPir 24 8-313 AL ApyA, A a5 ao> 12
A5>Ai|A12 8, 25:%00 Ay A Mg Mg ag 25213
A, Aio a, a,.ag Ay AL AL AL, avagt. 10
A5>A A10 ay, ap'alZ Ai A4yA' M2 a,\ﬁya’;? il
As*A7JA11 a4 ap‘a13 Ai A2yA4’A7 a(syﬂp> i2
A6>A12A13 4 @ 10 *A41 AL A, yé'F "11 aéya‘p' 13
lsJ'nA‘<3=JA13 @, %810 2317 Ay A2 ’A13’ a5Ya1p
AS}AGJAii afr alojals Ag Ay Ag A, a4 vaip
A<a>A ’A13 a, 11 712 A’Z AsyAi agvaio
a<3*A ’Ap a, a,, ”al3 Ai A4y/\_ * 13 aeyall 12
A, AR T a4 212°%i3 Ay A7yAp P APt

A DA, A3 ag 842, Al Apyng A a5Yaq2
Ail-A13 ag a_,a, A ALYA LA LG a_yao,
ALIA, Ay 25 842 A, A YA4s 27Y¥a0» 10
AP AL ey agiagg Aj AgYA, Aqg a,Ya0» il
AdAp Ay a5 8.3, ALTA YA AL, azyag: 12
A 1A8 ’A13 ag aﬁ’alé AI lAZyAs "p w88 13
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Subsets Elements Subsets Elements
AjsA7sAgsAq) 8z a7 13 ApsAgeig Ny &, 8p Ay,
AjA3A10-A13 3 37 8g AjAgsp & Ap-Ay
Ai A A A ag ay a Ai ,A2 ,A5,A|O ay ap.-aqp
AgshpgmAinAs 85 7 85o  Aj>Ap.Az-Ak Ay ap-af
Aisfsx-App-Apz  8g>azxap  Azsfs.Ap Az 8z aif>an
AjsharA10-Als 35 87 A12 A2sAsAg.Aiz & 830 -Ap

Aj A3 g 35 37 213 Ap>agAsAe 37 aif>aig
Aisfahio”hi 35 83 3  AiPhs-Ag3 2, ay >
AgAph1pAy 85 33 A9 AjPAg.A A & aTp.aR
AjsAgsigiiiz 35 ag @y Aj.A2.A5.Ag 87 81p.853
AjAghjomA 85 83 312 A2sAg.ly A % Ap-dg

Ai73 s "n 3 3 313 A 344 8a 8p-Aii

AzAn Az 85 3 819 AjA2.A4A10 3 p.ap

Ai ,A3 .A7.A12 ag aIo ann Aj Ao ,A3 A ay a’P‘,aig

Az -A7 A0 3 ap 81 A3M.Ags-A18 2B Aq0-8m
AisAgshzsAy 85 3p 313 Ap.Ag.AsA13 8 81041
A3shsA1p A3 35 Apsan  A2iA3.AsAnl 8 210913
Ag-Aa A13 35 219312 AjAg-AsAl A an-Ap
AgsAgiprAy 85 193213 AjA3ASAE 83 211253
AitsM7 13 35 A1 AiA2As 8a 212 -413
Aj-A A A ag aj1> 13 A9,Az.A5.A19 a’F‘) aqo-a11
Ajrhgh7shg 85 31p.a13 Ap.Ag-As 3p 210”212
A;jsAr Ap,Al3  ag ay ag As Az ,AG A1 ag a10-313
Ai ,A2 ,A12 ag ay aIo Ai ,A4 ,A5 ,A,7 ap aq ,alé\
AysAgihipihy 8gay 81p  AjAQAs.A7  p ap dog
AihgiAp Az agaga  AjALAs Ay ap apais
AishoAgAjs 83 87 312 A4-A5fho A18 210 if-2H
Ai .A2 ’Aa .Ap ag ay ajig A3 ,A5 ,A© a1o ,aﬁ .Z1-

PosAjAL-PA3 353 810 AjAAsA7T 3giA2 B

The display shows that every set of three
elements can be detected by a unique set of subsets.

For example, i1f {a”a”a”~} i1s the unknown set of
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elements, then we determine subsets amongst
ALA - - A2 which contain a ,a and a - The
intersection of these subsets gives the identity of
the three unknown elements. In this case, the
subsets which contain a ,a and a are A A A,
and Asys- The 1intersection of these subsets A LA,
A? and AR gives the 1identities of the elements.
That is, A3 n n A7n\2 - {a.a.a,

We can further characterise this arrangement In
terms of the incidence matrix of the search design.

5isanh mx n matrix H = ((n)ﬂ.)), where;

rl ifa €A Q=12 eeen
Nn.. —
B 1o if g Aj 3 =B .n,

In the above example, we therefore have :

(%1 %2 %% & 3% aa P %o 2 212213«

A. 1 11 1

A,o

O PR O W FRPRRRFR PO R PR

a,2
A13 K o J

4.27)

= e e mm oam O mom 2 O O R, O

P ORPPFPPFPPFPPORPRPLIRODO
OI—\I—‘HH;OHH}—‘OOH
P PP PRPORPRPELR OO RO

P PP OPRPPRPRERELROOLPROLPR R
P P OR PP OOPROPR R PR
P O FRPr PP OOR O R R R

OrRrP PP OORRPRPRPRPR

P PP OORPRRPRORIPRIPPERO
PP OOPRPRORRRPRRROEPR
P OO R OPFPRPRERPRPRRREPR

0
1
1
1
0
1
H = as 1
1
1
1
0
1
0

From this matrix, we notice that every element
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of the set S appears in nine subsets, every pair
of elements appears iIn six subsets, any three
elements appear iIn four subsets and any four
elements appear iIn at most three subsets Now, TFor
any three elements to be uniquely detectable, the
number of subsets 1In which they appear must be
strictly more than the number of subsets In which
any four elements appear. This is because iIf mthe
number of subsets iIn which any three elements appear
iIs the same as the number of subsets iIn which any
four elements appear, then the intersection of these
subsets will consist of four elements, not three as
required for correct-identificat ion of the unknown
three elements. This requirement is satisfied in
this example, so any three unknown elements can be
uniquely detected.
Suppose N = ((n )), t- bLw,.....mj - 1,2,.

I | is the incidence matrix of a search

design {AL,A?, .. ... A Sh}  consisting of m
subsets AsPos e -,A of 4G £ 5n . Let the
elements in Aj correspond to “ho iles of 1Is in

the v-th row of the incidence r:atri>; N and T.j be a
set consistigng of all the subsets A."s which are
not incident with the j-th element, aj & Sn' That
iIs, T. corresponds to the entries 0°s in the J-th
column of the matrix N. For example in the incidence

matrix (4.27) of a 3-complete search design given in
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Section 4.5 of this Chapter

T {Al’As"’An"Asz'

1

The following theorem gives a necessary and
sufficient condition for the existence of a

t-complete search design iIn terms of T."s.
J

.Theorem 4.8:- A necessary and sufficient
condition for the existence of a t-complete search
design (A LA ,.-... A 5 S} for detecting an
arbitrary set {ar,a2>..... ,at) of t distinct

unknown elements in Sn is that

L
i=1
Proof.
Let the system A1 oo AniSpr  be a

t-complete search design. Then, consider two sets of

elements {a ,a ..-.. ,a } and {a ,a ,..,a }
i vt d 2 X
Since (Ai,A2, ... LAN; Sn> Is a

t-complete search design there exist subsets

Ah ,Ah . _....... Ah  ,{hi,h2,.....tw) c¢ {1,2,..,m}
t 2 i
such that fa ,a .--.. .a.r e A for q =
‘12 T "a
L
1,2, . ,21and n Ah = . s———a }. That
=1 9 192
is, the subsets , ’- * are incident
An Bn s L xy
with each of the points a _a\ -
1 2 t

