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Abstract

In this paper we study the disease dynamics of trypanosomiasis in a
cattle population. The compartmental model presented includes the
wild animal population which provides an alternative feeding source
for the tsetse fly. An epidemiological parameter, the basic reproduction
number is calculated. Based on this parameter, conditions for the global
stability of the disease-free and endemic equilibrium points of the model
are established. To aid decision making on which parameters to monitor
in order to control the disease, a sensitivity analysis of the parameters
which define the basic reproduction number is carried out. Results
obtained from the sensitivity analysis indicate that the parameters with
the highest influence on the spread of the disease are the vector biting
rate, the vector survival rate and the vector death rate. These results
indicate that an effective control of the disease would require a reduction
of the contact rate between the cattle and the vector population.
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1 Introduction

Trypanosomiasis in cattle is a vector-borne disease transmitted by the tsetse fly
and caused by a range of protozoan parasites of the genus Typanosoma. Try-
panosomes are multi-host parasites equally capable of infecting a wide range of
domestic and wildlife species, which constitute a reservoir for cattle infections.
In most parts of Africa, cattle are the main species affected, due to the tsetse
fly feeding preferences and the fact that they can shield other domesticated
animals such as goats and pigs from the effects of trypanosomiasis [3].
The disease is a major impediment to livestock particularly cattle farming in
sub-Saharan Africa. It limits the full potential of agricultural development
in the 36 countries where it is endemic, and leads to loss of productivity in
animals. Without treatment, it is frequently fatal [18]. It has a direct impact
on the average number of livestock kept by farmers, and even more important
in effect are the indirect impacts the disease has on settlement patterns, land
use, draught power use, animal husbandry and farming [4].
Though much is known about the biology and ecology of the vector, the trans-
mission of the disease and a variety of control measures developed and demon-
strated, trypanosomiasis is still a significant constraint on animal production,
human health and agricultural livelihoods in many parts of Africa [9]. To
establish a correct perspective view of the complex dynamics of disease in
given populations, models of disease transmission with correct parameter val-
ues, provide estimates of transmission thresholds that are the key to disease
eradication.
A number of mathematical models both simulation [22, 23] and analytical [19,
5] have been proposed to describe African trypanosomiasis. The analytical
models are derived from formulations similar to the MacDonald-type mod-
els [8]. They describe the new cases of a vector-borne disease which will
arise at some time in the future from one case in the present time, the basic
reproduction number [6]. Milligan and Baker [19] in their study described a
compartmental model for trypanosomiasis transmission to determine a criteria
for successful disease control by treatment and by vector control. The study
indicated that the long life span of the vectors lead to high infection rates in
the vector and high values of R0. A sensitivity analysis of the model carried
out using Monte Carlos methods emphasized the need to carry out studies of
the wild animal reservoir alongside entomological surveys.
Their study incorporated the heterogeneity in transmission due to different
tsetse fly species and feeding preferences so that the rate of disease transmis-
sion from the vector to host and vice versa vary from species to species. The
age difference in the vector population and seasonality in cattle parasitaemia
which present differences in susceptibility to infection were also incorporated
into the model. The current study however is interested in a more strategic
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model which simplifies the system to its bare essentials and is useful for study-
ing general disease dynamics and control, [13].
Although the disease is complex, involves several trypanosomes with varying
transmission effects and is transmitted by a wide range of tsetse fly species,
a further consequence of the unusual life history of tsetse is their tendency
to have low genetic variability within a given population [21]. This study
therefore assumes a single trypanosome is transmitted by a particular species
of the tsetse fly in this cattle population. The vector categories considered are
those that directly affect the dynamics of the disease regardless of their age,
the susceptible and infectious vectors. The susceptible vectors affect disease
transmission depending on the rate of infection while the already infected ones
transmit the disease depending on the proportion of bites on an exposed host.
The vector populations exhibit a range of seasonal behavior, from populations
with large fluctuations with a peak in the late rainy season, to those which ap-
pear to be constant or to show only slight seasonality [19], however the disease
dynamics in this study are restricted to the vector population at peak seasons.
This paper hence describes an analytical model for trypanosomiasis in a cattle
population that incorporates the wild animal population. Its objective is to
establish parameters that are key to eradicating the disease.

