
Advances in Pure Mathematics, 2014, 4, 567-579 
Published Online November 2014 in SciRes. http://www.scirp.org/journal/apm 
http://dx.doi.org/10.4236/apm.2014.411065   

How to cite this paper: Omolo, J.A. (2014) Complex Spacetime Frame: Four-Vector Identities and Tensors. Advances in Pure 
Mathematics, 4, 567-579. http://dx.doi.org/10.4236/apm.2014.411065  

 
 

Complex Spacetime Frame: Four-Vector 
Identities and Tensors 
Joseph Akeyo Omolo 
Department of Physics and Materials Science, Maseno University, Maseno, Kenya 
Email: ojakeyo04@yahoo.co.uk  
 
Received 29 July 2014; revised 29 August 2014; accepted 15 September 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This paper provides derivation of some basic identities for complex four-component vectors de-
fined in a complex four-dimensional spacetime frame specified by an imaginary temporal axis. 
The resulting four-vector identities take exactly the same forms of the standard vector identities 
established in the familiar three-dimensional space, thereby confirming the consistency of the de-
finition of the complex four-vectors and their mathematical operations in the general complex 
spacetime frame. Contravariant and covariant forms have been defined, providing appropriate 
definitions of complex tensors, which point to the possibility of reformulating differential geome-
try within a spacetime frame. 
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1. Introduction 
In a recent derivation [1], the present author identified the unit wave vector k̂  to be the temporal unit vector 
within four-dimensional spacetime frame. The temporal direction is specified as an imaginary axis with unit 
vector ˆik , where 1i = −  is the imaginary number. General spacetime frame is then defined as a complex 
four-dimensional coordinate system spanned by the temporal unit vector ˆik  and the three mutually perpendi-
cular spatial unit vectors ˆ ˆ ˆ,  ,  x y z  specifying the x, y, z axes, respectively. We take the temporal unit vector k̂  
to have general orientation relative to the spatial unit vectors according to 

ˆ ˆ ˆˆ ˆ ˆ0,     0,     0k x k y k z⋅ ≠ ⋅ ≠ ⋅ ≠                                  (1) 

The usual assumption, implicit in conventional four-vector mathematics that the temporal axis is perpendicu-
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lar to all the three mutually perpendicular spatial axes, with ˆ ˆ 0k x⋅ = , ˆ ˆ 0k y⋅ = , ˆ ˆ 0k z⋅ = , may occur only as a 
special case to be specified. The basic elements of the complex spacetime frame are complex four-component 
vectors, which we generally call four-vectors. We define a general four-vector V  in the form 

ˆ ˆ ˆ ˆ ˆ  k k x y zV V k V k V x V y V z= + = + + +V                            (2a) 

with the imaginary temporal component   kV  defined by 

( ),     ,kV ic tφ φ φ= − = r                                 (2b) 

where φ  is a scalar quantity specifying the nature of the temporal component of the four-vector. As usual, t  
denotes time. In general, the temporal component of each four-vector occurs along the imaginary temporal axis, 

ˆik , multiplied by a factor c− , where c  is the speed of light. We follow standard convention denoting four- 
vectors by uppercase letters, e.g., V , while the usual three-component spatial vectors are denoted with arrows 
over letter symbols, e.g., r .  

According to the general definition in Equations (2a)-(2b), the spacetime displacement four-vector X takes the 
form 

ˆ ˆ ˆ ˆ ˆ,     k k kX x k x k xx yy zz x ict= + = + + + = −r                         (3a) 

while the corresponding event interval dX  between two neighboring spacetime points, takes the form 
ˆ ˆ ˆ ˆ ˆd d d d d d d ,     d dk k kX x k x k xx yy zz x ic t= + = + + + = −r                    (3b) 

The spacetime derivative four-vector, ∇  is defined as 

ˆ ˆ
k

ik k
x c t
∂ ∂

∇ = + = +
∂ ∂

∇ ∇                               (4a) 

where kx ict= −  and ∇  is the usual three-component spatial gradient vector defined by 

ˆ ˆ ˆx y z
x y z
∂ ∂ ∂

= + +
∂ ∂ ∂

∇                                 (4b) 

Interpreting ∇  in Equation (4a) in terms of the general four-vector V  in Equations (2a)-(2b) gives 

2

1,     ,     k
iV V
c t tc

φ∂ ∂
= ∇⇒ = = − =

∂ ∂
V ∇                       (4c) 

We observe that the concept of imaginary temporal axis developed here, represents a rediscovery of the idea 
of imaginary time first introduced independently by Poincare [2], Lorentz [3] and Einstein [4] in their original 
theories of electrodynamics or special relativity in a four-dimensional spacetime frame. These authors did not 
identify the temporal unit vector and therefore could not completely specify the complex spacetime frame and 
develop the full mathematical operations using complex four-vectors in the manner presented in this paper.  

2. Mathematical Operations with Four-Vectors 
The general four-component vector form in Equation (2a) with all unit vectors specified allows us to carry out 
four-vector mathematical operations in the complex spacetime frame in exactly the same manner as the standard 
mathematical operations with the familiar three-component vectors in three-dimensional space.  

In developing the mathematical operations in general form, we shall take the temporal unit vector k̂  to be of 
general orientation relative to the spatial unit vectors ˆ ˆ ˆ,  ,  x y z , satisfying the conditions in Equation (1). We de-
note four-vectors with arrows, while the three-component spatial vectors are written in boldface as stated above. 
We use two general four-vectors V  and U  defined by 

ˆ ˆ,     ,     ,     k k k kV V k V ic U U k U icφ ϕ= + = − = + = −V U                     (5) 

to develop the mathematical operations with four-vectors. The basic mathematical operations are essentially ad-
dition, subtraction, dot product, cross product, divergence and curl. 