But from the definition of T . we know that TC
j j
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Is a set consisting of all the subsets A*s which

are incident with the jth element, and so

c c c
(4.28)
That 1s, the subsets Ah ,Ah .. _____. LA which
i 2 t
detect the set 1 o ,d‘} of unknown elements
are given by;
kgl t K (4.29)
Similarly, the subsets An”An” A . which
1 2
detect the set {a  ...... ,a ¥ of unknown
Jd 2 Jt
elements are given by;
t cC
n Ta . (4.30)
r=1 r
Now, since {Ai’A/’----’AiﬁSE} iIs a t-complete search
design
n Ak = - W
and
r -
n *~{ ia>=>* > 3> v=*j
9=1 9 1 2
and so
1 -
n
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That is,

n t° * n t (4.31)

k=1 k r=1

which implies that

1 (A
u 7. $ U T 4.32
r=1 k=1 Vv (4-32)
Inparticular, if the pair of sets are
and @ ,a .
Eoyernnnnn a, 125 %y -aq)

then (4.32) reduces to:
t-1 L
uT UuUT t UT

r=1 r I k=1 k

which 1mplies that

T $U T . (4.33)
Jt k*. 'k

Conversely, suppose that T:$ U T; » then we

'l kn k
have to show that the system (A A A S)is a

t-complete search design. That 1is, for any se*

@ .a } of unknown eZ2ere: ts there
1 2 t
subsets A.Orl Ag ..... . AOC_I_} ,{<xl B, e ,a 1}J C
(1,2,....,m) such that;
(a® ,a. ,...,at} ¢ Aw for r 19
1 2 t r
and
n Aa ; <al *** ..
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t
Now, T. $ U T , implies that
X k=l K
t t
u T £ U T (4.34)

=1 V k=1 k

for other sets T , T -....... , T - , which iIn turn

W'D
implies that ,

i
| K $r:q Tﬁfr (4.35)

(=

1 C

But. n Ttk gives subsets of sn. which are incident
k-1

with the points A e-.>af.. Say Aa. AN .,
Kopegr - -2alp 1 2
A, - Thus, for any set of t elements say
T
K .mai,>me-a, 3 there exists subsets of say
i t

y . such that (ay, ,--,ay}t C A~
ACIAO% >Acr 3 V"o X X

r

for r = 1.2, . ....,t. To complete the proof we

show that

Now, suppose that

T
N - P
0 A7 {a a3
That 1s, pPg A =0 or a set consisting of one or
r=1 s r
more elements of the set {a 1,% a } or a
set consisting of the set (@ ,a ...... ,a ¥y and
12 t
T ?<

some other element(s). Now, P Aa cannot be an

r=1 r

empty set or a set consisting of one or more

elements of the set (a ,aé ..... ,a } since
1 t
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AN, r = 1,2, .. Thus,
r

;
possibility that p iIs a
r=1 AGEr

<a_1—a_2>

,a(‘lz a }y and some other

element(s). To investigate this possibility we let
a](Z a. ,a. } C A/
That 1is.

{a, ’a, -...a. =™ A
1 2 t-1 Jt r

and so

{A,, .A* ,..,Aa }

1 2 T

IS a subset of the set of subsets which arc incident

with a8 ,a ,..,a8¢ ,a . This set of subsets which

1 2 t-1 Jt

incident with a ,a ,..,a
1 ', i o

q]C ,ya
N Tt |, meme., L
1 2 t-

Thus,
i

mc

QAGZ_L’ACTZ"‘-sAa } —rn_I t

This contradicts (4.34), hence 5]1 ACk IS not & set

consisting of a ,a ..... ,a and SCr c ciher
C \% V.
12 t
element(s). We therefore, conclude that
T
: /

1l Ac - {af\l,d‘z,..,a’\}whlch completes the poof

Corollary 4.2:- Let the cardinality of the set

- 1,2,....,n) be p 4 1 where t and p are
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and let the cardinality of the
i * 3} be

positive integers,
intersection of any two sets T. and T,

equal  to or less than Pe  Then the  system

(AT LAQ, .= >A; S} s a t-complete search design.

Proof e

We are given that for any distinct indices i

and i It n t] < P, where Il denotes the

cardinality of the set concerned.

That 1is,

T3 A T 1 <p, for kK r 1,2,..,t.
1 ki ~P

Then,

1(T>n \)@intdu ...Ujr nt.J] <tpP.
That 1is,

tnfu t)| <tP.

k=1 |
But
=t 4 or5=1,2,....t

Therefore,

Ty * kL_JlT_kl for k - 1,2 t.

Thus, from Theorem (4.8) and relation (4.33), the

system {A_,A a . e
i Y IS a t-complete search
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design.

Example 4. 7:- Consider the BIB design

(16,4,4, 20,1) whose blocks are given as follows:

B; = @&, 13 ,8,11} By = {6,15,7,10}
g = {7,1,11,14} Byp = {9,3,10,13}
B m=2o 3 A B,, = {12,4,13,1}
B,  {13,7,2,5} B, = {15,9,1,4}
Bs = {1,10,5,8} By, {3.12,4,7}
B, = {5.14,9,12} B {16,1,2,3}
B, = {8,2,12,15} By, = {16,4,5,6}
Bg - {11.5,15,13} B,, = 116.7.8.9}
B = {14.,8,3,6} g~ - {16,10,11,12}
6io = {2,11,6,9} 8 = {16,13,14,15}

If we et the j-th block B® to correspond to
the set T eio the points 1iIn the blocks to

correrp: ic tc J*i tubsets A% such the point j

corresponds to the subset A., then we have :

® J
Ti = < VA, ."VA = {A A, ACA
T2 - {A7 ,A4 ,ati,A14} = {As AL A LA
T, - tho "M™A, 4"V Co<v AR

T, N, "wv Ty = <v AR ALY
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TP = ,Aa "A3 A0” T15

0" v A, . —w T.s = M>arAl“A2"A35

T = ~s A5 A7 AO T

i S ) 17 - ~ 14 Az a5 "asn

T12: (v v Aw v T18 - {A0,A7 ,A8p}

T .= ;

13 <A« - W V Tip T O{A.«'A.0 'Atl’AL12>

T, : T

Mo<a=rvow 2 . asra, cALa.ALB>

Now, the cardinality of the sets
3 0 = 1,2,...,20) is four and the cardinality of
the intersection of any two sets T1 and T_

J

(I * J is at most one. Thus, using corollary 4.2,
the system {AN, ..... JAILF;  S2Q0} is a 3-Complete
search design.

From our definition of the set given earlier,

as a set consisting of all the subsets A."s which
are not incident with the j-th element, a of S
J 20’

we see that the subsets A A A A , for example

are not incident with aj and JA2 JAa A< ,A

ASJATNA8 LAp LAI0,A12,A4 ,As "Ais”™ £ives subsets which

are incident witha”. Using the information
provided by ~N T2, ...,T20. we get subsets
A1-An Ay asfollows:

Al " (ai'ad,ad’af|'S'a8'as>'aio’ail'ai2" al5"al7’

alb’ ’alp fazo }



i a0

A2 = < W W W a.i"«lu"at 9*\«*»19-

%
mt
IB " IP ’azo}
a
- g2.a,,™ ,ap,a?,8,ao0,a(,a2,a<#aB,
aIP ’azo}
A5 = {al ,a2,a3,a7,ap ,ajo,aii,al2,ai3,atd<ai=,
2P -2 -3 Ip -30
‘a ' {Vv \% \% \% \% \Y \% \% ai2 'ai9a, « "aiS'"
1<5§a181 P 7 203
~7 *ai 'S ' *a<s'% '% *aiP 'ai2 'ai3 ' aid ' &1S5"
al? 'alp ’azo}
A8 N"a2'a3'a4 'axs*S 'alO'aiO '"ail 'ai2 *&13 ' *1* '
a _,a_,a_,a }
1<5* 17 IP 20
Ap {at,a2,a3>a4 ,ab ,a? ,a(*ap ,a4l,ag ,a)& ,Ss
a_,a _,a__}
17 IP 20
AlO ~ai '32'a4 ' &P *a7 ' a8 ''ap ' *10 ' *13 ' Si4 ' 5"
aIP*’a17 *’a18 ’azo}
-/ 4

= 3a.a,a-.a,a,a,a ,a_ .a_,a .a_ -
11 3™ 747 TsT TP U7+ TP? i1 07712 3713 7714 vT 15 ¢
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"ai2 ' &14

"% 'ap ' aiO "aii

'S5

(ai >a2>a3 * &4

Al2

ai<3*ai7 *ai8 *a20

''&15 ' &1<5

‘aid

ail

a3'\ >S<&' A7 ' &P ' ailO !

