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Abstract: A closed densely defined operator H, on a Banach space X, whose
spectrum is contained in R and satisfies

Je-mt) < 2 vegR (0.1)

Relk

for some o, > 0; ¢ > 0, is said to be of (a, ) —type R . If instead of (0.1)
we have

H(z—H)_lH <ec Vz €R, (0.2)

RE
then H is of (o, 3) —type R.

Examples of such operators include self-adjoint operators, Laplacian on
L'(R), Schrodinger operators on LP(R™) and operators H whose spectra lie in
R and permit some control on HeiH tH

In this paper we will characterise the («, ) — type R operators. In par-
ticular we show that property (0.1) is stable under dialation by real numbers
in the interval (0,1) and perturbation by positive reals. We will also show that
is H is of (a, ) —type R then so is H?.

AMS Subject Classification: 47A10
Key Words: spectrum, resolvent, eigenvalues, diagonalizable, scale invariant

Received: March 13, 2008 © 2009 Academic Publications

§Correspondence author



346 P.O. Oleche, N. Omolo-Ongati, J.O. Agure

1. Preliminaries

Suppose H is a closed densely defined operator on a Banach space X whose
spectrum is contained in R and there exists ¢ > 0 such that
()"
1.1
L (L.1)
for all z ¢ R and some «, > 0. We will say that H is of («a, ) — type R .
Here, we define (.) by (z)? := 1+ |z|* and Sz denotes the imaginary part of z
(the real part of z will be denoted by Rz). If instead of (1.1) we have
2|
32/

for all z ¢ R and some «, 5 > 0, we will say that H is of («, 3)" — type R .

=)~ < e

|z—H) < ¢ (1.2)

1.1. Examples of (a, B) — type R Operators

Proposition 1.1. Let H be a self-adjoint operator on a Hilbert space H.
Then H is of (0, 1) —type R.

Proof. If S C H, denote the closure of S by S and its orthogonal comple-
ment by S+ . Let the adjoint of an operator H be denoted by H* | its kernel
be ker (H) := {f € ©(H) such that Hf = 0} and suppose z € C \ R, then

23((z=H) [, [) = ((z=H)f,[)=((z=H)f, ])

= 2i3z | f|?
if and only if S(f, (z — H)f) = Sz|f|*.
Which implies |Sz|||fl| < |l(z— H)f|l. (1.3)

That is, 2 — H is bounded from below and hence z — H is injective, and so
ker (z — H) = {0}. Since H is self adjoint, we have

ker ((z — H)*) =ker(z — H) = {0}. (1.4)
But because H is closed densely defined,
R(z—H) =ker ((z— H)*)*.
Therefore using (1.4),
R(z-H) = {0}* = H

Conclusion:

1. (z — H)~! exists and is bounded,

2. R(z — H) is dense in H
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thus z € p(H).
The conclusion of the proposition now follows from (1.3). O
Proposition 1.2. Let Hy = —% on L'(R) where
D(Hy) = {f € L'(R) : f" € LY(R), f" absolutely continuous}. Then
1. (z — Ho)~! is a convolution operator, for each z ¢ R.
2. Hyisof (0, 1) —type R.

Proof. Let z € p(Hyp). Then
(= = Ho) " f(¢) = (= = a(©)) (), C e R

where § denotes Fourier transform of g and the symbol of Hy, a(¢) = ¢2. So

that (z —/HO\)*lf(C) = g/ﬁ(g) where g * f denotes the convolution of g and f.
Observe that

decays rapidly enough as [(| — oo, g€ L'(R).
Thus (2 —Ho)™'f(z) =g+ f(z), feL'(R)
where g € Cp(R). In fact g(z) = Q\i[e_iﬁm explicitly.

z

This proves the first part of the proposition.

Next
|z = Ho) || = sup{llg=fll, - feL'|fll,=1}
< gl
(since [lg * fll; < llglly If1l, f,9 € L)
= /OO L.e_i\ﬁm dx.
oo | 2V/Z

By means of a change of variable and reflectional symmetry we conclude that

=) =2 [ |5

2
dr < — O
0 12vz

— Sz

2. Main Results

Theorem 2.1. Let H be a bounded operator with o(H) C R, and
]| < C@ + |t])~, (2.1)

where « is an non-negative integer. Then H is of (a, a+ 1) — type R .
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Jo e ettt dt Rz >0

fBOO e #tettdt Rz <0
(see Bratteli and Robinson Proposition 3.16, [1]). Therefore for z with Rz > 0
we have