2.1. Addition and Subtraction 
Four-vector addition and subtraction is straightforward, taking the form 
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( ) ( )ˆ
k kW U V U V k= ± = ± + ±U V                              (6) 

2.2. The Dot Product 
The dot product of the four-vectors U  and V  is obtained as 

( ) ( )ˆ ˆ
k kU V U k V k⋅ = + ⋅ +U V                                (7a) 

which we expand term by term, maintaining the order of components in the products and then substitute 
kU icϕ= − , kV icφ= −  from Equation (5), to obtain the dot product in the final form 

( )2 ˆU V c ickϕφ ϕ φ⋅ = ⋅ − − ⋅ +U V V U                            (7b) 

2.3. The Cross Product 
The cross product of the four-vectors U  and V  is obtained as 

( ) ( )ˆ ˆ
k kU V U k V k× = + × +U V                                (8a) 

which we expand term by term, using ˆ ˆ 0k k× = , ˆ ˆk k× = − ×U U  and then substitute kU icϕ= − , kV icφ= −  
from Equation (5) to obtain the cross product in the final form 

( )ˆU V ick ϕ φ× = × − × −U V V U                               (8b) 

2.4. Divergence of a Four-Vector 
Setting U  equal to the spacetime derivative four-vector ∇  according to 

2

1ˆ ˆ ˆiU k ic k ic k
c t tc

ϕ∂ ∂ = ∇ = + = − − + = − + ∂ ∂ 
U∇ ∇                      (9a) 

with 

2

1 ,     
tc

ϕ ∂
= − =

∂
U ∇                                   (9b) 

in the general four-vector dot product obtained in Equation (7b), we obtain the divergence of a general four- 
vector V  in the final form 

( )1ˆV ik c
t c t
φ φ∂ ∂ ∇ ⋅ = + ⋅ + ⋅ − ∂ ∂ 

VV∇ ∇                           (9c) 

2.5. Curl of a Four-Vector 
Setting U  equal to the spacetime derivative four-vector ∇  according to Equations (9a), (9b) in the general 
four-vector cross product obtained in Equation (8b), we obtain the curl of a general four-vector V  in the final 
form 

( )1 ˆV i c k
c t

φ∂ ∇× = ⋅ − +∇ × ∂ 

VV∇                            (10) 

3. Four-Vector Identities 
We now derive some basic four-vector identities in complex four-dimensional spacetime frame, which general-
ize standard vector identities in three-dimensional Euclidean space [5] [6]. 

3.1. Curl of Gradient Four-Vector 
A gradient four-vector ∇Φ  generated through application of the spacetime derivative four-vector ∇  on a 
scalar function Φ  is obtained as 
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2

1ˆ ˆi k ic k
c t tc
∂ ∂Φ   ∇Φ = + Φ = − − + Φ   ∂ ∂   

∇ ∇                       (11a) 

Setting the general four-vector V  equal to the gradient four-vector according to 

2

1 ˆ ˆV ic k ic k
tc

φ∂Φ = ∇Φ = − − + Φ = − + ∂ 
V∇                       (11b) 

with 

2

1 ,     
tc

φ ∂Φ
= − = Φ

∂
V ∇                               (11c) 

in the general curl of a four-vector obtained in Equation (10), we obtain the curl of a gradient four-vector ∇Φ  
in the form 

1 1 ˆi k
c t c t

 ∂ Φ ∂Φ  ∇×∇Φ = × Φ − − ×  ∂ ∂  

∇
∇ ∇ ∇                       (11d) 

which on using the standard three-dimensional space vector analysis results 

1 10,     
c t c t
∂ Φ ∂Φ × Φ = =  ∂ ∂ 

∇
∇ ∇ ∇                           (11e) 

gives the final result 
0∇×∇Φ =                                      (12) 

This shows that the curl of a gradient four-vector vanishes. This four-vector identity generalizes the corres-
ponding vector identity in standard three-dimensional Euclidean space [5] [6] given in the first part of Equation 
(11e). 

3.2. Divergence of Curl of a Four-Vector 
Taking the divergence of the curl of the general four-vector V  in Equation (10), we obtain 

( )1ˆ ˆiV k i c k
c t c t

φ∂  ∂    ∇ ⋅∇× = + ⋅ × − + ×    ∂ ∂    

VV∇ ∇ ∇                   (13a) 

which on expanding term by term becomes 

( ) ( )1 1 1ˆ ˆ ˆ ˆiV k k c k i c k
c t c t c t c t

φ φ∂ ∂ ∂ ∂   ∇ ⋅∇× = ⋅ × + ⋅ + × + ⋅ × − ⋅ + ×   ∂ ∂ ∂ ∂   

V VV V∇ ∇ ∇ ∇ ∇ ∇       (13b) 

Applying standard three-dimensional space vector analysis results  

( )1ˆ ˆ0,     0k c k
c t

φ∂ ⋅ × = ⋅ + × = ∂ 

VV∇ ∇ ∇                          (13c) 

we express Equation (13b) in the form 

( )1 1ˆ ˆV i k c k
c t c t

φ ∂ ∂    ∇ ⋅∇× = ⋅ × − ⋅ + ×    ∂ ∂    

V V
∇ ∇ ∇                      (13d) 

