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Abstract: The generalized estimating equations (GEE) is one of the statistical approaches for the analysis of longitudinal 

data with correlated response. A working correlation structure for the repeated measures of the outcome variable of a subject 

needs to be specified by this method and the GEE estimator for the regression parameter will be the most efficient if the 

working correlation matrix is correctly specified. Hence it is desirable to choose a working correlation matrix that is the closest 

to the underlying structure among a set of working correlation structures. The quasi-likelihood Information criteria (QIC) was 

proposed for the selection of the working correlation structure and the best subset of explanatory variables in GEE. However, 

its success rate in selecting the true correlation structure has been established to be about 29.4%. Likewise, past studies have 

shown that its bias increases with the number of parameters. By considering longitudinal data with binary response, we 

establish numerically through simulations the consistency property of QIC in selecting the true working correlation structure 

and the conditions for its consistency. Further, we propose a modified QIC that penalizes for the number of parameter estimates 

in the original QIC and numerically establish that the penalization enhances the consistency of QIC in selecting the true 

working correlation structure. The results indicate that QIC selects the true correlation structure with probability approaching 

one if only parsimonious structures are considered otherwise the selection rates are less than 50% regardless of the increase in 

the sample size, measurements per subject and level of correlation. Further, we established that the probability of selecting the 

true correlation structure R0 almost surely converges to one when we penalize for the number of correlation parameters 

estimated. 

Keywords: Generalized Estimating Equations, Quasi-Likelihood Information Criterion, Working Correlation Structure, 

Consistency, Model Selection 

 

1. Introduction 

Liang and Zeger [4] proposed the Generalized Estimating 

Equations (GEE) to model both univariate longitudinal 

continuous and discrete outcomes by extending the quasi-

likelihood method of Wedderburn [9] to correlated data. The 

quasi-likelihood is a methodology for regression that requires 

the specification of relationships between mean response and 

covariates and between mean response and variance. 

In the GEE framework, model selection focuses more on 

the selection of the working correlation structure R(α) and a 

suitable set of covariates for the mean structure. Even though 

GEE approach yields consistent estimators of the model 

parameters even if the correlation structure R(α) is 

misspecified, correctly specifying R(α) can definitely 

enhance the efficiency of the parameter estimates [5]. 

Further, the robustness property of the sandwich variance 

estimator to misspecification of the working correlation 

structure (R(α)) as an asymptotic property cannot be assumed 

to hold in all situations. For instance, if the number of 

subjects (n) is small and the number of repeated measures 
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(m) for each subject is large, sandwich variance estimator is 

not appropriate [6]. Likewise, the asymptotic relative 

efficiency of the parameter estimates of the GEE method is 

likely to be low when the working correlation structure is 

misspecified hence lower relative efficiency [7, 8]. 

Pan [1] proposed a modification of AIC, called 'quasi-log-

likelihood under the independence model information 

criterion' (QIC). The QIC was constructed by replacing the 

likelihood in the Kullback-Leibler information with the 

quasi-likelihood under the working independence 

assumption. The quasi-likelihood approach is natural in this 

setting because the quasi-likelihood estimating equations 

have the same form as the maximum likelihood estimating 

equations in the GLM-type models when the canonical link is 

used. While comparing QIC to AIC, [1] established the 

performance of QIC in selecting the working correlation 

structure in a marginal logistic regression under the true 

exchangeable correlation structure in which only 

independence exchangeable and AR-1 structures were 

considered were 67.8% and 72.1% for sample sizes of 50 and 

100. Pan didn’t however establish any inference properties of 

QIC. 

Barnett et al. [2] in their study on using information 

criteria to select the correct variance-covariance structure for 

longitudinal data in ecology compared the performance of 

AIC, DIC and QIC for multivariate Gaussian responses. They 

considered a relatively small sample size (n=30) and a 

relatively large cluster size (m=8). In their simulation, they 

included the unstructured correlation structure in the 

candidate models along with IN, AR-1 and EX, which was 

not considered [1]. Their simulation results showed that QIC 

did particularly poorly when the true covariance structure 

was independence or had a weak exchangeable (α = 0.2) or 

AR-1 (α = 0.3) structure with success rates of 0 to 14%. They 

asserted that QIC performance improved when the 

correlation was increased to moderate level. However, in 

their study [2] only considered a fixed number of subjects 

and measurements per subject hence could not numerically 

demonstrate the consistency property of QIC which the study 

sought to establish. 

