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Abstract— In this paper, we use the Bernoulli Jump Diffusion 

(BJD) process to test for the existence and probability of jumps 

in the Kenyan interest rates. We test these using the Maximum 

Likelihood Estimation (MLE) method on the weekly changes in 

the 91 day Kenyan treasury bills rates.  We also compare the 

BJD process and the Pure Diffusion Process (PDP) in modeling 

these interest rates. We use the statistical software Eviews 6 to 

analyze the data. 
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I.    INTRODUCTION 

he Black–Scholes-Merton stock price model has been 

used and improved upon by various scholars to model 

interest rates, exchange rates, options and other financial 

derivatives. In particular, it has been used to create jump 

diffusion processes used in the empirical study of interest 

rates. Jumps refer to the tendency of interest rates, stocks and 

asset prices to deviate suddenly from a normal path due to 

non systematic risk such as the arrival of new information. 

The arrival of such information can be modeled using the 

Bernoulli or Poisson processes.  

Merton [6] assumes that interest rates follow a simple 

Gaussian random walk with constant drift given by the 

equation: 

 

                                             (1) 

 

Where   is the drift,   is the volatility and     is a standard 

one- dimensional Brownian motion i.e. with mean 0 and 

variance 1. 

The arbitrage price        of a T-maturity zero-coupon 

bond in this model can be written as: 

               
 

 
    

 

 
      

where      , this gives the yield of a zero-coupon bond 

as: 

      
 

 
   

 

 
     

which is log-normally distributed.  This property helps in the 

explicit computation of bond prices.  

Ball and Torous [1] developed on this by adding jumps and 

modeled stock price returns using the equation: 

 
  

 
                                              (2) 

 

Where α is the instantaneous expected return on the stock, 

σ
2
 is the instantaneous variance of the return conditional on 

no arrivals of important new information, Z t is the standard 

Wiener process,    is a Bernoulli process governing the 

arrival of important new information, hence jumps. Over a 

fixed period of time     at most one jump can occur with 

probability   , where   is the rate of the process. Setting the 

mean logarithmic jump size to zero, their model results in a 

daily security return whose density function is a mixture of 

Gaussian densities; 

 

                                  

where, 

          
 

   
       

      

   
  

 

Beckers [2] had earlier used the same model but with the 

jumps as a Poisson process. 

In the empirical examination of jump diffusion models 

standard MLE is used to determine the parameters from the 

discretised data taken at given time intervals. However, 

Honore [5] asserts that this method is invalid because in jump 

diffusion models the log-return is equivalent to a discrete 

mixture of   normally distributed variables where   goes to 

infinity and the likelihood function is unbounded. He suggests 

that we need to assume that if the variance of the jump sizes is 

distributed as         it can be related to the variance of the 

diffusion component which is then distributed as         , 

where   is an arbitrary value which maximizes the log-

likelihood profile. He models stock prices using the equation: 

T 



INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 5, NO. 11, NOVEMBER 2014 

[ISSN: 2045-7057]                                                                www.ijmse.org                                                                             9 

 
   

  
                                              (3) 

 

where   is the drift term,   
is the volatility of the diffusion 

part,    is the standard Wiener process,       is the jump 

component and    denotes the nearest point of time          

preceding   .  

It is assumed that                     and that the jump 

      amplitude is log-normally distributed as        

         
  . The stock price therefore has a continuous 

diffusion part responsible for the usual price fluctuations and 

the discontinuous jump part caused by extreme events. 

The solution to equation (3) is: 

                   
 

 
        

                

Where summation part is in the interval  

     . Honore, uses a new MLE procedure to estimate 

the parameters             . Stock price      is observed at 

discrete times       for          where   is the 

sampling frequency. Letting    denote an observation of   at 

time    , the density function for the log-return, 

      
  

    
 is given as: 

 

        
         

  

 

   

      α 
σ 

 
      σ        

 

Where,            is the density function for a normally 

distributed variable with meam    and variance   . Honore 

also used a Bernoulli jump diffusion approximation to this 

process which is reasonable if     . In which case the 

density function becomes; 

 

                   α 
σ 

 
   σ             α 

σ 

 
   σ    

                                                             (4) 

 

The log-likelihood function of (4) can be written as: 

  

                            

 

   

 

                                                          (5) 

Where              , 

Normal MLE would entail maximizing equation (5) with 

respect to  . However, Honore explains that it is invalid to 

use standard MLE here since the log-likelihood function is 

unbounded. The remedy is that for a fixed positive  , let 

       so that the relative size of the volatilities is fixed. 

The new log-likelihood function becomes;              
  , 

where                  . The consistent estimator of    

is found by choosing   which maximizes this function. 