Application of standard three-dimensional space vector identity 

( ) ( ) ( )⋅ × = ⋅ × − ⋅ ×Q R R Q Q R∇ ∇ ∇                            (13e) 

gives 

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆc k k c c k
c t c t c t

φ φ φ∂  ∂  ∂     ⋅ + × = ⋅ × + − + ⋅ ×      ∂ ∂ ∂      

V V V
∇ ∇ ∇ ∇ ∇ ∇            (13f) 

which on using 
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( ) ˆ0,     0c kφ× = × =∇ ∇ ∇                                 (13g) 

takes the final form 

( )1 1ˆ ˆc k k
c t c t

φ∂ ∂   ⋅ + × = ⋅ ∇×   ∂ ∂   

V V
∇ ∇                            (13h) 

Substituting Equation (13h) into Equation (13d) gives the final result 
0V∇⋅∇× =                                         (14) 

This shows that the divergence of curl of a four-vector vanishes. This four-vector identity generalizes the cor-
responding vector identity in standard three-dimensional Euclidean space [5] [6] given in the first part of Equa-
tion (13c). 

3.3. General Vanishing Four-Vector Dot Product: ( )U U V⋅ ×  
The important identity on the vanishing of the divergence of curl of a four-vector in Equation (14) can be gene-
ralized by taking the dot product of the four-vector U  and the cross product of the four-vectors U  and V  
which on using the general result in Equation (8b) is obtained as 

( ) ( ) ( ){ }ˆ ˆ
k k kU U V U k k U V⋅ × = + ⋅ × + × −U U V V U                        (15a) 

which we expand term by term and use standard three-dimensional space vector identities 

( ) ( ){ }ˆ ˆ0,     0k kk k U V⋅ × = ⋅ × − =U U V V U                           (15b) 

to obtain 

( ) ( ) ( ){ }ˆ ˆ
k k kU U V k U k U V⋅ × = ⋅ × + ⋅ × −U V U V U                        (15c) 

Applying a three-dimensional space vector identity 

( ){ } ( ){ }ˆ ˆ
k k k kk U V k U V⋅ × − = ⋅ − ×U V U V U U                          (15d) 

and using 

0k kV V× = × =U U U U                                   (15e) 

gives 

( ){ } ( )ˆ ˆ
k k kk U V k U⋅ × − = − ⋅ ×U V U U V                              (15f) 

which we substitute into Equation (15c) to obtain the final result 

( ) 0U U V⋅ × =                                      (15g) 

This result generalizes the divergence of curl of a four-vector obtained in Equation (14). It is a generalization 
of the corresponding vector identity in standard three-dimensional Euclidean space [5] [6] given in the first part 
of Equation (15b). 

3.4. Divergence and Curl of fV  
For a scalar function ( ),f r t , we use the definitions of V  and ∇  from Equations (2a) and (4a) to obtain 

( ) ( ){ } ( ) ( ){ }ˆ ˆ ˆ ˆ,     k k
i ifV k f V k fV k f V k
c t c t
∂ ∂   ∇ ⋅ = + ⋅ + ∇× = + × +   ∂ ∂   

V V∇ ∇            (16a) 

Expanding these term by term gives 

( ) ˆ ˆ ˆ ˆ ˆ ˆ
k k

i f i f i ifV k f V k k f f k V k f k
c t c t c t c t
∂ ∂ ∂ ∂       ∇ ⋅ = + ⋅ + + ⋅ + + ⋅ + + ⋅       ∂ ∂ ∂ ∂       

V V∇ ∇ ∇ ∇        (16b) 
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( ) ˆ ˆ ˆ ˆ ˆ ˆ
k k

i f i f i f i ffV k f V k k f f k V k f k
c t c t c t c t
∂ ∂ ∂ ∂       ∇× = + × + + × + + × + + ×       ∂ ∂ ∂ ∂       

V V∇ ∇ ∇ ∇     (16c) 

which we reorganize to obtain the four-vector identities 

( ) ( ),     fV f V f V fV f V f V∇⋅ = ∇ ⋅ + ∇ ⋅ ∇× = ∇ × + ∇×                     (16d) 

These four-vector identities generalize the corresponding vector identities in standard three-dimensional Euc-
lidean space [5] [6]. 

3.5. Divergence of Four-Vector Cross Product: ( )U V∇ ⋅ ×  
We use the general form of the curl of a four-vector from equation (10) to obtain 

( ) ( ) ( )1ˆU V ik c c
c t

ϕ φ ∂  ⋅ ∇× = ⋅ × − ⋅ × + + ×  ∂  

VU V V U∇ ∇ ∇                  (17a) 

( ) ( ) ( )1ˆV U ik c c
c t

φ ϕ ∂  ⋅ ∇× = ⋅ × − ⋅ × + + ×  ∂  

UV U U V∇ ∇ ∇                  (17b) 

after applying standard three-dimensional space vector identities 

( ) ( )1 1ˆ ˆ ˆ ˆ0,     0k c k k c k
c t c t

φ ϕ∂ ∂   ⋅ + × = ⋅ + × =   ∂ ∂   

V U
∇ ∇                     (17c) 

( ) ( )1 1ˆ ˆc k k c
c t c t

φ φ∂ ∂   ⋅ + × = ⋅ + ×   ∂ ∂   

V VU U∇ ∇                       (17d) 

( ) ( )1 1ˆ ˆc k k c
c t c t

ϕ ϕ∂ ∂   ⋅ + × = ⋅ + ×   ∂ ∂   

U UV V∇ ∇                       (17e) 