G — i) f| < /e—l%ztueﬂﬂfudt<cuf\|/°°e—%zlt<1+t>adt.
0

If Rz < 0, put s = —t then
H_(Z N ZH)flfH < HfH/O ‘ezs‘ HefiHsH ds < /0 €*|?Rz\s HefiHchH ds

[o¢]
<C||f||/ el (1 | gyogs.
0

Proof. Let z ¢ R. Since (z —iH)™! = {

But
(e.e]
| et ear el (1 4 1)
0 ‘§R | 0

< 1 1 a ala—1) al
_ = —|Rezlt 1 a—1g, o
e a(l+t dt = + + + ...+ .
/0 Rz (1+1) Rz |Rz* Rz |Rez|* T

Consequently we may conclude that

o0

-1 o afa—1) —a! ]
le—im i) < il wu[ et et e

< _—
< Ol m | [ 0we - 2w T el

where we have used Holder’s mequahty to obtain
1+ Rz < V21 + [R2HY2 < V2(z).
Now put w := i~ '2z. Then w ¢ R and

a  ala—1) al }

z «
< PG 7).

o= 177 = i = i1 < 22 Gt 1

/2 | < >a
=2%7Cal S|t 1Al O
Remark 2.2. 1. Note that the converse of Theorem 2.1 is false. A counter
example is the following
Let Hy = de on L'(R). Then by Proposition 1.2, (z — Hy) ™! is a convo-
lution operator, for each z € R and is of (0, 1) — type R .
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However, operators e*fot

Brenner et al [2, p. 27].

2. Since the map z — €'* is in H*(€),), where Q. := {z € C : |3z] < €}
for some € > 0, one may conjecture that the conclusion of theorem 2.1 holds
even for unbounded operators whose spectra lie in . and admit the bound
(2.1). This problem as far as we can tell, remains open.

are unbounded for all ¢t # 0, see for example,

A Schrédinger operator operator, H := —A+V on LP(R™), 1 < p < oo con-
sidered in this study, has potential V such that V., € K 5\?6 and
V_ € Ky, see the footnote!. The spectrum of the Schrédinger operator with
potential chosen as outlined, is real and independent of p (see, Hempel and
Voigt [5], Proposition 4.3(a)). The operators ¢’2t are however unbounded on
LP(RN) for all t # 0, N > 1 and for all p # 2 in the range [1, o], Brenner et al
p. 27 in [2].

Theorem 2.3. Let H be a Schrédinger operator on LP(RY) then H + A
is (N, N+1) —type R for A > 0 large enough.

Proof. See Pang [8]. O

Theorem 2.4. Let H be a Schrédinger operator on LP(RY) then H is

(a, a+1) —type R for o := N‘Il] — %‘
Proof. See S. Nakamura Theorem 8, [7]. 0

Theorem 2.5. Let H be an n X n matrix with real eigenvalues. Then
H isof (n—1, n) —type R . H is of (0, 1) —type R if and only if it is
diagonalizable.

Proof. Consider an n x n tridiagonal matrix :

ai b 0
1 a2 '
A= (2.2)
an-1 bp_1
0 Cn—1 G

with either ¢; = 0 for all 7 or b; = 0 for all i. Then

det(A) = f[ a;. (2.3)
=1

YW_(z) := max{0, V(2)} and Vi () := min{0, V' (x)}.
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Next, suppose Ay, ..., A, are the real eigenvalues of H and z ¢ R. Then H
has the Jordan canonical form

A by 0
H = ,
. bnfl
0 An
where b, = 0 or 1 for all v. Thus
z — )\1 —bl 0
(z—H) =
_bnfl
0 Z— Ap
This is a special case of (2.2) with ¢; =c¢y = ... =c¢,—1 = 0. Hence
det(z— H) = (z—A) (by (2.3))
v=1
£ 0

(since z # A, for all v). Thus cof(z — H) = (d;;), where
(—1)i+j(z — )\1) PN (Z — )\j—l)(_bj) PN (—bi_l)(z — )‘i—I—l) PN (Z — )\n),

" HZ#Z(Z - A1/)7 1= ju
0, i< 7.

If ||.| 75 denotes the Hilbert-Schmidt norm and AT is the transpose of
the matrix A, then by the above together with the fact that (z — H)™! =
(det(z — H))"!(cof(z — H))T we see that

2 2

(2= H)AHES = H (= - H)il]THHS - % HS

G Hiffgi%(z =) T<veia(00) |
g3 -z = M\)

i=1 j=1 v=1

(since d;; = 0 for all i < j).