Shinpei [3], observed that Pan’s QIC was derived by 

ignoring the calculation of the correlation parameter and 

establish a formal derivation of the QIC (called formal QIC 

or fQIC) as an asymptotic unbiased estimate of the prediction 

risk based on the quasi-likelihood. Notably, when deriving 

the formal QIC, he explicitly took into account the effect of 

estimating the correlation matrix used in the GEE procedure 

and considered the adequacy of the risk function used in the 

derivation of the QIC. He observed that the original QIC is 

exactly and asymptotically equivalent to the formal QIC 

when the working correlation matrix is independence and 

includes the true correlation structure, respectively. In his 

comparison of the original QIC and formal QIC [3] 

established that the bias of the original QIC got larger when 

the number of the estimated parameters increased. 

From the literature reviewed, most studies have primarily 

focused on establishing the success rates of QIC in selecting 

the correct working correlation structure compared to other 

selection criteria such as Rotnitzky and Jewel Criteria (RJC), 

Correlation Information Criteria (CIC) etc. Establishing 

theoretically or numerically the consistency property or 

conditions for consistency of QIC in GEE has received little 

attention despite the importance of GEE in modeling 

longitudinal data. Hence the study sought to: 

i. Establish numerically, the consistency inference 

property and the conditions for consistency of QIC in 

selecting the true working correlation structure 

ii. Propose a modification to QIC to penalize for the 

number of parameter estimates in GEE and establish 

whether the proposed penalization improves the 

consistency of QIC 

2. Methods 

2.1. Quasi-Likelihood Estimation in Generalized 

Estimating Equations 

Consider independent observations from n subjects and for 

each subject i (� = 1, 2 … �), m observations are made. Let yi = [��1 , … , ���]�  denote t
th

 response (t=1…m) of the ��� 

subject such that ������ = ��� ,  �������� = ������  and μi = [��1 … . ��2]�  where [. ]� denotes the transpose. Further 

let ����  denote the measurement for the ��ℎ covariate, 

� = 1 …   corresponding to the ��ℎ subject at time t. In this 

case 

0 1 1( ) ....it it it p pitg x xµ η β β β= = + + +         (1) 

Wederburn [9] introduced the quasi-likelihood for the 

estimator !" denoted by Q(yi, �� ) and given as: 

(y , )
( )

i

i

i i
i i i

iy

y
Q d

V

µ τµµ µ
µ

−
= ∫                       (2) 

Or equivalently 

( )
( )

, i i i
i

i iy

i y
d

d v

ydQ
µ τµ µ µ

µ µ
−

= ∫
i

i

                      (3) 

Where, μ# is a function of the unknown parameters β and 

the link function g(.) defines the relationship between ηiand 

μi. 
Definition 1.1: Suppose that we have independent 

observation iY  (i=1,2,...,n) with ( )i iE Y µ=  and 

( )(Y ) iiVar vφ µ= , where v is some known function. Also, 

suppose for each observation, ( )i iE Yµ =  is some known 

function of a set of parameters 1...... pβ β such that

( )i ig Xµ β= , then the estimator of β is the solution of the 

quasi-score equation: 
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( ) ( )( ) ( )
n

1

i

i 1

u β  D 0i i iv Yτ µ µ−

=

= − =∑       (4) 

Where &� = '(��)
'*+, , � = 1,2, …   and -���  is the working 

variance of y� which is a diagonal matrix v��/� … v��0� 

Definition 1.2: Suppose that we have independent 

observation iY  �� = 1,2, . . . , �� for n subjects and for each 

subject i, m observations are made such that itY  is the ��ℎ 

response ( � = 1, … , � ) and { }1,...it it itpX X X
τ

=  denote a 

 × 1 vector of covariates associated with itY  then to apply 

quasi-likelihood to the analysis of such correlated data, we 

specify the mean of Yit, the variance function [var(Yit)] and 

some working assumption about the response’s correlation 

matrix. If we let Ri�α�  be the m × m  working correlation 

matrix for yi which is assumed to be fully characterized by 

the unknown parameter α [10]. 