Subtracting Equation (17b) from Equation (17a) and applying standard three-dimensional vector identities, 
together with appropriate rules of differentiation of vector products, we obtain the final result 

( ) ( ) ( ) ( ) ( ) ( )1ˆV U U V ik c c
c t

ϕ φ∂ ⋅ ∇× − ⋅ ∇× = ⋅ × + ⋅ × + × − × 
∂ 

U V U V V U∇ ∇ ∇            (17f) 

We now use the four-vector cross product from Equation (8b) to obtain 

( ) ( )( )ˆ ˆiU V k ick
c t

ϕ φ∂ ∇ ⋅ × = + ⋅ × − × − ∂ 
U V V U∇                       (18a) 

which we expand as appropriate and apply standard three-dimensional space vector identities 

( ) ( ) ( )ˆ ˆ ˆ ˆ0,     k k k kϕ φ ϕ φ ϕ φ⋅ × − = ⋅ × − = − ⋅∇× −V U V U V U∇                   (18b) 

to obtain the final result 

( ) ( ) ( ) ( ) ( )1ˆU V ik c c
c t

ϕ φ∂ ∇ ⋅ × = ⋅ × + ⋅ × + × − × 
∂ 

U V U V V U∇ ∇ ∇                (18c) 

Substituting Equation (17f) into Equation (18c) gives the four-vector identity 

( ) ( ) ( )U V V U U V∇⋅ × = ⋅ ∇× − ⋅ ∇×                            (18d) 

This four-vector identity generalizes the corresponding vector identity in standard three-dimensional Eucli-
dean space [5] [6] given earlier in Equation (13e). 

3.6. The Curl of a Four-Vector: ( )V∇× ∇×  
Let us start by taking the four-vector curl of the curl of the general complex four-vector in Equation (10) to ob-
tain 
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( ) ( )1ˆ ˆiV k ik c
c t c t
∂  ∂    ∇× ∇× = + × × + × + Λ    ∂ ∂    

VV∇ ∇ ∇                     (19a) 

which we on expansion takes the form 

( ) ( ) ( ) ( )1 1 1 1ˆ ˆ ˆ ˆV ik k k c i k c
c t c t c t c t
∂ ∂  ∂   ∂      ∇× ∇× = × × − × × + Λ + × × + × × + Λ        ∂ ∂ ∂ ∂        

V V VV∇ ∇ ∇ ∇ ∇ ∇ (19b) 

Next, we take the four-vector gradient of the divergence of the general complex four-vector in Equation (9c) 
to obtain 

( ) ( )1ˆ ˆiV k ik c
c t t c t
∂  ∂Λ ∂    ∇ ∇× = + + ⋅ + ⋅ − Λ    ∂ ∂ ∂    

VV∇ ∇ ∇                     (19c) 

which we expand in the form  

( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆiV k k k c i k c
c t t c t c t t c t
∂ ∂Λ ∂  ∂  ∂Λ  ∂        ∇ ∇ ⋅ = + ⋅ − ⋅ − Λ + + ⋅ + ⋅ − Λ          ∂ ∂ ∂ ∂ ∂ ∂          

V VV V∇ ∇ ∇ ∇ ∇ ∇ (19d) 

We apply standard three-dimensional Euclidean space vector identities giving 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ

1 1 1 1ˆ ˆ                                         

k k c k k c c k k c
c t c t c t c t c t

k k c c
c t c t c t c t

 ∂   ∂  ∂ ∂  ∂        × ⋅ − Λ = ⋅ − Λ − − Λ ⋅ − Λ            ∂ ∂ ∂ ∂ ∂            
∂  ∂  ∂ ∂   = × ⋅ − Λ + − Λ   ∂ ∂ ∂ ∂   

V V V V

V V

∇ ∇ ∇ ∇

∇ ∇ .


  (19e) 

( ) ( ) ( )1 1 1ˆ ˆ ˆk c k k c
c t c t c t

 ∂  ∂ ∂     ∇ ⋅ − Λ = × × + ⋅ − Λ      ∂ ∂ ∂      

 V V V
∇ ∇ ∇ ∇                  (19f) 

( ) ( ) 2⋅ = × ⋅ +V V V∇ ∇ ∇ ∇ ∇                               (19g) 
which we substitute into Equation (19d) as appropriate to obtain the final form 

( ) ( ) ( )

( ) ( ) ( )

2 1 1ˆ ˆ ˆ

1 1 1 1ˆ ˆ                    .

iV k k k c
c t t t c t c t

c ik i k c
c t c t c t c t

∂ ∂Λ ∂Λ ∂  ∂    ∇ ∇ ⋅ = + ⋅ + + × ⋅ + − × ⋅ − Λ    ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂     − − Λ + × × + ⋅ − Λ     ∂ ∂ ∂ ∂     

VV V V

V V V

∇ ∇ ∇ ∇ ∇ ∇

∇ ∇ ∇ ∇
      (19h) 

Subtracting Equation (19b) from Equation (19h) and using standard three-dimensional Euclidean space vector 
identities giving 

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆk c c k k c
c t c t c t

 ∂   ∂  ∂     × ⋅ + Λ = ⋅ + Λ − ⋅ + Λ        ∂ ∂ ∂        

V V V
∇ ∇ ∇ ∇ ∇ ∇           (20a) 

( )( ) ( )( ) ( )ˆ ˆ ˆ ˆk k c k c k c× × Λ = ⋅ Λ − Λ∇ ∇ ∇                          (20b) 
we obtain 

( ) ( )

( )( ) ( )
2

2
2 2

1 2 1ˆ ˆ ˆ ˆ    .