Here we have used the fact that ||A|7g = 3.7 [|Ae;||* for any orthonormal
system ey, ..., en.
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Thus

- = 5 Il o=y II w9

i=1 j=1 j<1/<z j<v<i—1

Y

i=1 j=1 j<v<i
(since |—b,| <1 for all v).

2

IN

In this case o(H) = {\1,..., Ay}, and we can find A € o(H) such that
dist (z, o(H)) = |z — A|. (2.6)
So, |z — A| < |z — A for all i and

i—j+1)
(= Wm<§:X: (2.7)
=1 j=1
We observe that
~ +1 nl
Gz = H) Y s < ”mz )&édn forall z ¢ R. (2.8)

Since all norms in a finite dimensional space are equivalent, we conclude
that

n—1
|(z—H) | <c (2) for all z ¢ R and some ¢ > 0. (2.9)

RES
If H is diagonalizable, then
z — /\1 0

L )

This is a special case of (2.2) with ¢; =b; =0 for all i =2,1...n — 1. In this
case cof(z — H) = (d;j) where

0 , 1>,
dij =< huz=XN) , i=17,
0 i<,
and
T #z _
(= ) s < - V) ZZ:; 2\ Z— A\

with A chosen as in (2.6).
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Therefore
I B s < 225 < (2.10)
Thus,
|(z - H)71H < —— for some ¢ > 0. (2.11)

\JI

Conversely, if H is not diagonalizable, then from (2.4) we have
2

- = $5° [l oy I e

i=1 j=1 3<1/<z j<v<i—1

with by # 0 for some k € {1,...n —1}. Thus

- —b
[oyyim

1=2 j=k; |j<v<i—1 v
where k; := min{j : bj,bj41,...,bi—1 # 0}. But [Sz| = [I(2— ;)] for all
i=1,...,nand |=bj| =1 for all k; < j < i—1. So if we set R(z + \) :=
max{R(z —X;) : ¢ =1,...,n} then

n

=) s = Do|;

=1

n

2 —1)2 32|
>
eI = s > 2 ey = e
" \\sz| !
+; [192] + [R(z = A) 2;; |sz\+\%z+A)H
with a; > 2 for all j.
n 1—1 1
= nK K 2.12
ERPILDIY ey
=2 j=ki
1Sz )2 1 .
where K : —”MH'%(Z?A)HQ, K — 0 as Sz — 0 but ST RGT o i

times faster, as 3z — 0 for any fixed R(z + A). Therefore it follows from (2.12)

that there is no D > 0 such that \%zFH(z— 1HHS <Dforallz¢ R. O

3. Conclusions and Applications

Theorem 3.1. H is of (0, 1) —type R with the constant ¢ = 1 if and
only if iH is a generator of a one-parameter group of isometries on X.
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Proof. Necessity. Assume H is of (0, 1) —type R .

Clearly +iH are closed densely defined (by the hypothesis on H). Suppose
A > 0. Then X € p(£iH) since o(H) C R, and
1A
—(=+H)!

71

Thus by Hille-Yosida theorem (See Goldstein [4], p. 16-17), +iH are generators
of contraction semigroups. Finally, the conclusion follows by invoking Prop. 1.14
of Davies [3].

Sufficiency. Suppose iH is a generator of a group of isometries {7(¢)}.
Then for all w € C with Rw #0, w € p(iH) and
o CT()eMdt i RA>0
_GH) ! = fo
(A —H) { — [2T(t)eMdt if RA < 0
(see Bratteli and Robinson, [1, Proposition 3.16]).
From this

H()‘ _ iH)%H < /000 e~ IRAIE T dt < /000 e IRAIt gy — |§R()\)|71.

A +iE)7Y| = = ||(=ix£ H) 7| < |S(EiN)[ = A7h

Now put z := 2 ]

R
Theorem 3.2. If H is of («, a+ 1)) —type R then \H is also of
(o, o+ 1) —type R with the same constant c for all A > 0.

Proof. Let z ¢ R, then
] |

‘0

-1 2| “
= c|Sz] S2)

Remark 3.3. The type of stability shown in Theorem 3.2 will be called
scale invariance.

Theorem 3.4. If H is of (o, a + 1) — type R then \H is also of
(o, a4+ 1) —type R with the same constant ¢ for all 0 < X\ < 1.