Following the quasi-likelihood approach, we can define 

the working correlation matrix for �� as: 

( )0.5 0.5
i i i iV A R Aα=                                   (5) 

Where, 5�is an m× � diagonal matrix with 6����� as the 

t
th

 diagonal element i.e. 5� = &��67�(��1) … ������8  and 

9��:�  is the working correlation matrix structure which 

describes the within-subject correlation which is of size � × �  and depends on a vector of association parameter 

denoted by : [10]. 

According to [7], some of the working correlation matrices 

that can be used include the Independence in which ;<��(��= , ��>) = 0, ∀ � ≠ B  e.g. if m=3, 9CD =
E1 0 00 1 00 0 1F ; Exchangeable in which ;<��(��= , ��>) =
:, ∀ � ≠ B H. 6.  if m=3, 9IJ = E1 : :: 1 :: : 1F ; Toeplitz 

structure in which;<��(��= , ��,=K>) = :> , ∀ � = 1,2. . � − B , 

e.g. if m=3, 9MNOP = E 1 :/ :Q:/ 1 :/:Q :Q 1 F ; Unstructured 

correlation matrix in which ;<��(��= , ��>) = :=> , ∀ � > B 

e.g. if m=3, 9SD = E 1 :/ :Q:/ 1 :T:Q :T 1 F and the First-order auto-

regressive working correlation structure in which ;<��(��= , ��>) = :=U>, ∀ � > B  e.g. if m=3,  9VW =
E 1 : :Q

: 1 ::Q : 1 F 

The combination of equations 4 and 5 are called 

generalized estimating equations defined by: 

( ) ( )
n

1
i i i

i 1

U β D V Y ?  µ 0i
τ −

=

= − =∑                  (6) 

Where &� = XYZX*  and �� = [��/ … ��[]� 

Equation 6 reduces to the quasi-likelihood equation 4 

when � = 1 for all i. According to Liang and Zeger [4], !\  

are robust to the choice of working correlation matrix but 

choosing the working correlation structure close to the true 

one increases the efficiency of !\. 
Pan [1] proposed a modification of AIC, called 'quasi-log-

likelihood under the independence model information 

criterion' (QIC) for model selection in GEE. QIC was 

constructed by replacing the likelihood in the Kullback-

Leibler information with the quasi-likelihood under the 

working independence assumption which is given as: 

( ) ( ) ( )IQIC R 2Q(β R ; I; })+2tracˆ ˆe VΩ̂ r℘= −          (7) 

Where Ω^ = Σ̀U/a�^�is the model-based variance estimator 

under the independence working correlation structure for β̀ 

that can be estimated by 

n
1

I i i

i 1

Ω D V Dˆ
i
τ −

=

=∑                               (8) 

Vcd = Σce�f� is the sandwich variance estimator under the 

working correlation structure R which can be estimated by; 

{ } ( )( ){ }
n

1 1
1 1

r i i i i

i 1

V̂ D V D cov U β D V Di i
τ τ− −− −

=

=∑   (9) 

Where ! values in D and V are all evaluated at !\�9��. 

Remark 1: QIC (R) can be decomposed into two parts: 

i. ( )2Q(β R ;?I; )ˆ  }℘−  (R); I; }) which denotes the sum of 

quasi-log-likelihood for the ∑ � 0�h/ observations in the 

data set and relates to the quasi-log-likelihood for 

independent observations, and hence does not contain 

information about the hypothesized within-subject 

correlation structure i 

ii. ( )I
ˆ2trace Ω V̂r  which contains information on the 

hypothesized correlation structure via V̂r . 