II.    THE MODELS 

Peter [7] conducts an empirical study of the dynamics of the 

Australian interest rates of six different bills and bonds, he 

uses the unique MLE method pioneered by Honore on a 

variety of models nested in the Chan, Karolyi, Longstaff and 

Sanders (CKLS) model [3] focusing on the daily, weekly and 

monthly changes in the rates. He finds very strong evidence 

of jumps in all the daily interest rates. 

Of interest in this study are two models that Peter [7] used 

which are the PDP and the BJD models. 

In the PDP model interest rates are assumed to follow the 

process: 

 

                                                (6) 

 

Where,    is the drift and   is the volatility. 

The discrete form of equation (6) can be written as: 

                        

Where                hence              
   

   
 

   
  

 

  
 
 

  
 respectively if we sample at daily weekly and 

monthly intervals. The density function of     is given by; 

                  
   

Where           is the density function for            

and can be written explicitly as: 

       
 

     
       

      
 
  

  σ 
  

 

Whose log-likelihood function is: 

      
 

     
       

        
 

    
 

 

   

  

 

and the parameters to estimate are; 

          

If we assume that interest rates follow a BJD process then 

equation (6) becomes: 

  

                                              (7) 

 

Where   is the drift,   is the volatility,                 

is the Bernoulli process,    is the estimated mean of the jump 

sizes,   is assumed to be independent of the Brownian motion 

  . The Bernoulli process    has the distribution       

     and             , so that there can be at most 

one jump in an interval. Let     , where   is the length of 

the interval and   is the probability that there is a jump in an 

interval of length  . The discrete form of equation (7) is: 
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Where                  

The sum of the two independent normal distributions which 

are         
   and             will give a normal 

distribution: 

 

                     

 

We have that      with probability   and       with 

probability    , so that the density function of     will be a 

mixture of two normals; 

 

                      
                     

       

 This density function can also be written as; 

  

     

      
 

     
     

        
 

    
 

  
 

          
      

             
 

         
 

                                                                 (8) 

Whose log-likelihood function is: 

   

               
 

σ    
     

        
 

    
 

 

   

  
 

          
      

             
 

         
   

In this case the parameters to estimate are               

Das [4] argues that the choice of jump diffusion as the 

stochastic for interest rates is a natural one, since information 

flows affect interest rates continuously in small amounts best 

described by diffusion processes, yet on rare occasions 

surprise information have large economic impact causing 

interest rates to jump. These models have been used to 

conduct empirical studies in several developed countries but 

rarely in the developing countries. It is for this reason that we 

opt to test these models in Kenya.  

III.    EMPIRICAL RESULTS 

We used secondary data of weekly interest rates of the 91 

day Kenyan treasury bills covering the period from January 

1998 to October 2013 from the central bank of Kenya, giving 

a total of 823 observations. We focus on the weekly changes 

in these rates as opposed to the rates themselves giving us 822 

observations. The weekly changes have a mean of -0.0199 

and a standard deviation of 39.36 basis points. While 

maximum weekly increase in yields is 194 basis points and 

the maximum weekly drop in yields is 200 basis points, these 

are large weekly moves which helps explain the high Kurtosis 

of 6.561. These changes are also negatively skewed (-0.2585) 

We used the statistical software Eviews 6 at 5% level of 

significance to estimate the parameters. We established the 

profile for the log likelihood function for the PDP and BJD 

models which we coded in the software. By manual 

adjustment we found   to be 24 for the BJD model. 

 From the empirical results we note that the estimates for 

the drift       is 0.1405 for the PDP and -0.3588 for the BJD 

model. The estimate for volatility      is quite large for the 

PDP model at1.583. A comparison of the PDP and the BJD 

reveals a sharp drop of about two-thirds to 0.5337 in volatility 

when the jump is introduced, suggesting that jumps account 

for a substantial component of volatility.  For the BJD model 

the standard deviation of the jump component is 2.165 (given 

by     where   is the standard deviation of the pure 

diffusion component of the jump diffusion model).  

The estimated mean of the jump sizes      is -0.4431for the 

BJD which is quite large. The mean number of abnormal 

information arrivals per week     is approximately 7 and the 

estimate for the weekly mean number of jumps  
 

  
   is 0.135 

for the BJD. For the same model the probability of a jump 

       in any given week is 13.65 percent which is a 

strong evidence of the existence of  jumps which are also 

quite large as seen in the    value. 

 Finally, based on the Schwarz criterion in which smaller 

values are preferred the BJD model performs better than the 

PDP. 

IV.    CONCLUSION 

We have been able to confirm the existence and find 

probability of jumps in the Kenyan interest rates using the 

PDP and BJD models with the 91 day treasury bills as the 

bench mark. Such studies should be done continuously in 

different countries for bills and bonds since there might be 

different dynamics acting on the various financial derivatives 

at different times. 
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