>

< |3

«
) (hypothesis)

|

&
S

Proof. Let z € C\ R, then

(2)

R5Y

|G =2m) = |21 G -7 < e (%i(fl ( >a (hypothesis).
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Thus

NP JiepR o
Gz = AE) | < A ezt A VAR i

<elSzTH XA
BE /C“d s

BYECORS
Remark 3.5. The type of stability shown in Theorem 3.4 will be called

scale sub-tnvariance.

Theorem 3.6. If H is of (a, ) — type R then H + X\ is also of
(o, B) —type R for all \ € R.

Proof. If A € R and z ¢ R then J(z — A\) = Jz. Therefore we get
(z =N

-1 -1 .
Gz = (#4207 = itz = ») — H] Wwﬁ@_mw<mew@
()"
BRI
where ¢; = ¢2%/2 (\)°. O

If H is of (a, B) —type R then it is also of (a, 3) —type R with the
converse not true in general. However the following result provides some sort
of converse to this.

Theorem 3.7. If \H is of (o, o+ 1) —type R for all A > 0, then H is
of (o, a+ 1) —type R with the same constant c.

Proof. Let z ¢ R, then
|z — H)™Y|| = H)\ (A2 — )\H)_lu

_ Az) \* .
< A e|S(A2)| <|S‘§(/\,i)\) (hypothesis)
o
A2 4 |2
= |3zt ‘Oi‘”} for all A > 0.
Sz
Letting A — o0, we observe that
—1 2\
G = )| < e[S <@) | 0

Conjecture 3.8. IfH is of (a, ) —type R, 3> o and 0 € o(H) then



OPERATORS WITH SLOWLY GROWING RESOLVENTS... 355

H isof (a+1, B) —type R.
Theorem 3.9. Let H be of (o, ) —type R . Then H? is of(%ﬁ_l,ﬁ)
— type R.

Proof. Given z ¢ R, we have
1 1 4|z|

ISvz” 3l = Re| T[S

Also since (y/z)* < V2(z) and 2y/z(z — H2) ' = (Vz— H) ' = (—/z — H) ™\,

we get
o= 127 < 3| (lewz = 8+ vz - )

4g_<¢aa
T IVEL SR

(hypothesis)

20448 () (a+B-1)/2
3217

Proposition 3.10. Let A be of (a, o+ 1) — type R with

H(z—A)AH <61$ for some ¢; > 0 and a > 0
Sz
and B of (8, 4+ 1) —type R with
-1 <Z>ﬂ
H(z — B) H < CQW for some ¢5 > 0 and 3 > 0.
S
Then
= A = - By
_ B . B Z>a+ﬂ+2
S (1 + \/561)(]. + \/502) H('L +A) L (’l + B) lH W

Proof. (z — A) and (z — A)~! commute on D(A) and hence (i + A) and
(z—A)~! also commute on D(A) since by linearity of (z—A)~!, for all g € D(A),
we have

(2= A) Ui+ A)g = (s — A {(z+1) — (= A)}g
=(z—)(z = A) g~ (2= A) 7z~ A)yg
— (= 0)(z— A) g — (2 — A)(z— A)Yg = (i + A)(z — A) g,
Also, (i + A)~! maps into D(A) and hence (i + A) and (z — A)~! commute on
R((i+A)~h).
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The operators D := (i + A)(z — A)™, H := [(i+ A)~' — (i + B)"'] and
E = (i + B)(z — B)~! are defined everywhere and bounded on X as can be
seen by writing D = (i +2)(z — A)™' —Tand E= (i +2)(z — B)"! - I.
Now for f € X we have
D[(i+A)~"'—(i+B) ' Ef
=(i+A)E-A i+ =G@+B)((+B)(z—-B)"'f
=—[z-A"'-E-B) 1
Thus
IDIF= [+ 2)(z = A)7H = 1] < 1+ 1+ |2]) || (= = A) 7|

< (14 vae) 2

Relinny

a+1

a+1
Similarly, ||E| < (1 + ﬂ@)@w. Therefore
< >a+,@+2

[z =) = (z=B)7Y| < (1+V2e)(1+V2e) | H]

320

Theorem 3.11. If H is of (a, a+ 1) —type R, for some o > 0, then H
admits C§°(R) functional calculus.
Proof. See Balabane et al [6], Theorem 4.11. O

In fact we believe that (o, o+ 1) —type R and (o, o+ 1) —type R
operators do admit a much larger functional calculus than C§°(R).
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