V V

i k k c k i i c k
c t t c t c tc t

∇ ∇⋅ −∇× ∇×

∂ ∂Λ ∂ ∂  ∂    = + ⋅ + − + ⋅ Λ + − ⋅ + Λ    ∂ ∂ ∂ ∂∂    

V VV V V∇ ∇ ∇ ∇ ∇
    (20c) 

which on reorganizing 

( ) ( ) ( ) ( )21 1ˆ ˆ ˆ ˆ,     c k c k c k i i ic k iV
c t c t

∂ ⋅  ∂    ⋅ + Λ = + Λ Λ + = − Λ + =    ∂ ∂      

VV V V
∇

∇ ∇ ∇         (20d) 

takes the form 
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( ) ( ) ( ) ( ) ( )
2 2

2 2
2 2 2 2

1 1 1ˆ ˆ2
c VV V i c k i k

c tc t c t
 ∂ Λ  ∂ ∂

∇ ∇ ⋅ −∇× ∇× = − Λ + − + ⋅     ∂∂ ∂  

VV∇ ∇ ∇         (20e) 

We easily obtain 

( ) ( ) ( )
2 2 2 2

2 2 2 2
2 2 2 2 2 2 2 2

1 1 1 1ˆ ˆc
i c k ic k V

c t c t c t c t
 ∂ Λ      ∂ ∂ ∂

− Λ + − = − − Λ + = −        ∂ ∂ ∂ ∂      

VV V∇ ∇ ∇ ∇      (20f) 

which we substitute into Equation (20c) to obtain 

( ) ( ) ( )
2

2
2 2

1 1ˆ2V V i k V
c tc t

 ∂ ∂
∇ ∇ ⋅ −∇× ∇× = − + ⋅ ∂∂ 

∇ ∇                    (20g) 

Setting 

2

1 ,     U V
tc

ϕ ∂
= = ∇⇒ = Λ = − = =

∂
U V ∇                         (21a) 

in the general four-vector dot product in Equation (7b) gives 

( )
2

2 2
2 2

1 1ˆ2i k
c tc t

∂ ∂
∇ ⋅∇ = ∇ = − + ⋅

∂∂
∇ ∇                          (21b) 

which we substitute into Equation (24e) and reorganize to obtain the four-vector identity 

( ) ( ) 2V V V∇× ∇× = ∇ ∇⋅ −∇                                 (22) 
This four-vector identity generalizes the corresponding vector identity in standard three-dimensional Eucli-

dean space [5] [6] given earlier in Equation (19g). 

3.7. Gradient of Dot Product of Four-Vectors: ( )⋅U V∇  
For general complex four-vectors U , V , we have 

( ) ( ) ( )1ˆ ˆU V ic k ik c
c t

ϕ  ∂  × ∇× = − + × ⋅ + × + Λ  ∂  

VU V∇ ∇                    (23a) 

( ) ( ) ( )1ˆ ˆV U ic k ik c
c t

ϕ ∂  × ∇× = − Λ + × ⋅ + × +  ∂  

UV U∇ ∇                    (23b) 

( ) ( )1ˆ ˆU V ik c ic k
t c t

ϕ ϕ ∂ ∂  ⋅∇ = ⋅ + − ⋅ − − Λ +  ∂ ∂  
U U V∇ ∇                    (23c) 

( ) ( )1ˆ ˆV U ik c ic k
t c t

ϕ ∂ ∂  ⋅∇ = ⋅ + Λ − ⋅ Λ − − +  ∂ ∂  
V V U∇ ∇                    (23d) 

Expanding these term by term gives 

( ) ( )

( )

( ) ( )( ){ }
( )( ) ( )( ){ } ( ) ( )

ˆ ˆ ˆ

1 1ˆ ˆ ˆ ˆ   

ˆ ˆ   .

U V V U

ick ck k
c t c t

ck k c c i k k
c t c t

i k c k c

ϕϕ

ϕ ϕ

ϕ

× ∇× + × ∇×

 ∂ Λ ∂  = − × × + Λ × + × × +  ∂ ∂  
 ∂ ∂    + × × Λ + Λ + × × + × ×    ∂ ∂    

+ × × Λ + × × + × × + × ×

V UV U

V UU V

U V U V V V

∇ ∇

∇ ∇

∇ ∇ ∇ ∇

             (23e) 
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( ) ( )

( ) ( ){ } ( )( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( )
( ) ( )

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ ˆ  

ˆ ˆ
  .

U V V U

ic k ic k c k c c k c k
t t

k kc c
k ic k k

c t c t

k k
i

c t c t t t

ϕϕ ϕ ϕ ϕ

ϕ
ϕ

ϕ

⋅∇ + ⋅∇

∂Λ ∂ = − ⋅ Λ + ⋅ − + Λ − ⋅ Λ + Λ ⋅ ∂ ∂ 
 ⋅ ⋅∂ Λ ∂ + + − ⋅ + Λ ⋅ 

∂ ∂  
 ⋅ ⋅∂ ∂ ∂ ∂   + + + + Λ + ⋅ + ⋅   ∂ ∂ ∂ ∂   

U V

U V
V U

U VV U V U U V V U

∇ ∇ ∇ ∇

∇ ∇

∇ ∇

      (23f) 