~a2'’

A13

&17 * ai8 *aiP ~

''ai3 ' &15 ' \<S *

'ai2

ail

' R8 ' aiO

(ai >a4 >ab5 >SS

Al4

ai7 'alB”aiP}

al2>al3 "al™

,al0 >

i ,a0

{at,a2 ,a3>a4

Al5 =

' Si<6*ai7 *ai8 *S1P ~

aib

a4 > v v

ai3”~ai4Maib5}

iIs design 1is;

dence matrix of th

inci

The

o ™
(V]
©
=
@
o T
—
@
7--
—
%o
[0}
o i
—
< o
S
©
BO
©
W_l
©
-l1
@®©
w1
@®
(el
0 «
@
~ -
™
9 4
@
0 o
@®©
< o
@
]
@©
a20
©
.
<C

1 AL - - =

S T B W I B o R
1_1_1_.1_1_00 o
I 1 O 0O O dA dA o
OO0 I A d d A o
"1 oo d +d oo d
A Hd o dd A A o
A d 0 A A A dd
I 0 d d d d d O
A Hd HdHd o A A+
O d -+ +do - - o
I O d 4 OO 4 0O -

T L <<

0

1 1 11
11 1 1
11101011

1100 1 1t

1

0O 0 1 1

1
0
1

2

|

1
1

D
o
2
b

1
/
0

0
0
1

1
3
11

11 11
1111111111
1 0110111

1
1
o 1 1 1 1 1
11 0 1 1 O
11 1 1 1 1 0 0 1

1
1 1 1 B O

0
1

O 1 1

1 0 O

1R R R R
CIC CCICL

11 1 1 11110

11 1 1 1 1 1

1
0

0

9

-

any

can detect

ign

3-complete search des

This
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three unknown elements, For example iif a ,a .a
1 3 P
are the three unknown elements, then these

elements are detected by A2,A7,Ap ,Ai2,Ai5 A5
Thatis,AZnA?nApnAjZnﬂsnA[,(S mw v -
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CHAPTER 5

DURATION OF THE SEARCH PROCESS FOR DETECTING TWO

UNKNOWN ELEMENTS
5.1 INTRODUCTION.

In this chapter we are interested iIn the duration
of the search process for detecting two unknown
elements using the subsets Al’é ,..,Am of a finite
set defined iIn Section 4.1 of Chapter 4. In the
computation of the duration of the search process we
will use the notations iIntroduced in Chapter 1. That
is, we shall use Py(N,u,Vv) to denote
the probability that the sequence

ApAv, - AN, e AN AN, L e AiSee determines
g i2 337 - VgestAIReA

two unknown elements (u,Vv) within N steps and
PIN,ulv) to denote the probability that the
process for detecting the two unknown elements
terminates at exactly the Nth step.

The formula for computing the duration of the
search process for detecting two unknown elements is

®
Ea(u,v) = EN_.pI(N,u,v). c.F(1.10)

N=0*

*

5.2 SOME EXAMPLES.

Example 5.1 In this example we illustrate
the computation of the duration of the search
process using a 2-Complete search design.

Now,consider the 2-Complete search design of
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Example 4.1 in Section 4.1 of Chapter 4. The
conf iguration of the subsets Al#A ,...,A7 of this

2-complete search design 1is

A, =< V W a7}y
A = {a L.a,.a },
A3 = {a2 -4 -8, .a }
A, = {a-3.a.a},
A = <L{ai,a3-a-6 :
A, = {a.a.a.a_ }
A ={a-a-a.a},

The 1incidence matrix of this design is;

a a a a
2 73 a4 5

ETRN
1
1

S

A

o _Q
e o

o

1 1 O
0 0
R T
100" 1 1

0

1

1
0 1
0 1
1

=R
o
= RO o

AM

Suppose the unknown pair of elements we wish to
detect i1s (ai,a?), then since {, Az,..,A7; S?} Is a
2-complete search design, we determine subsets of S7
amongst A2 ,...,A2 which contain the pair (G ,az).
The intersection of these subsets gives the identity

of the unknown pair. In this example, the subsets

which contain (a .2 ) are A, and A, with
A p A = (@ .,a} Thus, the unknown pair of

elements (a ,a ) would be detected if and only if
the subsets A and A, are selected. It therefore

follows that the pair (a ,a2) cannot be detected in



one step. That is, the process of search cannot

terminate at N = 1.

The process of search will terminate at N = 2,

if the following sequences occur;

vV A7 or A7'A0 -

Thus, the probability of terminating the search

process after selection of two subsets 1is

PIOG,ULV) = i .y +J -y

49
The search process will terminate at N = 3 if the
following sequences occur:
Sequences Number of possibl 1e ways
Aa;A ,A7 1X1X1 = 1
A, A 1X1X1 = 1
A LA LA 5x1X 1 =5
5x1X 1 =5
RSN A 1X5X1 = 5
1X5X1 =5
where = 1,2,3,4,5. The probability of terminating

the search process at N = 3 is, therefore,

p (3,u,v) = 2

and the probability of terminating search process at
N <3 is

PIG.uN) = 2 * 5

36

For higher values of N, we consider the
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complementary event; that is, the event that the
search process does not terminate in N steps and use
Lemma 3.5 which gives the number of ways of placing
N balls in m cells such that all the m cells are

occupied as
E (1D ["T(m-k)N.

The search process will terminate in N steps if and
only if the subsets A and A are both selected.
Thus the search process will not terminate in N
steps 1f any of the following sequences occur:
Only one subset Aj is selected N times; in
that case there are 7 sequences.These

sequence are :

AjAj - vV az,aZ, - «-._ _a2
W - .. _AS > a4 ,a4 » L. *A((.
w A= ; a<5,a§ ees AN
ATAI>. A7 ®

(i1) Two subsets A and A™ are selected x and
X times respectively, where x + x = N;
1e {6,7} and « e {1,2,3,4,5}. Using the
formula above, the number of such sequences
IS

" 2 x 5(2n- 2) = 10(2n- 2).

(ii1) Two subsets A™ and A™ are selected x* and

xz times respectively, where xt + x2 = N;

and ex/? e {1,2,3,4,5}, «x * @G Number of"

such sequences is



Gv)

™
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(11(2N- 2) = 10(2n-2).

Three subsets Aa, A and A are selected
V X2 and Xx3 times respectively, where
\ +X2 + X3 = H o e {1,2,3,4,5};

aXx @ and 1 € {6,7}. Number of such

sequences 1is

[2) () (B3n-3.2n+3) = 20(3n-3.2n +3).
Three subsets AM, and Ax are selected
XijX2 and x3 times respectively, where
Xi + X2 + xa = N; € {1,2,3,4,5};
«x X @ X \. Number of such sequences is

[3] -(3N-3.2N+3) = 10(3N-3.2N +3).
Four subsets A, A", A" and A" are selected

Xi,X2,xa and X4 respectively, where

Xi + X2+ X3+ x4= N (3, \} I €
{1,2,3,4,5}; «xx @x \ X y. Number of such

sequences is

] <4*- 4.3N+ 6.2N- 4)

= 5(4N- 4_.3N+ 6.2N- 4).

Four subsets AN, AN, AN and A are selected
Xy Xy 9 g and X4 times respectively, where

X, t X, * X+ x, = N; o C {1,2,3,4,5} & X

G8x \ and t € {6,7}. Number of such

sequences is

ta-
(4N-4_3N+6_2N-4)
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= 20(4n-4.3n+6.2n-4).

(viii) Five subsets A2 ,As ,AMand As are selected

W Vv X, and x5 ti®es respectively where
Xt X2+ XH Xx«+ x5 = N; the nunber of such

sequences 1s

[51(BN-5.4n+10.3n-10.2n+5)

= (bn-5.4n+10.3n-10.2n+5).

(ix) Five subsets Aw, kft, Ax, A and A are
selected X, "X2"x3>x4 end times

X1t Xot Xgt X, + X5 = N;

5}y ®*\ * vy and

T such sequences is

N+10.3n+10.2N+5)

_AN+10.3N-10.2N+5) «

Ag.A, . 3 and A are
selected Xy X3 and XO times

and ve {6,7}. Number of such sequences is

(6N- 6.5*+ 15.4n

~ 20.3N+ 15.2N- 6)
= 2(6N-6.5N+ 15_4N

~ 20.3N+ 15.2N- 6).

Therefore, the probability of terminating the search
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process in at most N steps Iis

P4<N ,u,v) I-[7 + 20(2n- 2) + 30(3n- 3.2n+ 3)

+ 25(4*- 4.3n + 6.2n- 4)
+ 11(5n-5.4n + 10.3n - 10.2n + 5)
+ 2(6n - 6.5k + 15.4n - 20.3n

And the probability of terminating the search

process iIn exactly N steps is

PI(N,u,v) = Pt(N,u,v) - Pt(N - 1,u,v)
Vo[- (<" (?2n - [ - («

mHT" -2RT-
The expected number of tests required to detect the

pair of unknown elements is

ETQU,V) = 0£o N.pi(N,u,v)

N=1
00 N-i
E N
N=0 1
=y X 147/4
= 10.5.
Thus, to detect a pair of unknown elements (u,V) of
Sn an average of 10.5 tests would be required.
*

Example 5.2:- In this example we illustrate

the computation of the duration of the search
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process using partition search design.