2.2. Consistency Property of QIC in Selecting the True 

Correlation Structure 

To formally state this property, we let W be the set of 

working correlation structures (R). We assume that W 

involves one true correlation structure (R0). Let R* be the 

working correlation structure selected by QIC. We divide W 

into two: the over-parameterized set W
+
 and under-specified 

set W
-
 such that: 

iK = j9 ∈ i|∃: ∈ n, o. �9�:� = 9pq 

Where B is the parameter space which is a compact set and 
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iU = i\WK. ∀9 ∈ iK , we assume there exists : ∈ np  such 

that9�:� = 9p, where np is in the interior of B. 

Theorem 3.1: 

Suppose that the mean structure is correctly specified and 

that; 

C1: ∀9 ∈ i, √�(!\ − !) = uP 

C2: ℎ�v��� is continuously differentiable 

C3: ∀9 ∈ iK , √��:" − :� = uP  and R(.) is a 

differentiable function at :, where : satisfies 9�:� = 9p. 
Then; 

lim0→y z�j9∗ = 9pq = 1                     (10) 

Proof: 

The probability of true correlation structure can be divided 

into two parts as: 

|�j9∗ = 9pq = 1 − z�j9∗ ≠ 9pq        (11) 

{ }
{ }0

*

\

1

R W R

Pr R R

∈

= − =∑                            (12) 

{ }
{ }

{ }
0

* *

\

1

R W R R W

Pr R R Pr R R
+ −∈ ∈

= − = − =∑ ∑  (13) 

If lim0→y Pr � 9∗ = 9� = 0, ∀ 9 ∈ iK\j9pq  and lim0→y Pr � 9∗ = 9� = 0, ∀ 9 ∈ iU, then 

* 0lim Pr( )=1
n

R R
→∞

=                                  (14) 

This implies that the probability of selecting the true 

correlation structure9p  almost surely converges to one. In 

this regard the selection criteria will be regarded as strongly 

consistent. 

Corrolary 1 

If 
{ }

{ }0

*

\

lim 0
n

R W R

Pr R R
→∞

∈

= →∑ , then; 

* 0lim Pr( ) 1
n

R R
→∞

= →                               (15) 

This implies that the probability of selecting the true 

correlation structure 9p converges in probability to one but 

does not necessarily reach one. In this regard the selection 

criteria will be regarded to be weakly consistent. 

Corollary 2 

If 
{ }

{ }0

*

\

lim 1
n

R W R

Pr R R
→∞

∈

= →∑ , then; 

* 0lim Pr( ) 0
n

R R
→∞

= →                              (16) 

This implies that the probability of selecting the true 

correlation structure9p converges to zero hence the selection 

criteria will be regarded not to be consistent. 

3. Simulation Study of the Consistency 

Inference Property of QIC 

3.1. Simulation Design 

i. The response vector ��  =  ���/ … ���� was assumed to 

be a Bernoulli response. � = 1, … �, where n is the total 

number of subjects. In the simulation study, � =�20, 30, 50, 100, 200� , � = 1,2, . . . �  where m is the 

number of measurements per subject (3, 6). 

ii. For each subject i, its covariates are �/��  and �Q�� . �/�� ∽  ��0, 1�  and  �Q�� ∽ Bernoulli (0.5) and a 

within subject correlation structure dictated by 9�:�. 

iii. The True correlation structures 9p�:�considered in the 

simulation were Exchangeable (: = 0.2, 0.5) and AR-1 

(: = 0.2, 0,5) 

iv. The binary response Yit has the conditional expectation ��� = �����|�/�� , �Q��� . ��� is connected with the 

covariates through: 

( ) 0 1 1 2 2   it it itlogit x xµ β β β ε= + + +        (17) 

where i=1..n and t=1…m and !p = −!/ = −!Q = 0.25. 
We adopted values assumed in [1] to facilitate comparison of 

results 

v. We considered the working correlation structures �9�:��  independence(IN), exchangeable(EX), 

unstructured(UN) and first order autoregressive(AR1). 