We apply three-dimensional Euclidean space vector identities to obtain 

ˆ ˆ ˆ ˆck k c k k c
c t c t c t c t c t c t
ϕ ϕ ϕ ∂ Λ ∂   ∂ Λ ∂  ∂ Λ ∂     × × + = × + − +        ∂ ∂ ∂ ∂ ∂ ∂        

V U V U V U              (24a) 

( ) ( )( ){ } ( ) ( )( ){ } ( ) ( )( )ˆ ˆ ˆ ˆck k c c c k c c k c c cϕ ϕ ϕ ϕ ϕ ϕ× × Λ + Λ = × Λ + Λ − Λ +ΛV V V∇ ∇ ∇         (24b) 

( ) ( )1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆi k k i k i k k
c t c t c t c t c t c t

 ∂ ∂  ∂ ∂ ∂ ∂       × × + × × = ⋅ + ⋅ − ⋅ + ⋅        ∂ ∂ ∂ ∂ ∂ ∂        

V U V U V UU V U V U V      (24c) 

( )( ) ( )( ){ } ( ) ( ){ } ( ) ( ) ( ) ( ){ }ˆ ˆ ˆ ˆ ˆi k c k c i c c k i k c k cϕ ϕ ϕ× × Λ + × × = ⋅ Λ + ⋅ − ⋅ Λ + ⋅U V U V U V∇ ∇ ∇ ∇ ∇ ∇    (24d) 

{ } ( ) ( ){ } ( ) ( ){ }ˆ ˆ ˆ ˆ ˆick ic k k ic k kϕ ϕ ϕ− × × + Λ × = − ⋅ + Λ ⋅ + ⋅ + Λ ⋅V U V U V U∇ ∇ ∇ ∇ ∇ ∇           (24e) 

Substituting Equations (24a)-(24e) into Equation (23e), adding the result to Equation (23f) and reorganizing 
gives 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ){ } ( ) ( ){ }

2ˆ ˆ

1 1ˆ ˆ ˆ ˆ ˆ            

ˆ ˆ ˆ ˆ ˆ ˆ            .

i iU V V U U V V U k k c
c t c t

c k k c k k k
c t c t c t c t

ic k k k ic k k k

ϕ

ϕ ϕ

ϕ ϕ

∂ ∂   × ∇× + × ∇× + ⋅∇ + ⋅∇ = + ⋅ + + − Λ   ∂ ∂   
 ∂ Λ ∂  ∂ ∂Λ   + ⋅ + + ⋅ + ⋅    ∂ ∂ ∂ ∂    

− ⋅ + Λ ⋅ − ⋅ + ⋅ Λ

U V

V U V U

V U V U

∇ ∇

∇ ∇ ∇ ∇

     (24f) 

where we have applied a standard three-dimensional Euclidean space vector identity to introduce 

( ) ( ) ( ) ( ) ( )⋅ = × × + × × + ⋅ + ⋅U V U V V U U V V U∇ ∇ ∇ ∇ ∇                   (24g) 

Rewriting 

( ) ( ) ( ){ }1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆic k k c k k k k ick
c t c t c t c t c t
ϕ ϕ ϕ ∂ Λ ∂  ∂ ∂Λ ∂   ⋅ + + ⋅ + ⋅ = − ⋅ + Λ    ∂ ∂ ∂ ∂ ∂    

V U V U V U         (25a) 

( ) ( ){ } ( ) ( ){ } ( ){ }ˆ ˆ ˆ ˆ ˆ ˆ ˆic k k k ic k k k ickϕ ϕ ϕ− ⋅ + Λ ⋅ − ⋅ + ⋅ Λ = − ⋅ + ΛV U V U V U∇ ∇ ∇ ∇ ∇          (25b) 

we express Equation (24f) in the form 

( ) ( ) ( ) ( ) ( )( )2ˆ ˆiU V V U U V V U k c ick
c t

ϕ ϕ∂ × ∇× + × ∇× + ⋅∇ + ⋅∇ = + ⋅ − Λ − ⋅ + Λ ∂ 
U V V U∇     (25c) 

which on substituting the definition of the spacetime derivative four-vector from Equation (6a) and the four- 
vector dot product obtained in Equation (11c), gives the desired four-vector identity in the final form 

( ) ( ) ( ) ( ) ( )U V U V V U U V V U∇ ⋅ = × ∇× + × ∇× + ⋅∇ + ⋅∇                       (26) 

This four-vector identity generalizes the corresponding vector identity in standard three-dimensional Eucli-
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dean space [5] [6] given earlier in Equation (24g). 

3.8. Triple Cross Product of Four-Vectors: ( )W U V× ×  
We introduce a third four-vector defined by 

ˆW ic kχ= − +W                                       (27) 

and use the four-vector cross product to obtain 

( ) ( ) ( )( )ˆ ˆW U V ic k ickχ ϕ× × = − + × × − × − ΛW U V V U                      (28a) 

which we expand as 

( ) ( ) ( ){ } ( ){ } ( )2ˆ ˆ ˆ ˆW U V ic k c k k ic k Wχ χ ϕ ϕ× × = − × × − × × − Λ − × × − Λ + × ×


U V V U W V U U V      (28b) 

We apply standard three-dimensional Euclidean space vector identities to write 

( ) ( ) ( ){ }ˆ ˆ ˆic k ic k kχ χ− × ⋅ = − ⋅ − ⋅U V U V V U                           (28c) 

( ){ } ( )( ) ( ){ }2 2ˆ ˆ ˆ ˆc k k c k kχ ϕ χ ϕ ϕ− × × − Λ = − ⋅ − Λ − − ΛV U V U V U                 (28d) 

( ){ } ( )( ) ( )( ){ }ˆ ˆ ˆic k ic k kϕ ϕ ϕ− × × − Λ = − ⋅ − Λ − − Λ ⋅W V U W V U V U W               (28e) 

( ) ( ) ( )× × = ⋅ − ⋅W U V U W V V W U                               (28f) 

which we substitute into Equation (28b) and collect like terms to obtain 

( ) ( )( ) ( )( )
( ) ( )

2 2ˆ ˆ

ˆ ˆ ˆ ˆ                         .