Now, consider the partition search design of
Example 4.2 in Section 4.1 of Chapter 4. The
conf iguration of the subsets AqsPos o ... A, of this

partition search design is

Ai T @ira2y P A2 = {a="a«"S7TV ~
A3 = {a =gp "a7 "ash A« = {a3"a4 "V-"
As z K tg=rar¥ As = [a27a4 ra6 8}

incidence matrix of this design is

aj % &\ Yy a & a7 ag,

A; 1 1 1 1 0 o o0 o©
A >, 0 0 0 O 1 1 1 1
A 11 0 0 O 1 1 1 ¢
H=A3 0 O 1 1 1 1 0 O
A, 1 0 1 0 1 o 1 0
A 0 1 0 1 0 1 O 1 .

Suppose the unknown pair of elements we are to
detect is (a .a,). Then since (A ,A ,A A A LA S}
IS a partition search design, we determine two

disjoint subsets A and A]Z such that a, e A and
i i

ap e AV2' In this case,» the two disjoint subsets
are A and A . That 1is, aq Ag, 3 Ag and
A ®«Ay= 0. The unknown pair of elements (a ,a)
would then be"separated if and only if the subsets
and a" are selected. It therefore, follows that
the pair (ai,a2) cannot be separated 1iIn one  step.
That 1is, the process of search cannot terminate at

N = 1
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The process of search will terminate at N = 2,

if the following sequences occur

AS "AO or W

Thus, the probability of terminating the search

process after selection of two subsets is

Pi(2,4.v) =t g*0 + | x|

-ll 36
The search process will terminate at N = 3 if

any of the following sequences occur

Sequences Number of possible ways

P

XXX XX X
XX XX X X

where 1 = 1,2,3,4. The probability of terminating

the search process at N = 3 is therefore,

P (3,u,v) =
1 63

and the probability of terminating search process at

N <3 1Is

P4(3 ,u,v)

For higher values of N, we consider tma

complementary events; that i1s, the event that the

search process does not terminate in N steps. We



will use Lemma 3.5 to get the number of sequences of

length N which do not detect the unknown pair of
elements.

The search process will not terminate in N steps
iT subsets A5 and A<5 are both not selected. Thus,
the search process will not terminate In N steps if
any of the following seguences occur:

(i) Only one distinct subsets A is selected N

times; 1In that case there are 6 sequences.

These sequences are:

AiyAi,---_____V 32,32,--- ...,AZ—
A3,A3> ... Y ad.,ad>._.. .ax.
AsTAF o .. v AgAg----r---aAD.

Two subsets A, and Ay are selected Xx; and
Xo times respectively, where X
ve {5,6}y and & <« {1,2,3,4}. Possible
number of such sequences is

0-6GK-2 - 8(2N- 2).

Iwc subsets A« and AN are selected x®

LB X5 times respectively, where
\ + X2 — N; VA {5,6} and Q(;It‘é {112,3!4}'

P_ -
Possible number of such sequences Is

g (2n- 2) = 6<2n- 2).



@v)

M

133

Three subsets A, A and AN are selected
x4,x2 and xg times respectively, where

Xi+x2+x3 = N; °~>x € (1,2,3,4}. Possible

number of such sequences is
[gj(3N-3.2N+3) = 4(3n-3.2n+3).

Three subsets AMA” and A are selected
xt>x2 and xg times respectively, where
Xt + x2 + x3= N, o e {1,2,3,4} and
i e (56,6). Possible number of such

sequences is
[@ [(1<3N-3.2N4 3) = 12(3N- 3.2N+ 3).

Four subsets Aa, AN A" and A are selected

X1"X2,X3" and x* times respectively, where
XA+ x2+ x3+ x4 = N; and oc, B3N\, r e
(1,2,3,4}. Possible number of such

sequences 1is

(4N_ 4_3N+ 6.2N-4)

=(4N- 4_3N+ 6.2N- 4).

Four subsets Aa ,A™,A™ and are selected

X, X ,X

. X, X, , and , times respectively, where

X+ X2+ X3+ X4 = N; and X> €
(1,2,3,4} and v€ {5,6}. Possible numbers®.,

of such sequences 1is
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EKI)*4"' 4.3n+6.2n- 4).

= 8(4N- 4.3N+ 6.2N- 4).

(viii) Five subsets A1#A2,A3,M and Av are

selected fird times
respectively, where XxI+x2+x3+x4+x5 = N;
and v e {,5,6}. Possible number of

such sequences is

CIT[I1}(5N~ 54" + 10-3N- 10.2n+ 5)
= 2(5N-5.4N + 10.3N- 10.2n+ 5).

Therefore, the probability of terminating the search

process In at most N steps Iis

PE(N,u,v) = 1 -76 + 14(2*- 2) + 16(3N- 3.2N+3)
+ 9(4*- 4.3*+ 6.2N- 4)

+ 2(5N- 5.4*+ 10.3*- 10. 2n+5)J

IO RN O%

and the probability of terminating the search

process iIn exactly N steps 1is

Pt(N,u,v) = Px(N,u,v) - P,(N - 1,u,v)



The expected number of tests required to separate
the two unknown elements into two disjoint subsets

1S

@®
E4(u,v = E N.PI(N,u,v) c.f(1.7)
N=0

Thus, to separate the two unknown elements (al*az)
into two disjoint subsets, an average of 9.0 tests

would be required.

5.3 DURATION OF THE SEARCH PROCESS.

In Section 5.2 above we have seen two examples
dealing with the computation of the duration of the
search process for detecting to unknown elements
using a 2-complete search design and duration of the
search process for separating the two unknown
elements iInto two disjoints subsets using a
partition search design. In this Section we look at

this problem iIn general.

Theorem 5.1: Let Pr be the probability that r

subsets AN, ... ....... A selected from the set
1 2 ! r

A A A } will detect the unknown elements

(u,v) e S, In N or less steps. Then



336

Proof.
The search process will terminate in N or less

steps if all the subsets, A, .A ....eo)p which
1 2 r

detect the unknown pair of elements, (u,v) are

selected from the subsets a4 ,az Am . That is,

if we select one or two or three or ...or (m-2) or

(n-1) subsets from, A*,Az,...,Am, which do not

include all the subsets - *rwak ) then the
r

unknown pair of elements will not be detected.
Possible number of ways of selecting the subsets
which do not detect the unknown elements iIn N steps,
that 1s, under the sequences of one or two or
three or............ (n - 1) subsets of Ilength N,

which do not include all the subsets A. At""’At
L

obtained by applying Lemma 3.5 to be as fTollows

Ll@N- 3N 3y L

C v ) [ 0 0 i2"-2> * [

+[r-1] [kr DN " <r-D(r-2)N+. ...+ <r-1

(V )[(;m ;k _2>* O (3N‘3-2N+ 3) + ——

+ [* ~r] [["j(2N-2) + (i)(3N -3.2N+3)
+ [1}<4N-4.3N+ 6.2N-4) +, ...

+ [r*j [r+DN- (r+IDrN + —+ (r + D]1 <
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+.... + [mr] [(O} (m-r)(m-r-DN+ _ _.

+ (n-r)J + [i] [(m-r+DN- (m-r+D(m-r)N +

+(r-D(C"I>N* (n"D@N-2)N+ ... +

The coefficient of (n - 1)N is

m*>
the coefficient of (m - 2)N g

(t:2] *
2(m—|); r(r-1) (m-rw
r(r-0)
2

1 -R)’

the coefficient of (n - 3)N is

c W [V ] -

and in general, the coefficient of <m-0N is



C-ir* It then follows that,
p -1y (l<n-2>N- [gj(m-3)\+
x(r)(Gn-r>"]1/ <~
=E_(-D1
1-0

as requ ired .