2 Model formulation

The model is formulated assuming that the cattle, vector and wild animal
populations are each divided into two compartments each, the susceptible S
and the infective I populations. The subscripts c, v and w denote the cattle,
vector and wild animal populations respectively. The susceptible populations
are replenished by birth or recruitment at constant rates Λc, Λv and Λw and
decreased by both natural death rates µc, µv and µw and rates of infection
λc, λv and λw. A further assumption is that the vector population is a single
species transmitting a single pathogen.
The rates of infection are functions of αi, i = 1, 2, the per-capita biting rates,
τi, i = 1, 2, 3, 4, the transmission probabilities, ε, the vector survival rate and
Ii
Ni

, the ratio of the infected transmission population to the total susceptible

populations. Hence the rates of infection are λc = α1τ1ε
Iv
Nc

, λw = α2τ4ε
Iv
Nw

and λv = α1τ2
Ic
Nc

+ α2τ3
Iw
Nw

in the cattle, wild animal and vector populations
respectively. The vectors get infected when they either come in contact with
infected cattle or infected wild animals.
The infected compartments in the cattle, vector and wild animal populations
are generated by infection of the corresponding susceptible compartments and
decreased by natural death rates µc, µv and µw coupled with a disease induced
death rate κ in the cattle population.
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From the above assumptions and description, the following system of differen-
tial equations is formulated:

dSc
dt

= Λc −
{
µc + α1τ1ε

Iv
Nc

}
Sc,

dIc
dt

= α1τ1ε
Iv
Nc

Sc − (µc + κ)Ic,

dSv
dt

= Λv −
{
α1τ2

Ic
Nc

+ α2τ3
Iw
Nw

+ µv

}
Sv,

dIv
dt

=

{
α1τ2

Ic
Nc

+ α2τ3
Iw
Nw

}
Sv − µvIv, (1)

dSw
dt

= Λw −
{
α2τ4ε

Iv
Nw

+ µw

}
Sw,

dIw
dt

= α2τ4ε
Iv
Nw

Sw − µwIw.

with

dNc

dt
= Λc − µcNc − κIc,

dNv

dt
= Λv − µvNv, (2)

dNw

dt
= Λw − µwNw.

Since (1) describes the dynamics of trypanosomiasis in cattle, tsetse fly and
wild animal populations, it makes sense to expect the state variables defined
in the biologically feasible region

Ω = (Sc, Ic, Sv, Iv, Sw, Iw) ∈ R6
+,

to be non-negative for all values of t ≥ 0 and that the solution to the system
remain positive for all t ≥ 0. Further density-dependent factors ensure that
the respective populations have bounded recruitment functions.

Theorem 2.1. Let the initial values be {Sc(0), Ic(0), Sv(0), Iv(0), Sw(0), Iw(0)} ≥
0 ∈ Ω; then the solution set {Sc(t), Ic(t), Sv(t), Iv(t), Sw(t), Iw(t)} of the system
(1) is positive ∀t ≥ 0.

Proof. From the first equation of (1),

dSc
dt

= Λc −
{
µc + α1τ1ε

Iv
Nc

}
Sc,

dSc
Sc
≥ −(µc + α1τ1ε)dt,
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integrating both sides gives

Sc(t) ≥ Sc(0)e−(µc+α1τ1ε)t ≥ 0.

Clearly, Sc(t) is positive for all t ≥ 0. Similarly, for the rest of the equations
in (1) it is clear that the solution for the system remains positive for all t ≥ 0.
This result shows that solutions with initial values in Ω, remain non-negative
for all t ≥ 0.

Theorem 2.2. Ω is positively invariant in (1) (i.e. all solutions in Ω remain
in Ω for all time).

Proof. From the first equation of (2)

dNc

dt
≤ Λc − µcNc,

Nc ≤
Λc

µc
−
{

Λc − µcN0

µc

}
e−µct. (3)

As t → ∞ in (3), Nc →
Λc

µc
. Hence Nc ≤

Λc

µc
. It is clear from the second

and third equations of (2) that, Nv →
Λv

µv
; Nw →

Λw

µw
. Consequently Ω is

positively invariant under (1).

From the above discussion, a set Ω is defined as

Ω =

{
0 ≤ Nc ≤

Λc

µc
, 0 ≤ Nv ≤

Λv

µv
, 0 ≤ Nw ≤

Λw

µw

}
. (4)

In the remaining part of this paper the state variables are restricted to the set
(4).

3 Analysis of the model

In this section, the model (1) is analyzed to establish some of the results. The
stability of the equilibrium points in epidemic modelling is important. When
a disease-free equilibrium is stable (especially globally), the outbreak of the
disease is not expected, for life, but when it is unstable, another outbreak
would be anticipated when particular conditions for the disease reappear.
The steady states of the model (1), are obtained from setting the right hand
side of Equation (1) to zero. The disease-free equilibrium, εo, is obtained when
Ic = Iv = Iw = 0 and is given by

εo = {Sc, Ic, Sv, Iv, Sw, Iw} =

{
Λc

µc
, 0,

Λv

µv
, 0,

Λw

µw
, 0

}
. (5)

The disease-free equilibrium is the point at which the population remains in
the absence of disease.
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3.1 Local stability analysis of εo