All the correlation matrices were assumed to be positive 

definitive. We consider two sets of working correlation 

structures: �/ = j��, ��, 591, ��q, a set that includes 

both parsimonious and over=parameterized structures 

and  �Q = j��, ��, 591q  a set of only parsimonious 

structures 

vi. The Simulation design is factorial with 1000 simulation 

replications. We evaluated the performance of QIC in 

the selection of the correct correlation structure using 

the number of times the correct correlation structure is 

selected in the 1000 simulation runs 

vii. All simulations are performed using R version 3.5.1. 

Data analysis was done based on the gee, geepack and 

MASS R packages. Correlated binary data were 

generated using the bindata R package [11]. 

3.2. Simulation Results on the Consistency of QIC in 

Selecting Working Correlation Structure When R0 = 

AR-1 

We compare the performance of QIC in selecting the true 

working correlation structure under two settings. In the first 

setting we the set of working correlation structures includes 

the over-parameterized structures whereas in the second 

setting only parsimonious structures are considered. The 

number of times QIC selects thetrueAR-1correlation 

structure out of the 1000simulation runs are presented in 

table 1. 
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Table 1. Frequency of Selection of true correlation structure: R0=AR-1. 

 n 
�� = j��, ��, ��, ��q �� � j��, ��, ��q 

3 6 3 6 

AR(0.2) 

20 207 266 417 534 

30 244 272 464 537 

50 294 318 467 613 

100 306 324 577 707 

200 333 347 650 750 

AR(0.5) 

20 219 263 523 654 

30 253 273 607 740 

50 309 320 660 800 

100 321 355 707 813 

200 339 377 723 820 

The simulation results indicate that when R0 is AR-1, 

α=0.2 and m=3 and the set of correlation structures 

considered is ω/ � jIN, EX, AR, UNq, the success rates of QIC 

were 20.7%, 24.4%, 29.4%, 30.6% and 33.3% for the 

respective samples of 20,30,50,100 and 200. On the other 

hand when the set of correlation structure considered is 

ωQ � jIN, EX, ARq , the success rates of QIC are 41.7%, 

46.4%, 46.7% 57.7% and 65%. When the number of 

measurements per subject are increased to 6, the success rates 

of QIC are for ω/  are 26.6%, 27.2%, 31.8%, 32.4% and 

34.7% for the respective samples of 20,30,50,100 and 200. 

On the other hand the success rates of QIC for ωQ were 

53.4%, 53.7%, 61.3%, 70.7% and 75% respectively. 

When α=0.5 and m=3 and the set of correlation structures 

considered is ω/ � jIN, EX, AR, UNq, the success rates of QIC 

were 21.9%, 25.3%, 30.9%, 32.1% and 33.9% for the 

respective samples of 20,30,50,100 and 200. On the other 

hand when the set of correlation structure considered is 

ωQ � jIN, EX, ARq , the success rates of QIC are 52.3%, 

60.7%, 66.0% 70.7% and 72.3%. When the number of 

measurements per subject are increased to 6, the success rates 

of QIC for ω/ are 26.3%, 27.3%, 32.0%, 35.5% and 37.7% 

for the respective samples of 20,30,50,100 and 200. On the 

other hand the success rates of QIC for ωQ  were 65.4%, 

74.0%, 80.0%, 81.3% and 82% respectively. 

The results indicate that increasing the number of 

measurements per subject and the level of within subject 

correlation increases the success rate of QIC marginally 

when the over-parameterized unstructured structure is 

included. However, the exclusion of over-parameterized 

unstructured correlation structure (ω/) greatly improves the 

chances of QIC to select the true structure. For each 

simulation setting, the success rates of QIC in selecting the 

true AR-1 structure for ωQ is approximately twice the success 

rate of QIC in selecting the true AR-1 structure for ω/. The 

results obtained for ωQ, were similar to results obtained by 

Gosho [13] who established success rates of between 32.1% 

and 72% indicating that the probability of QIC selecting the 

true AR-1 correlation approached one as � x ∞ if only 

parsimonious structures are considered. The study results are 

illustrated in Figure 1. 

 

Figure 1. Success rates of QIC in Selecting the true AR1 structure. 