Corollary 5.1: Let Pr be the probability that r
subsets AI .AI ""A'v selected from the collection
1 2

;
{Al’ﬁ ...... ,An} will detect the unknown elements

(u,v) iIn exactly N steps. Then

L _(-Dw m
i
Proof.
From Theorem 5.1
Pr = Ft(N,u,v) =1

-tot~ r* ® sa'"-

and

Pa(N-i,U;V): '(;)ST"*e)Sa“"'[r‘

£ ) )

/7 4



Tr.erefore,

Pr = P/N.u.v) - P4(H-1,u,v)

] c 3 M “-G1P~T™

L GOCGHT]T - I - GO

N -1
3 (IH 4 2) +
0 (:?)IIII]
N -1
1 O ft) [-*5%)
0 (¥)"U(¥ -
- 0 wm™ (- ")
* .. 1 (3P r f> =9?)
rito M ” iI0m "~ °
N -1
c 1™ """ g ¥ @fru[n Ji
r rrr nN_1
=L*"1™ io P ?) [ |
Theorem 5.2: If r subsets A: Ay ..., A
it
selected from the collection {Al’ﬁ ........ LA rﬁ’ are

required to detect the wunknown pailr of elements,
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then the expected duration of the search process

E,(u,v) 1is given by

E,(u,v) =z (-Dul n
i=1 !

Proof.

From corollary 5.1> the probability that the process

of search terminate iIn exactly N steps is given by

N—1
* 1K) ft3
But
@®
u,v) = £ N PIN,u,v)
N=O C.f(1.10)
00
=E NP
N=0
@ N—1
1§ yl=Cn
N—1
+ .
- N=N -
frl-2 + 3frK 2
1232 + m13332
""" ~ Irrffr'r

as required .
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Example 53~ Consider a partition search design
{A A A_3S }-To separete two unknown elements
(u,v) using this design we determine two disjoint

subsets AV and Av such that u e A.V and \Y
1 2 1

e Ai . The two unknown elements u and v are then
2

separately identified from A and A respectively.
1 2

Thus, to separate the two unknown elements only two

subsets A; and Ag are required. That 1iIs, r = 2
1 2

The probability that the subsets A, and A
1 2
separate the unknown elements (u,v) e Sn iIn N or

less steps 1s, therefore

=1-2PS" *PS";
the probability that the subsets A and A
i 2
separate the unknown pair of elements iIn exactly N

steps iIs

. v f[PS"' P S "1

and the expected duration of the search process 1is

Ei(u™v) r i

Remarks: Any strategy for detecting unknown elements
will only be economical i1f the expected number of
tests requirec for the identification is less than
that of the number of elements in the set S . In the

n <
case of partition search design, the expected
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number of test 1Is3ra/2, which 1is more than the
number of subsets m. The partition search design
will be economical I1f the number of elements, n, in
the finite set Is greater than 3m/2. But m=3logzn;
that is, n = 3"\ Thus partition search design
will be economical if n = 3m > 3WwW/2. This inequality
iIs true for m > 7S That 1s, a partition search
design is economical for all m > 7 -

The table below gives the number of elements n,
the number ofsubsets m, given by the formula
m = 3loggn and  the expected numberof tests required
to separate any two unknown elements iInto two

disjoint subsets, E (u,v) = 3nw/2.

Number of elements Number of The expected

subsets duration,E (u,Vv)
n = 3log, m = 3m/2 1
3 3 4.5
9 6 9.0
27 9 13.5
81 12 18.0
243 18 22.5
729 21 27.0
2187 24 31.5
6561 27 36.0
19683 30 40.5

Evidently, partition search design is very economical for

large values of n.
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CHAPTER 6

SEARCH IN THE PRESENCE OF NOISE
6.1 INTRODUCTION.

In the previous chapters we considered separating
systems for determining the identity of one unknown
element. We also considered two different strategies,
namely 2-complete search design and partition search
design for determining the identities of two unknown
elements. In all cases, we assumed that the search
process was performed in the absence of noise. That is,
the observed values of the functions f ,f ,.._,F at
the unknown element(s) were assumed to be free of any
error. In this Chapter, we consider again, separating
/systems, 2-complete search and partition search designs
except that we now assume that the search process 1is
performed in the presence of noise.

For example, we are interested iIn problems [like
detecting an  unknown element X in the set
Sn r £a,>@2>..... >an) using a binary separating system
F-4{f ,f,,...., T }, whose observed values at x, may be
in e~ror. That 1is, It is possible to observe f(X) as O
instead of the correct value 1, which leads to wrong

identification of the unknown element(s).

Example 6.1*- Consider the set S= {a ,a,....,a},
12 8

and suppose that we wish to determine one unknown

/

element X e 88 using three Tfunctions fl’f ,f3 whose
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search matrix M is.

r % a2 a3 &, a3 33 &, ag
f, 1111 0 0 00
M=f2 1 1 0 0 1 1 0 0
3 1010 10 10
The functions form a separating system

since the columns of the matrix M are distinct.
Let the unknown element x be a”. Then by observing
at x we obtain subsets A = (@ ,a ,a ,a}
i 1 2 3 4

A2 = (at,a2,a5,a2} and Ag = (@ a3>a5>a7} respectively,
with

AH AN a3 = {&=>
Suppose f2(xX) is in error. That is, it is observed as 0

instead of the correct value 3. Th-v ; the sutset

A2 = ~a3 *as>a7>aQ} would be specified by this incorrect

observation, with
Al*nlAZr}. lA 3 = iaS :}
which is wrong identification of the u.krcwn element X.

In the next section we will cons"d”*r separating

systems which determine correctly -m element x
in In the presence of noise .
6. a SEPARATING SYSTEMS WHICH DE L, ONE  UNKNOWN

ELEMENT IN THE PRESENCE or NOISE.
In this section, we describe two types of

separating systems. The Tfirst one detects an error in
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the search process for one unknown element without
correcting 1t. The second system detects and corrects
the error in determining the identity of the unknown
element.

6.2.1. Single-error detecting system.

Consider the set Snz Eai*az*---- the

1
system F of functions fm- Suppose that the
unknown element x is searched for by obser v ing the
functions f ,f ,.. successively at x Further, let
\ - vo- 1,2,..... m.  Then the system

...... tj Will be single-error detecting system

if
N = V22 o N« =u)
and
A,naZn— nay¢MAtn Aje, ne N
i<
Exarplpe 6.2s- Consider the set S_ ¥ K
vy &% and suppose the system F = (f,’f2'f3'

the following search matrix:

a 81 @ ag 8

f 1 1 10
_f 10 0 1
f; 01 0 1

f4A~001 0

H

kO R O ®
P Pk OO ®

The functions {f4,f25f3,f4) form a separating
since the columns of the search matrix M are distinct.

Let the unknown element x be a . Then by observing
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a~ a we obtain the subsets

vV 0 W ) = {anana,},
A= 2"1(R@iI> = K = W "

Aa= f3 Nf3nrat)) = {ai,a3,ab}1

and
Ad= f4 1<f4<ai>) = U i1,a2,a4};
with
\ n & nana, ={a,},
A n a nanas =0,
a, N N a na =0,
An a nana =0.
and
Ananana =0.
Thus, the system {f~.f.-f,} is a single-error

detecting system; it will detect if any function fI is

in error.

Lemma 6.1:- Let {f ,F, eeef) be da 1%

functions defined on a finite set Snz {w

....... 'V
and let A = TU°(F.<), where x is the unknown
element iIn the set S . Then

" the system >FJ

Is a single-error detecting system if and only if
the intersection of any (m-1) subsets™

VoV A gv v ----re{l.2,.
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is Xx. That 1is,

Proof.
Suppose the system (ft,f2,...,fm> is a single-error

detecting system and the unknown element x is &. That

IS,

and

for 1 <v<m.
Then, we have to prove that

a. n A, n N " {&,) (6.1)

1 2 m- |

where {il’é- S i c (1,23, e »in:

m-i !