The local stability of εo is established using the next generation operator ap-
proach [15] on the system (1). In this approach, a threshold quantity, the
basic reproduction number R0, is estimated which is critical to the asymptotic
stability of the disease-free equilibrium.
Using the notation in [15], the infection matrix F and the transition matrix V ,
are given by (noting that S∗

c = N∗
c , S∗

v = N∗
v , andS∗

w = N∗
w at the disease-free

equilibrium, εo)

F =

 0 α1τ1ε 0
α1τ2h 0 α2τ3ρ

0 α2τ4ε 0

 ,

where the constants h =
Nv

Nc

and ρ =
Nv

Nw

represent the vector-cattle and

vector-wild animal ratios respectively. These ratios are assumed to be con-
stant because it is known that a vector takes a fixed number of blood-meals
per unit time independent of the population density in the host [12].
The (i, j) entry of F is the rate at which the infected individuals in compart-
ment j produce new infections in the compartment i. The infected vectors
produce new infections in the cattle population at the rate α1τ1ε and in the
wild animal population at the rate α2τ4ε, while the infected cattle and wild
animal populations produce new infections in the vector population at the rate
α1τ2h and α2τ3ρ respectively. The transition matrix

V =

(µc + κ) 0 0
0 µv 0
0 0 µw

 .

The (i, j) entry of V is the rate individuals in stage j progress to stage i and
its inverse given by

V −1 =


1

(µc + κ)
0 0

0
1

µv
0

0 0
1

µw

 ,

is the expected time spent in compartment i by an individual initially in com-
partment j over the course of its infection. The average length of time an
infected cow, vector and wild animal spends in the infected compartment dur-
ing its lifetime assuming that the population remains near the DFE and barring

infection is
1

(µc + κ)
,

1

µv
and

1

µw
respectively. The next generation matrix or
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operator is hence given by

FV −1 =


0

α1τ1ε

µv
0

α1τ2h

(µc + κ)
0

α2τ3ρ

µw
0

α2τ4ε

µv
0

 . (6)

The (i, j) entry of (6) is the expected number of secondary infections pro-
duced in compartment i by an index case initially in the compartment j. The
expected number of new infections in the infected vectors compartment, pro-
duced by the infected vectors originally introduced into the infected cattle and

wild animal population is
α1τ1ε

µv
and

α2τ4ε

µv
respectively. The infected cattle

and wild animal population produce infected vectors and vice versa causing
the offdiagonal structure of FV −1.
Thus, the basic reproduction number R0, the spectral radius of the matrix
FV −1, is given by

R0 =

√
α2
2τ4τ3ερ

µvµw
+

α2
1τ2τ1εh

µv(µc + κ)
. (7)

The basic reproduction number given by (7) is biologically meaningful because
as expected, it is jointly proportional to the probability of infection per contact
between a susceptible and an infectious individual, the average rate of contact
between a susceptible and an infectious individual and the duration of infec-
tiousness [11]. Near the disease-free equilibrium, each infected wild animal

produces
α2τ3ρ

µw
infected vectors over its expected infectious period, and each

infected vector produces
α2τ4ε

µv
new infected wild animals over its expected

infectious period. Similarly each infected cow produces
α1τ2h

(µc + κ)
new infected

vectors over its expected infectious period and each infected vector produces
α1τ1ε

µv
new infected cows over its infectious period. As indicated by Chitnis et.

al., [14], R0 measures the initial disease transmission.
The number of new infections in cattle that one cow causes through their in-
fectious period is R2

0 and not R0. This is because the definition of R0 in (7)
based on the next generation approach [16], counts the number of infections
from one generation to the next [14]. In this case, the number of new infections
in the tsetse flies count as one generation, the waves of secondary infections
that flow from each previous infection. The first generation of an epidemic is
all the secondary infections that result from infectious contact with the index
case, who is of generation zero. R0 refers to the number of infections gener-
ated by the index case, i.e., generation zero. The square root in Equation (7)
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arises from the two ”generations” required for an infected vector or host to
”reproduce” itself, that is, one to transmit and one to get infected [11].
Since (2) satisfies axioms (A1)-(A5) of the Theorem 2 in van den Driessche
and Watmough [17], and the R0 calculated above is biologically meaningful,
then:

Lemma 3.1. The disease free equilibrium is locally stable for R0 < 1 and
unstable when R0 > 1.

3.2 Global stability analysis of εo

To establish the global stability conditions for the disease-free equilibrium
when R0 < 1, (2) is written in the form as in Castillo-Chavez et. al., [1]

dZ

dt
= G(X,Z), G(X, 0) = 0,

dX

dt
= F (X,Z).

where X ∈ Rm denotes the number of uninfected individuals and Z ∈ Rn

denotes the number of infected individuals. Then the two conditions:

1. For
dX

dt
= F (X, 0), X∗ is globally asymptotically stable,

2. G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω

where A = DZG(X∗, 0) is an M -matrix (the off diagonal elements of A are
non-negative) and Ω is the region where the model makes biological sense, if
met, also guarantee the global asymptotic stability of the disease free state [1].
If (1) satisfies the above two conditions then the following theorem holds:

Theorem 3.2. If R0 < 1, then the disease-free equilibrium point is globally
asymptotically stable in Ω.