From the figure 1 above, it is noticeable that when the 

level of correlation is increased to 0.5, the selection rates of 

QIC approach 40% as n approaches 200 for ω/ , but 

approaches 80% when only parsimonious structures �ωQ� are 

considered. This implies that consistency will be achieved if 

only parsimonious structures are considered. 

3.3. Simulation Results on the Consistency of QIC in 

Selecting Working Correlation Structure When R0 = 

EX 

In this section, we compare the performance of QIC in 

selecting the true exchangeable working correlation structure. 

The number of times QIC selects the true exchangeable 

correlation structure out of the 1000simulation runs are 

presented in table 2. 

Table 2. Frequency of Selection of true correlation structure: R0=EX. 

 n 
�� � j��, ��, ��, ��q �� � j��, ��, ��q 

3 6 3 6 

EX(0.2) 

20 105 107 342 454 
30 94 68 410 509 

50 80 68 460 586 

100 72 65 620 677 
200 63 68 655 753 

EX(0.5) 

20 194 211 495 690 

30 170 222 527 733 
50 136 157 605 803 

100 95 97 710 807 

200 94 58 770 870 

When R0 is EX (0.2) and m=3 and the set of correlation 

structures considered is ω/ � jIN, EX, AR, UNq, the success 

rates of QIC were 10.5%, 9.4%, 8.0%, 7.2% and 6.3% for the 

respective samples of 20,30,50,100 and 200. On the other 

hand when the set of correlation structure considered is 

ωQ � jIN, EX, ARq , the success rates of QIC are 34.2%, 

41.0%, 46.0% 62.0% and 65.5%. When m= 6, the success 

rates of QIC are for Wc1 are 10.7%, 6.8%, 6.8%, 6.5% and 

6.8% for the respective samples of 20,30,50,100 and 200. On 

the other hand the success rates of QIC for Wc2 were 45.4%, 

50.9%, 58.6% 67.7% and 75.3% respectively. 

When R0 is EX (0.5) and m=3 and the set of correlation 
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structures considered is ω/ = jIN, EX, AR, UNq, the success 

rates of QIC were 19.4%, 17.0%, 13.6%, 9.5% and 9.4% for 

the respective samples of 20,30,50,100 and 200. when the set 

of correlation structure considered is ωQ � jIN, EX, ARq, the 

success rates of QIC are 49.5%, 52.7%, 60.5% 71.0% and 

77.0%. When m=6, the success rates of QIC for ω/  are 

21.1%, 22.2%, 15.7%, 9.8% and 5.8% for the respective 

samples of 20,30,50,100 and 200. On the other hand the 

success rates of QIC for ωQ  were 69.0%, 73.3%, 80.3%, 

80.7% and 87% respectively. QIC selection rates established 

for the set ω/ in the study are similar to those of Jang [13] 

who established QIC's performance to be in the range of 

0%to 20% and tended to decrease as n increased, those [2] 

who established correct identification rates of 25-30% for 

moderately correlated exchangeable structure and the results 

[14] who established success rates of less than 50% for all 

combinations of m and : . The study[13] asserted that the 

performance was due to the estimation of the over-

parameterized structure which becomes more precise as n 

increases hence increasing the likelihood of the unstructured 

matrix to be chosen. QIC selection rates established for ωQ 

are similar to results [1, 13] who both established success 

rates of up to 72% for : � 0.5 and m=3 and 4 respectively. 

However the increase in performance of QIC with increase in 

in m and : established in the study is dissimilar to results 

[13] whose indicated that simultaneously increasing m to 8 

and : to 0.5 resulted to a slight decrease in the selection 

rates. The results are further presented in figure 2. 

 

Figure 2. Success rates of QIC in Selecting the true EX structure. 

From the figure 1 above, it is established the inclusion of 

the over-parameterized structure reduces the chances of QIC 

selecting the exchangeable structure while its exclusion 

significantly improves the performance of QIC in selecting 

the true exchangeable structure. In this case, the consistency 

of QIC will be guaranteed if only parsimonious structures are 

considered. 