Now, suppose

a n At n' . » 8 8
1 2 m- 1 Jf
That is, A p A pleccee n . - 0o or a set
1 2 m-j
consisting of one element a (a a set
J

consisting of a ,a .. . i * i -

NI » T "/ 1 2

* ~ £or*a set consisting of .. and some

other elements. But, A o n. n A cannot
1 2 m-j

be an empty set or a set consisting cf cre element
/

a, (ar a,) or set consisting of a.:£.3...,a
W

* §3 *mEm* I since ACn v 1l .en }



and so for k = 1,2,._.._. v(m-1). This
leaves US  with only one possibility that
Al ﬁA\é N e_...n A, IS a set consisting of

il- m- |
and some other element(s). To investigate this

possibility, we let &, be one of these other elements

in \ n \ D..... n \ e That s, a.,a, €
1 2 m-i * J

Ay H\ n....... N A e This implies that a, A

- i 2 m-1 J

since A ) Az plo----o.. P = @ and

......... >hn) = 1,2,........m},s0 a, € A"
m

and nA, D...... . o D A A~ = {a,.}-
1 2 m-1 m J

Thus, there exists j, 1 < jJj < m, such that,

A,nazn- nAh n- n An=a™}, j- * §.  This

contradicts, the fact that {f ,f  _._._._._.. ,F } 1Is a

single-error detecting system; thus A P A p.. A

1 2 “m -1

IS not a set consisting of aand some other

element(s). We therefore, conclude that A p A 0* «-*0
i | 724

\ = Clm

m-1
Conversely, suppose

J,nAIO . ........ n*. = {a,}- (6.3)

Then, we are to prove that the system {fl’f ...... ,F n}
is a single-error detecting system. That is, we have to

show that

A, n a2n n Am - {a,} (6.4)
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and
n Azn..... M n-eena
for 1 <j<m.
But
A. =
and thus
A, = @)
m m 1
1,2, .
{ ml so that
ale A..
o
That 1is,
a, e AC

Fre” <6"3) and <6"6>" follows that:

Afin ASn....0 A, ;n™*, = (a3)
and
AnhAn..... nA .na 0
But, {it .
>2-——->0" = {1,2, i} thus

(f*8) itpiy that there

and

exists j, 1 i 31

A.HA n. A r

. Nna n.

®&.7

such

@)

(6.5)

6-6)

®.7

6-8)

and

that
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which 1i1s the required result.

Theorem 6.1s- Let the number of elements in the set

be n, then the minimum number of functions, m for
which a single-error detecting system exists satisfies
the inequality:

m > Iogzn + 1.

Proof.

Let {f4,f2,...,fm) be a single - error detecting
system and A1,A o...,- A be subsets specified by the
functions 1.8 ..... ,F - Then, from Lemma 6.1, the

intersection of any (m-1) subsets, AI IA y--sA IS
2 m\—Ll
the unknown element x. That 1s, ar.v (n-1) functions

identify the unknown element. The minimum number of
functions which separate the unknown element is

{log2n}, see Rer.yi (1965). That 1is,

(m 1) > log2n
m > logz2n + 1

which ir th\ e. red result.

Example 6.?-Let SO0= {&l>a2>.......... ,aQ), then a
single-error detecting system for this set will contain
at least (log 6)+1, that 1s four, functions. One

possible search matrix of a system of four functions
d. %
a2, fg#f which 1s a single-error detecting system

1S
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a1 & aza, 53 agaya
f&r 1 11000 10
f, 1 10 1 10 00
fg 1000 1 1 11

The four functions fF1*f2*f9»f4 can easily be shown
to be a single-error detecting system by taking the

unknown element x to be’, say a4. Then, the subsets

w A3°A4 sPecifie™ by these functions are:

A - {al,a2,a3,ar},
{21-85.8, 485,

{a1-33.3, .34 -
Ay = {al,a5,a0,a7};

>
w
I

with

Ai n a2 N a3 n a, = {aA},

AC n A 2N A 3N a4 =

Aj n a7 N a3 N a4 =0,

Aina2na3na4:0,

A n a2 N a3 N a4 = 0.
Thus, the Si« (W - W iIs a single-error
dete-1:nr e cn the set Sa-

11k= 62 leet h = be an mxn

matrix whese first and last columns are respectively

(I>1>. ... ... ) and (0,0, - .... - 0" and the
remaining columns consist of all possible combinations

of Jmi zeros (or ones) and m-ones (or zeros),
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where {Xx} is the least integer greater than or equal

to x. Further, let the functions fl’}: ...... bem
defined on a finite set Sh= wo- - "’an} as follows
ri if m. =
f,(o. = 3
u J 0] if m .= 0.
Then, the system (f .,f ]J... ._ f,} of functions is

single-error detecting system.

Proof.

Identifying the columns of the matrix M with
elements al>a2>---»an of Sn and rows with the functions
Fiafou- ..., F,, we need to show that the intersection of

/ any (m-1) subsets \i _\2<----*A. I spmecified by the

functions f. ,f, ., - is a single element. That
'Y f'm—i ?

is ,

\InA-rzn—..— n a. Pe.

But,
\I n Atz n --....mim_i -

holds if and only if functions
| P - form a separatin c lee on Sn=
ERRCREEERLL PAratIng

{ag.a0% - - .- a .But we know that. the functions
T ., P will form a separat:ng system if the

matrix N, defined by;

N = (f.k(a ), K 1j2,...p 1,3 ,2, -.,n,



has distinct columns.

Now, the columns of the matrix M defined above
differ in at least two places and so iIf a row 1is
deleted, the remaining columns will differ in at least
one place. Thus, the matrix M* obtained by deleting one
row of M has distinct Ttolumns and so the functions

1=ifé,---,f 1 which correspond to the rows of M" 1is a
m_

separating system. The system f;.§ ,...f, is therefore

a single-error detecting system.

Example 6.4-: Consider a 6x22 matrix whose TfTirst
and last columns are respectively (,1,1,1,1,1)" and
(0,0,0,0,0,0)" and the remaining 20 columns consist of
all possible combinations of 3 zeros and 3 ones The
columns of this matrix are identified with the elements
of a finite set S | (a_*v e..ya_; and the rows are

identified with the Tfunctions L I f4,fm|,f‘6 The

matrix M has the following form;

haﬁ a3 a.4 a3 a€ a a” a aIOaJla12a13al4a15a16al7 alBaIP Z)&Z&

1

i1 1 1 1 1 1 1 1 1 1 0O 0O O O O O o O o o o
1 1 1 1 o o o o o o 1 1 1 1 1 1 o o ' o0 an

i1 o o O 1 1 1 o o0 o0 1 1 1 o o o 3 |

Now, suppose the fourth row iIs deleted. The remaining

matrix M* will have the form,



a9 a4 a3

We notice that the columns of the matrix M are
distinct; thus the system iIs a
single-error detecting system. We can easily, verify
this by taking the unknown element x to be say

. Then,

Aj = (8 3 a3.34, 35- A537 a8g, ap, Ajprant
Ay~ {aj @, 83 84.85,3715+413 145815+ a18, A, }
Az - {ajiay 8% ., *a, - a12>813,3;, a18-8jp- axplt
A, fa aja,a .a .a,*a .a,,a,.3 ., axy .
A5 {a*lya‘lya—yap" & 815.8,5.3217-318 ;. Ayl
A, {a a,.a,.a,.a .a,.a ~a; >a . dg=ayl:

with
a, N a a3n a4 n a5 n Aa ={»},
*fn a2na,nadnado A, =
.. Mn.3n* n* na =0-
Aln a2l “8Sn a4 n a=n aN=
A n an a3nadna5nA 0>
a, N an a3n a4 na™n A0 =,

and

AnNananhana Na

Thus, f, .f, .f,.f, ,f_.f,

ap

1 1
(¢] o
o (0}
1 o
o 1

is

. ay - a_ a a
aio “liai2 a3 14" 13

1
(¢]
o
1

1

a

o (0] o o o (0} (o] (0] (¢} o
1 1 1 1 1 1 (¢] (6] o o
1 1 1 (0] (0] (0] 1 1 1 o
(0} 1 O 1 (@] i |1 o 1 1

10 1 1 1

=€

single-error detecting

a a a .
15 17 18 Ipazoa:2la

o

o

(o]
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system.

In our study of the next type of separating systenm,
that is one which detects and corrects the error in
determining the identity of one unknown element, we
will require the basic concepts of coding theory
introduced in Chapter 1. In addition, we will need the
following property of block codes also given in
Chapter 1.

A block code with distance d 1is capable of
correcting all patterns of t or fewer errors and

detecting all patterns of t+ J, 0 <jJ < s errors it

2t s<d,s>0.

6.2.22 Error-correcting system
Let S = {a ,a aland F={F f ,...,F } be a
system of m functions. Further, let M be an mxn

search matrix of the system F. That I1is;
M= (f.(a )), v=1,2, J =1,2,. ...,n.