W U V c ick c ick

ic k ick ic k ick

χ χ χϕ χ ϕ

ϕ χ χ

× × = ⋅ − Λ − ⋅ + Λ − ⋅ − − ⋅ +

− ⋅ − ⋅ + Λ ⋅ − ⋅

U W V V W V W U U W

W V V W U U
        (28g) 

We rewrite the last two terms in Equation (28g) by subtracting and adding appropriate terms according to 

( )2 2ˆ ˆ ˆ ˆick c ick ick c ickχ χ χ χ⋅ − ⋅ = ⋅ − Λ − ⋅ − ⋅ Λ + Λ + ⋅ ΛW V V W V V W W               (29a) 

( )2 2ˆ ˆ ˆ ˆick c ick ick c ickχ χϕ χ ϕ χϕ ϕ⋅ − ⋅ = ⋅ − − ⋅ − ⋅ + + ⋅W U U W U U W W               (29b) 

which we substitute back and collect like terms to express Equation (28g) in the form 

( )

( ) ( )( ) ( ) ( )( )2 2ˆ ˆ ˆ ˆ    .

W U V

ic k c ick ic k c ickϕ χ χ χϕ χ ϕ

× ×

= − + ⋅ − Λ − ⋅ + Λ − − Λ + ⋅ − − ⋅ +U W V V W V W U U W
   (29c) 

Finally, we apply the usual definitions of the four-vectors U , V  and introduce the four-vector dot products 

( ) ( )2 2ˆ ˆ,     W V c ick W U c ickχ χ χϕ χ ϕ⋅ = ⋅ − Λ − ⋅ + Λ ⋅ = ⋅ − − ⋅ +W V V W W U U W            (29d) 

in Equation (29c) to obtain the desired four-vector identity in the form 

( ) ( ) ( )W U V U W V V W U× × = ⋅ − ⋅                              (30a) 

This four-vector identity generalizes the corresponding vector identity in standard three-dimensional Eucli-
dean space given earlier in Equation (28f). 

We easily apply the four-vector identity obtained in Equation (30a) to establish the cyclic property of the 
triple four-vector cross product in the form 

( ) ( ) ( ) 0W U V U V W V W U× × + × × + × × =                        (30b) 

which generalizes the corresponding vector identity in standard three-dimensional Euclidean space [5] [6]. 
The four-vector identities derived in Equations (12), (14), (15g), (16d), (18d), (22), (26), (30a) and (30b) con-
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firm the consistency of the definitions of the complex four-component vectors and corresponding mathematical 
operations within the complex four-dimensional spacetime frame. This means that complex four-dimensional 
spacetime frame characterized by complex four-component vectors is a consistent mathematical extension of the 
standard three-dimensional space characterized by the usual three-component vectors. The other four-vector 
identities can be derived following similar procedure. 

4. Contravariant and Covariant Four-Vectors 
To complete the mathematical formalism within complex four-dimensional spacetime frame, we introduce con-
travariant and covariant forms, which are useful in carrying out general mathematical operations with four-vec- 
tors. A contravariant four-vector is specified by positive spatial components, while a covariant four-vector is 
specified by negative spatial components. We represent the four-vector V  in a contravariant form by V µ  and 
in a covariant form by Vµ , where 0,  1,  2,  3µ =  with 0 labeling the temporal component, while 1, 2, 3 label 
the spatial ( ), ,x y z  components, respectively. We define V µ  and Vµ  below. 

Denoting the four unit vectors by ˆ ˆ ˆ ˆ,  ,  ,  k x y z  as presented in this paper, we define the contravariant coordi-
nates xµ  of the general four-dimensional complex spacetime frame in the form [7] [8] 

0 1 2 3,     0,1, 2,3,     ,     ,     ,     x x ict x x x y x zµ µ = = = = =                      (31a) 

The corresponding covariant coordinates x−  are defined in the form 
0 1 2 3

0 1 2 3,     0,1, 2,3,     ,     ,     ,     x x x ict x x x x x y x x zµ µ = = = = − = − = − = − = − = −          (31b) 

We then express the contravariant spacetime displacement four-vector X µ  and the corresponding covariant 
form X µ  as 

0 1 2 3
0 1 2 3

ˆ ˆˆ ˆ ˆ ˆˆ ˆ,     X x k x x x y x z X x k x x x y x zµ
µ= − + + + = − + + +                     (31c) 

which we introduce the position vector ˆ ˆ ˆxx yy zz= + +r  according to Equations (31a)-(31b) to express in the 
final forms 

( ) ( )ˆ ˆ,     X ictk X ictkµ
µ= − − = − +r r                               (31d) 

The spacetime event interval takes the contravariant and covariant forms ( )0
0d dx x=  

( ) ( )0 0
ˆ ˆ ˆ ˆd d d d d ,     d d d d dX x k ic tk X x k ic tkµ

µ= − + = − − = − − = − +r r r r                (31e) 