Proposition 1 

Let ω/ � jIN, EX, AR, UNq and ωQ � jIN, EX, ARq  be sets 

of working correlation structures considered for selection by 

QIC. Further, Let R0 be the true correlation structure such 

that Rp � ω/ <�ωQ and 9{ be the correlation structure finally 

selected by QIC. 

a. If ω/  is the set of possible correlation structures 

considered such that 9p � ω/ , then z��9{  �  Rp� �

1 as � x ∞ . In this case we say that QIC is not 

Consistent in selecting the true working correlation 

structure. 

b. If ωQ  is the set of possible correlation structures 

considered such that  9p � ωQ , then z��9{  �  9p� x

1 as � x ∞ hence QIC is consistent in selecting the true 

correlation structure. 

c. Inclusion of over-parameterized structures such as the 

unstructured in the set of correlation structure 

considered for selection significantly reduces the 

z��9{  �  Rp�. On the other hand, considering only the 

parsimonious structures significantly improves 

z��9{  �  Rp� i.e. if q is the number of correlation 

parameters estimated and 9p k j��, ��, 591q, then as 

  x 
0.5��� L 1�, z��9{ � 9p� ¡
∑ z�j9{ � 9qW k ¢\jW£q  

4. Proposed Modification of QIC to 

Penalize for the Number of 

Parameters Estimated 

From Proposition 1, having Wc1 � jIN, EX, AR, UNq as the 

set of possible correlation matrices impedes the performance 

of QIC in selecting the 9p; 9p � jIN, EX, ARq. We propose a 

modification to QIC method so as to allow for the 

penalization for the over-parameterized structures since the 

penalty term of QIC does not penalize for over-

parameterization. The proposed modified QIC is built on the 

current QIC as it still uses the calculated quasi-likelihood 

measure but only incorporates the number of parameters in 

the model denoted by θ which consists of the correlation 

parameters (q) and the number of regression parameters (p). 

The goal of the modification is to find a parsimonious 

structure that effectively penalizes the working correlation 

structure with many parameters when the sample size is 

small or the responses are measured on many occasions and 

should also be able to penalize the working correlation 

structure which is parsimonious, but has a worse-fit. 

Therefore, the number of repeated measurements (m), the 

number of regression parameters (p) and the number of 

correlation parameters (q) are considered. As m increases, the 

value of q for over-parameterized structures such as Toeplitz 

and unstructured correlation structures increases. 

Since the dimension of the covariance matrices is a 

function of p (the number of regression parameters), we 

propose a penalization of the second term of QIC for the 

number of regression parameters by multiplying it by 2p as 

proposed by Deroche (2015) in her proposed modification of 

QIC. This yields a modified penalty term: 

( ) ( )ˆ ˆˆ 2 4 Ω ˆ2 ΩI r I rtrace V p ptrace V× =         (18) 

Next we assume that the data from a subject i includes m 

different working correlation structures (R1…Rm). The set 
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9= has the corresponding  [¤¥ = ���7 =¦� = 1 … �8 . We 

establish a penalization factor by dividing q for each 

candidate model by  [¤¥  and then multiply the resultant 

factor to trace(ΩcC�̀§) to get the second penalty term: 

( ) ( ) ( )2
Ω Ωˆ ˆˆ ˆ

1
I r R r

max

q q
trace V trace V

q m m
=

−      (19) 

since q«¬ = 0.5m�m − 1� 

The proposed modified QIC which we denote by QICm is 

therefore the sum of the goodness-of-fit term and the two 

proposed penalty terms and is given as: 

( )( ) ( ) ( ) ( )2
2 ; , 4 Ωˆ ˆ

1
ˆ ˆ ˆΩRm I r r

q
QIC Q R I ptrace V trace V

m m
β= ℘ + +

−  (20) 

Where 
1

1

Ω̂

n

R i i i

i

D V Dτ −

=

=∑ and 
1

1

Ω̂

n

I i i i

i

D A Dτ −

=

=∑  

4.1. Simulation Study to Compare Performance of QICm 

and QIC 

We conduct a simple simulation study to examine the 

performance of the proposed ®�;[  compared to the original 

QIC in selecting the true working correlation structure. 

Specifically, we adopt the same model considered in Pan [1] 

to allow for the comparison of results. 