Let x e Sh be the wunknown element which 1is to be
identified by observing the functions f .f ,....f_
cessively at x. By these observations we obtain a
F 16T ), .-, F (D)7 The unknown element X,
iIs then identified as a~ Z - 1,2,...,n) if the vector
0T ), --,r. . F,))" is the £th column of the
matrix M.
how, suppose p functions are iIn error then the

system F={f . f £ 3 will  be?

error-detecting and error-correcting if the vector u
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(fe(x),2(x), - - -, M) )" obtained by observing

>f2»...«>fm at x is not one of the columns of the
matrix M and the distance between any two columns of
the matrix M say v and v 1is at least 2p + 1. The p
errors will be detected by the fact that none of the
columns of the matrix M iIs the vector u = (f ),
2(x),.-...,fm(x» and corrected by 1identifying the
vector u with a column v of the matrix M iIn which
d(u,v) = p. The column v can easily be shown to be
unique*, for suppose that there exists another collumn

V' of the matrix M, such that d(u, V) = p. Then,

d(v, v*) <d(v,u) + d(u,v")

dru.v) + d(u,v)

Il

-
+
o

2p

which implies that the distance between the two columns
y and v of the matrix M is less than or equal to 2p.
Tais contradicts the earlier assumption that the
distance between any two columns is at least 2p + 1.

. S. the column V" does not exist.

Example 6.5:- Consider a block code which corrects
T errors, that is, the distance between any two code
words is at least 2p + 1. Let these code words be the
columns of the matrix H defined earlier. Then thE
system F of functions which correspond to the rows of
the matrix M is error-correcting system since the

distance between any two columns of the matrix H iIs at



-157-

least 2p + 1.

Special case

Consider, the following code words of
the Hamming block codes that correct one error,

(see Chakravarti (1976)):

000O0O0O0O 0110110
1000110 0101010
0100101 0011100
0010011 1110000
0001111 1101100
1100011 1011010
1010101 01110001
1001001 1111111

Taking these code words to be the columns of the
matrix M, we obtain the following search matrix,

a a a a a a a a a a a a_a a_a >
2 3 4 s 7 8 p 10 11 12 13 14 15 15

rai

The distance between any two columns of the matrix M is
at least three, thus the functions T ,f f 1r

an error-correcting system which corrects at most ont

error. * fx
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DETERMINING TWO UNKNOWN ELEMENTS IN THE PRESENCE

OF NOISE USING A 2-COMPLETE SEARCH DESIGN.

We Ffirst recall that a 2-complete search
design 1is a system (A;.54 ,-..,A ; Sn) consisting of m
subsets Aj,A ., ... ,A of a finite set S, in which

for any pair of elements a® ,aV, in S, there exist

subsets At S/ 2>eee _ik) C (,2, ....,m

12 k }
such that aMN ay, e A’\_ for j = 1,2, .. .,k and
Kk J

[ =W ’aqx’}.

Now, suppose that the unknown elements (@,&", ) in
Sn are to be determined iIn the presence of noise. That
IS, a subset A* can be declared to contain the two
unknown elements while it actually contains just one or

none of them. Then, the intersection of the subsets

Al LA oo A will not 1identify the two unknown
eis b

elements.
In this section, we consider 2-complete search
designs which detect the error In the search process

for the two unknown elements without correcting It.

6.3.1: 2-Complete search design wiich detects an
error in the search process.
9
Consider the set Sn = (a1 N ,S r} and
2-complete search design {A1H ---- A pErg-i’cxt,
consider the set of indices (@ ,i ,..., K)c{1>2,....,m

and let A, A .. ___..... A, be the subsets of S _which
2% Y% n

contain the two unknown elements @@‘,2%,). Then, the
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2-complete search design {At,Az> .._..,Am;S } will detect

an error iIn the search process if

NN\ N n\ a,,}
1 2 k
and
a, N\ n.... n*' n..... nkK =
1 2 - j k
or
\ n \n.n........ n\ =(a)
1 2 j k
ae S, 1lg<k.
Example 6.6:~ Consider the 2-Complete search design
{A A, A S } of Example 4.3 given 1In Section
4.3 of Chapter 4. The subsets AMNAN __... - Ap were

given as follows:

Aj = <w vV 8 sap 3210%a1apt
Ay = s4>% *ap 1210-21-212%
A= <VV V 35 , jJja ,a >
A, = ad” Ja7 @ & LAk

As - @ a4® 80 & Bpo-apk
A« = {ai"S2’ad"a= "a7 p $S10va12)F
A7 -~ farS2’a«" a« *8 0 1n-
Ay = < W v 3B ra« }89 JE1p:8p 9
Ap:<VVVa=-a7”‘a8’aP’aill}'

Suppose the two unknown elements are (a3>82),

then the subsets which contain these +two unknown
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elements are A - A LA, Ay with

A«n a7 na8 nap =K -8
Aana na nap ={,),

Af n a7 nAB nAp ={a=

A<n A7 nAa nap z <®).

and
[ ] Ae n A7 n a8 n a”n = {aio>
That 1is,
n n nwEe{va>
1 2 3 4
and
aNa N\ N*c - <a)- aesP-1 =X <4.

Thus , the system {k*A2,...,Ap:Si2) is a 2-complete
search design which detects an error in the search

process.

Lemma 6.3=- Let {At,A2>_._._Am;Sn) be a 2-complete

search design. Forther, let A o .Y be the
1 2 k

subsets of the set which contain the two unknown

elements (@,a2, ) where (w2,.....\) cC

Then, the 2-complete search design {k™,k2>__ . _>Am ;Sn)
will detect an error iIn the search process if and only

if the intersection of any k-1 subset”s

\_*\ o A Is at most  three elements

| 2 k-1
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with the two unknown elements (a”a”™ ) being amongst

the three.

Proof.
Suppose the system {A1Ar, - LA Vv is a
2-complete search design which detects an error in the

search process. That is, for any set of indices

>Sb>_ .. >Sk) ¢ (1,2,--.... ,M)
A na n— n\ n.... a r {a.,a } <6.9>
102 i k
and
a, N_a. Fna™~nena = or >
1 2 J k {a’
a, e Sn . (6.10)
Then, we are to prove that
a. n At n- n \ n \ n -na - {a,,a > (6.u>
1 2 j-1 J+ i Kk
or
a, na, n 'fig, n*. N N a k:{a’\>a’\,,a .t
(6.12)
where, {av, a, , .} € Syg-
Now, suppose that
- - *
a,Na,r-n j_ln\jﬂn |n\k tv v}

and
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Alln\zn—n\j_p jii\nn K .

That iS, A ﬁ- en At n \ N- e ~
1 2 i j"‘i < \ K 0 or a set

consisting of one element aj or a set consisting of o

elements (@ ,a ) where a, a @ an, b, or
1% 7% { } a set

consisting of a*ja/>ee=i8 * where an, vV 1

1 Jr

{a,.a,,.---,a,}ad r >2 or a set consisting of

1 2 Jr

and &, and two or more other elements. But

\ n--n n\_ n..xp A cannot be the empty set or
i H Lk

a set consisting of one element or a set consisting

of two elements {aj ,a.} where aj,ay e {a™a™,} or
1 2

a set consisting of ay, a.,.-ja, where a‘a, e

r

@.a,-.,a,} since 5 n oa, n \ __=-AAE@7,a" ) ;
12777 - NN

1 ]
and so anva, e A, for , = 1,2,...,k. This
J
leaves us  with only one possibility that
ALo Atn...... n nAu ........ n a. iIs a set
1 2 J-i J+i Vk

consisting of aMa, and two or more other elements.

To investigate this possibility, we let aj
and &\ be the other elements in the set

\ n*1_n-— JCeen* n \_ N...... n a K That 1s,
w e Avn— n*,_n\_.nen\ (6.13)
i H JH k

Now, (6.9) and (6.13) imply that
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aJ aj, «r AV
That 1i1s ,
- A,
199
and so from (6.13)

a.,a < N\N— Na nacna N— Na.

¥ 1 2 J-i J K
This contradicts (6.10) Thus A {) A_Zo N \ . .Nn
H

a, N n a =- } 1s not a set

J+l k
consisting of an,a", and two or more other
elements. We therefore, conclude that
\ n\_n ... Na _N a Noveenene. n a = {a a

1 2 j—l j+l k { }

or @\, a\, ,a ,).
Conversely, suppose
AN\ Nn- n*i_Na. N®ena.
1 2 MO g W)

or

a,.n Atj‘l— oA en a « = {a", ", ,an(

ON O
H G
where @\, a", >a } o Sn . Then, we are to prove

the 2-complete Search design {A1.4 ,.--,A ;S,} detects
an error iIn the search process. That 1is, we need to

show that

\'n\n n\n ﬂA,k=fa-,a_,}

and
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j-i k

\'nV "nii. n Afin \ ...n a = oor {a>
1 2 31 j N

1 e Sn-

First we consider the case

a,nNn a. ...,Nn av n n 1A = )
1 2 j-i j-i @ha ¥
(6.14)
From the fact that {Ai,A2,...<Am;Sn} 1is a 2-complete
search design and the subsets A A A a
i 2

contain both the unknown elements (a@™a®, }, we see that

e and a, ®Ac . (6.15)
3 .-

From (6.14) and (6.15) we have

A\ nAn-n\ _n\n \_n n\ ={a,a,.}
1 2 J \ 11

H J

and

it n(n* __n-nA =0
WK

12 H J J-

Thus, the 2-complete search design detects an error iIn
the search process.