A general four-vector V  as defined earlier is expressed in contravariant and covariant forms according to 
0 1 2 3,     ,     ,     x y zV ic V V V V V Vφ= = = =                            (32a) 

0 1 1 3
0 1 1 3,     ,     ,     V V V V V V V V= = − = − = −                           (32b) 

with 
0 1 2 3

0 1 2 3
ˆ ˆˆ ˆ ˆ ˆˆ ˆ,     V V k V x V y V z V V k V x V y V zµ

µ= − + + + = − + + +                     (32c) 

which we express in the final forms 

( ) ( )ˆ ˆ,     V ic k V ic kµ
µφ φ= − − = − +V V                             (32d) 

The contravariant and covariant four-vectors are related through complex conjugation in the form 

,     V V V Vµ µ
µ µ

∗ ∗= − = −                                    (32e) 

We use this contravariant-covariant four-vector conjugation relation to obtain 

( ) ( )2 2
,     V V V V V Vµ µ µ

µ µ µ
∗ ∗⋅ = − ⋅ = −                              (32f) 

which provides the definition of the invariant length V  of the general four-vector V µ  or Vµ  according to 

( ) ( )2 22V V Vµ
µ= − = −                                   (32g) 



J. A. Omolo 
 

 
578 

We express this in the general form 
2V V V V Vµ µ

µ µ
∗ ∗= ⋅ = ⋅                                (32h) 

Using V µ , Vµ  from Equation (32d), noting the relation in Equation (32e), we apply Equation (32g) or (32h) 
to obtain the invariant length in the explicit form 

( )
( )

( ) ( )
2

2 22 2 2 2 2
222 2

ˆ2
1

c k
V c c

c

φ
φ η φ

φ

⋅
= + − = −

−

V
V V

V
                     (32i) 

which is modified by a factor η  arising from the general orientation of the temporal unit vector relative to the 
spatial unit vectors according to the definition 

( )
( )

2

2
222 2

ˆ2
1 ,     

c k

c

φ
η

φ

⋅
= + = ⋅

−

V
V V V

V
                           (32j) 

The invariant length ds of the spacetime event interval is then modified according to 

( ) ( ) ( )( ) ( )2

2 2 2
22

2
2

ˆ4 dd d d ,     1 ,     
d

1

k
s c t

tvc
c

η η
⋅

= − = + =
 
− 

 

v rr v                   (32k) 

where v  is the velocity, with speed v = v  defined as usual. This result has important implications for current 
theoretical and experimental research in physics [9] [10]. 

Tensors in the Complex Spacetime Frame 
We now develop the procedure for defining tensors [7] [8] within the general four-dimensional complex space-
time frame. To put the presentation in familiar form, we adopt the standard contravariant and covariant four- 
vector notation to express V µ  and Vµ  from Equation (20d) in the form 

( ) ( ), ;     ,V ic V icµ
µφ φ= − − = −V V                              (33a) 

with complex conjugates taking the form 

( ) ( ), ;     ,V ic V V ic Vµ µ
µ µφ φ∗ ∗= = − = − = −V V                          (33b) 

where the usual four-vector mathematics is applied, but now taking account of the general orientation of the 
temporal unit vector k̂  relative to the spatial unit vectors ˆ ˆ ˆ,  ,  x y z  to obtain the general results presented 
above. 

Using the complex conjugation relation from Equation (33b) gives 

;     V V V V V V V Vµ µ ν µ
ν ν µ ν
∗ ∗⋅ = − ⋅ ⋅ = − ⋅                            (34a) 

from which a definition of complex contravariant and covariant rank-2 tensors T µν  and Tµν  follows accord-
ing to 

;     T V V V V T V V V Vµν µ µ ν µ
ν µν ν µ ν
∗ ∗= − ⋅ = ⋅ = − ⋅ = ⋅                     (34b) 

In addition, 

;     V V V V V V V Vµ ν µ µ ν ν
ν µ

∗ ∗⋅ = − ⋅ ⋅ = − ⋅                          (34c) 

provides a definition of complex rank-2 mixed tensors T µ
ν  and Tν

µ  in the form 

;     T V V V V T V V V Vµ µ ν µ ν µ ν ν
ν ν µ µ

∗ ∗= − ⋅ = ⋅ = − ⋅ = ⋅                      (34d) 
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The definition of more general tensors of higher rank follows easily. Some mathematical properties of the 
rank-2 tensors defined above can be obtained by interchanging the indices µ , ν  or taking complex conjuga-
tion or carrying out both operations simultaneously. 

The complete definition of contravariant and covariant complex four-vectors, which can be used to define 
tensors of general ranks in contravariant, covariant or mixed forms, provides the necessary foundation for more 
general vector and tensor analysis, leading to reformulation of differential geometry a complex four-dimensional 
spacetime frame. This is indeed the origin of a new framework for studying physics, mathematics and related 
disciplines in the 21st-century and beyond. Some important implications for physics are presented in [1]. 

5. Conclusion 
All the basic four-vector identities which we have derived in this work take exactly the same form as the stan-
dard vector identities established in the familiar three-dimensional space. This confirms the consistency of the 
definition of complex four-component vectors and corresponding mathematical operations within a complex 
four-dimensional spacetime frame with an imaginary temporal axis. The contravariant and covariant forms in-
troduced here lead to consistent definitions of complex tensors, which are the basic quantities for reformulation 
of differential geometry within complex spacetime frame. This new mathematical framework has important im-
plications for various models of relativistic mechanics, quantum field theory and general relativity as a theory of 
gravitation and cosmology. 
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