1 2 2 3log ( ) ( 1)ij ijit x tµ β β β= + + −           (21) 

where ��� = �(���), � = 1 … . �, � = 1 … 3 ��'���2~nH��<°±±��0.5� 
In the simulation we considered the candidate correlation 

structures: Independence, Exchangeable, AR and the Toeplitz 

structures. Both the Exchangeable and AR matrices were 

parameterized with  : =  0.5  when they are the true 

correlation structures while the toeplitz structure 

wasparameterized with the parameters (0.5, 0.35). We 

considered the sample sizes of 20, 30, 50, 100 and 200 while 

the number of measurements per subject were fixed at 3. The 

R-packages MASS, GEE, geepack, MESS. Binary data were 

generated using the bindata package proposed [11]. 

4.2. Simulation Results 

The simulation results are shown in table 3 

Table 3. Simulation results for the Comparison of QICm and QIC. 

R0 n ²�³´ QIC R0 n ²�³´ QIC 

Independence 

20 820 108 AR-1 20 512 302 

30 910 160  30 646 309 

50 977 202  50 692 301 
100 1000 213  100 800 315 

200 1000 180  200 827 310 

Exchangeable 

20 443 278 Toeplitz 20 0 284 
30 584 350  30 13 358 

50 740 363  50 0 353 

100 843 312  100 0 390 
200 900 406  200 0 430 

The simulation results as shown in table 3 indicate that 

when 9p ∈ ���, ��, 591�, ®�;[  almost surely selects the 

true structure with a probability approaching one as indicated 

by proportions of 100% for independence, 83% for AR-1 and 

90% for exchangeable when n=200. On the other hand, the 

original QIC selects the correct structure less than 22% of the 

time for independence, 40% for exchangeable and 32% for 

AR1. ®�;[ does not select the toeplitz structure completely 

whereas QIC selects the structure with higher rates compared 

to the other structures. The results imply that when 9p ∈j��, ��, 59 − 1q , z��9∗  =  9p� → 1 as  � → ∞  for QICm 

while z��9∗  =  9p� ↛ 1 as � → ∞ for QIC and hence QICm 

is consistent whereas QIC is not. When  9p = jµ<H q , z��9∗  =  9p� → 0  as � → ∞  for QICm while z��9∗  = 9p� → 1 as � → ∞ for QIC 

Proposition 2 

Let ω/ = jIN, EX, AR, UNq  be set of working correlation 

structures considered for selection by ®�;[. Further, Let Rp 

be the true correlation structure such that Rp ⊂ ω/ and 9∗ be 

the correlation structure finally selected by ®�;[ . Then 

based on the numerical results 

lim
0→y

z�(9∗ =  Rp) → 1, ∀ Rp ∈ jIN, EX, ARq 

and 

lim
0→y

z�(9∗  =  9p) = 0, ∀ Rp ∈ jToepq 

5. Conclusions 

In the study we investigated the consistency property of QIC 

in selecting the true correlation structure. Through simulation 

studies we established that QIC is not consistent in selecting 

the true correlation structure when over-parameterized 

structures such as the unstructured and toeplitz structures are 

included in the set of possible choices. In this case QIC selects 

the over-parameterized structures more often than it selects the 

true structure. We established that the consistency of QIC in 

selecting the true correlation structure can only be guaranteed 

if only parsimonious structures are considered. Inability of 

QIC to select the parsimonious correlation structures in favour 

of the over-parameterized correlation structures can be 

attributed to its inability to penalize for the number of 

correlation parameters estimated. We proposed QICm as a 

modification of QIC to allow for the penalization of the 

number of GEE parameter estimates and through simulation 

we showed that ®�;[ was strongly consistent in selecting the 

true working correlation structure and effectively penalized the 

working correlation structure with many parameters and also 

penalized the working correlation structure which was 

parsimonious, but has a worse fit. Based on the study results, 

we conclude that QIC can only be consistent in selecting the 

true correlation structure if we consider a set of parsimonious 

correlation structures only or by penalizing for the number of 

parameters estimated. 
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