Nex*, we consider the case

*vn \ n-e-na. n\ n- en = (a,,a >a,,,

2 J-1 J*1 k .4 4
(6.16)
Again, from the fact that { A ™ ....,An;Sn) 1iIs a
complete search design and the subsets 2

h ’llllhAk contain both the unknown elements

1 2

we see that {a”a™, }eA* and {a~,a., } € AC .
3
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From (6.16) we have
\'n\ n n\n* n -n<,
t 2 j-i j jri
and

\1n \Zn—n\___ 0*11™ n- n\k ={8,,.}.

i j jti

Thus, the 2-complete search design A A ,...,A S)

detects an error iIn the search process. Hence the

proof.

Example 6.81 Consider Example 4.1 i1n Section 4.1

of Chapter 4. The subsets k™,A2,...,Ap are:

A1 - {ab5 ,ao0 ,a?,as ,ap ,alQ,atl<ai2),
A = . .

2 {S2 "aa’a« "aa’ap" aio"an ’ai2n”’
A - ) ]

3 ‘M2 "®3 “a< a5 ’a<3a7 ,ail"ai2n”’
A4 - {a, .a3.a4, a7 ,aa .85, "al2)<
A3 = {ai,a3 ,a<,as ,ao,ap ,fo ,.u)
AQ- {a,.,a2, ,a=,a?,ap,ajQ,aiz},
A7 = {ai,a2,a<,a<3,a2,aedJaio,ail},
Ag - (ai,a2,a3,ab5 ,a<5,a8,aio,aiz},
Ap = {ai,a2,a3,a3,a7,aB,ass .a"}.

As displayed in the example, every pair of elements
(GaLiaj)» v* j = 1,2,...., 12, can be detected by at

at most four subsets. The 1Intersection of any three



subsets can easily be verified to contain atnost three
elements. Hence the system (Aq,A ----. ,Ap;S y is 0
2-complete search design which detects an error in the

search process.

6.4 DETERMINING TWO UNKNOWN ELEMENTS IN THE PRESENCE
OF NOISE USING PARTITION SEARCH DESIGNS.
We recall that a partition search design consists

of two stages, namely:

(1) Determining subsets A A - ,Amof the set
Sn = Mal»a2»....such that for any two distinct
elements (u,v) e Snthere exists two subsets A and Ai

1 2
of such that u e A;and v e and A: A =0.

n I Av2 L T]Z i

(i1) Ildentifying the two unknown elements (u,v) from

the sets A1 and A2 separately using a separating

system.

Now, suppose that we search for these two unknown
elements in the presence of noise; that is, it is
possible for an error to occur. If the error occurs in
stage one, that is, a subset A i1s declared to contain
the unknown element while it does not, then this error
would be detected iIn the second stage while searching
for the unknown element u or v In a subset iIn which It
does not belong. If the error occurs 1In the second
stage; that iIs the observed values of the functions

f f. ... ,F at the unknown element may be iIn errors

then this error can be detected without being corrected
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by applying single-error detecting systems, described
in Section 6.2.1 of this Chapter; or the error can be
detected and corrected by applying error-correcting
systems described iIn Section 6.2.3 again of this

Chapter.

Example 6.9:- Consider the partition search design
of Example 4.2 in Section 4.1 of Chapter 4.

subsets A ,A ,A ,A A ,A are:

A = {a ,a ,a ,a}, A2 v w v -
A ={a.a.a.a} Ag ¥ {&83" S4"as "a5"
Az = $P1-33s35.a7h Ag = fa3-a4"S0"aB>
Let (a ,a } be the unknown pair of elements. Then

the subsets A5 and A<3 will detect the pair since a1e3A
ag € Agand Ag T1A5: 0. Suppose, a subset say A4
is erroneously, found to contain an unknown element
say a2, ther> this error will be detected without being
corrected in the second stage, where the 1dentity of
the unknown element is determined. In this case, we
will be trying to identify the unknown element from a
set iIn wnieh It does not belong.

An error In the second stage, say an error made in
identifying the unknown ay from Ag will be detected
without being corrected by applying single-error
detecting system. That s, if we apply single-error

detecting system (fl’f fCS} then the intersection



of the subsets A A ,......... A _where ANFEVT
v >
Hill be either (a2) or 0. It will be {fa,} If no error
is made and Of an error 1iIs made in ide%gfying,

unknown element, a2 from Aé
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CHAPTER 7

CONCLUDING REMARKS

In this thesis the problem of search for one
unknown and two unknown elements from a set Sn
consisting of n distinguishable elements has been
studied. The study has dealt with search models
which assume noiseless conditions and those which
take noise iInto account.

Starting with the case of one unknown element
in the set , binary and non-binary separating
systems which detect the unknown element have been
studied. Properties of these separating systems have
also been given in the thesis.

It has been shown iIn the study that some
geometrical structures like Projective geometries
and Euclidean geometries are separating systems and
therefore can be used to separate the elements of
the set . The duration of the search process for
detecting one unknown element using some of these
geometrical structures has been obtairieu .

For detecting two unknown elements from the
finite set S , two designs have been constructed.
These designs are 2-complete search design and the
partition search design. The 2-conplete search
design 1s based on the property that the
intersection of a given number of subsets of Sn

which contain the two unknown elements consists of
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the two unknown elements. On the other hand, a
partition search design divides the set Sn into
two parts with each part containing one unknown
element. The two unknown elements are then
identified separately from each part.

Two different methods of constructing
2-complete search design have been discussed in the
thesis. The two methods which are both based on
properties of balanced incomplete block designs can
be described briefly as follows:

(1) The elements of the set Sn are i1dentified

with  the Dblocks and the functions
LT T ,Fy are identified with the
objects of a BIB design with some specific
properties. These properties are given 1In
the thesis.

(i1) The elements of the set Sn are i1dentified

with the objects and the functions
Tj>Fp>ee «>F,, are identified with the
blocks of a BIB design after deleting a
number of blocks. A simple formula for
computing the number of blocks to be
deleted 1i1s given in the thesis.

Methods of constructing partition search
designs have also been discussed iIn the thesis. Some
of the methods discussed are the halving and the”
J - procedures. It is shown iIn the thesis that the

- - procedure, which partitions the set S into
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three disjoint parts, provides the best results.

Probabilities of termination of the search
process after N steps, and duration of the search
process for detecting two unknown elements have been
derived for both the 2- complete search design
and the partition search design. Comparing the
number of elements n]bf the set Sn and the expected
duration of the search process, 1t was observed that
partition search design 1is very economical for large
values of n.

Lastly, the study has dealt with the detection
of one unknown element and of two unknown elements
from a finite set in the presence of noise. The
study has attempted to obtain designs which would
detect an error without correcting it or detect the
error and correct it. To achieve this, systematic
strategies of choosing the functions 1335 ""’fnt in
the Case of separating systems and of choosing the
subsets A A ..... LA In the case of 2-complete
search and partition search designs has been
proposed. In this strateg. all the functions
f . F ., .. ,F _and all the subsets A A , ... A
were systematically chosen in the determination of
one unknown element and two unknown elements
respectively. We note here that 1t iIs not possible
to detect without correcting , or detect and correct/.?

an error, 1I1f only a few functions or a few subsets

are chosen at random to determine one unknown
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element or two unknown elements.

Search models studied iIn this thesis
variety of practical applications. A list
applications 1is given iIn Chapter 1 of the
We conclude by listing some problems which
further investigations:

(i) Construction of  strategies
determine one unknown element
finite set Sn In the presence
with probability 1 - £.

(ii) Construction of economical

have a
of these
thesis.

require

which

from a

of noise

partition

search designs which determine more than

two unknown elements.

(i11) The relationship between comb

inatorial

search models and probabilistic search

models.

(iv) Construction of random search models based

on finite plane Projective and

Euclidean

geometries which give sharper bounds to

the expected duration of the

process.

search
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