Proof. Defining new variables and breaking the system given by (1) into two:
the susceptible and the infected sub-systems, coupled with Z = (Ic, Iv, Iw) and
X = (Sc, Sv, Sw), then (1) can be written as:

dZ

dt
= G(X,Z), G(X, 0) = 0,

dX

dt
= F (X,Z). (8)
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where the two functions are given by:

G(X,Z) =

[
α1τ1ε

Iv
Nc

Sc − (µc + κ)Ic;

{
α1τ2

Ic
Nc

+ α2τ3
Iw
Nw

}
Sv − µvIv;

α2τ4ε
Iv
Nw

Sw − µwIw
]T
,

(9)

F (X,Z) =

[
Λc −

{
µc + α1τ1ε

Iv
Nc

}
Sc; Λv −

{
α1τ2

Ic
Nc

+ α2τ3
Iw
Nw

+ µv

}
Sv;

Λw −
{
α2τ4ε

Iv
Nw

+ µw

}
Sw

]T
.

Consider the reduced system:
dX

dt
= F (X, 0)

dSc
dt

= Λc − µcSc,

dSv
dt

= Λv − µvSv, (10)

dSw
dt

= Λw − µwSw.

X∗ = {S∗
c , S

∗
v , S

∗
w} =

{
Λc

µc
,
Λv

µv
,
Λw

µw

}
is a globally asymptotically stable equi-

librium point for the reduced system
dX

dt
= F (X, 0). This is clear when the

first equation in (10) is solved to obtain

Sc =
Λc

µc
−
{

Λc

µc
− Sc(0)

}
e−µct → Λc

µc
as t→∞.

Similarly solving the second and third equations give

Sv =
Λv

µv
−
{

Λv

µv
− Sv(0)

}
e−µvt → Λv

µv
as t→∞,

and

Sw =
Λw

µw
−
{

Λw

µw
− Sw(0)

}
e−µwt → Λw

µw
as t→∞

respectively. These asymptotic dynamics are independent of the initial condi-
tions in Ω. This implies that the convergence of the solutions of (10) is global

in Ω. Since X∗ = {S∗
c , S

∗
v , S

∗
w} =

{
Λc

µc
,
Λv

µv
,
Λw

µw

}
so that

G(X∗, Z) =


α1τ1εIv − (µc + κ)Ic

α1τ2
Ic
Nc

Λv

µv
+ α2τ3

Iw
Nw

Λv

µv
− µvIv

α2τ4εIv − µwIw

 ,
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G(X,Z) = AZ − Ĝ(X,Z) where A = DZG(X∗, 0)

A =


−(µc + κ) α1τ1ε 0

α1τ2
Λv

µvNc

−µv α2τ3
Λv

µvNw

0 α2τ4ε −µw


and

Ĝ(X,Z) =

Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)



=


α1τ1εIv

{
1− Sc

Nc

}
α1τ2

Ic
Nc

{
Λv

µv
− Sv

}
+ α2τ3

Iw
Nw

{
Λv

µw
− Sv

}
α2τ4εIv

{
1− Sw

Nw

}

 .

Ĝ1(X,Z) and Ĝ3(X,Z) are both greater than 0 since
Sw
Nw

and
Sc
Nc

are propor-

tions. Equally since the vector and wild animal populations equilibrate at
Λv

µv

and
Λw

µw
respectively, the expression α1τ2

Ic
Nc

{
Λv

µv
− Sv

}
+α2τ3

Iw
Nw

{
Λv

µw
− Sv

}
in Ĝ2(X,Z) is non-negative. Therefore since the disease-free equilibrium point
is locally asymptotically stable for R0 < 1, the globally stability equilibrium
follows from the theorem.

3.3 The Endemic Equilibrium, ε∗

To analyse the stability of the equilibrium point ε∗, the Centre Manifold the-
orem as described in Theorem 4 of [1] is used. It states that if f is Cr (r
times continuously differentiable) then at every equilibrium point there is a
unique Cr stable manifold, a unique Cr unstable manifold and a (not neces-
sarily unique) Cr−1 centre manifold, [10]. As the stability of the equilibrium
correlates with the stability of its manifolds, the existence of the centre mani-
fold brings up the question of the dynamics of the centre manifold. However,
before stating our main result, we give the following theorem which will be
useful in the subsequent section.
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Theorem 3.3. With reference to Castillo and Song [2], consider the general
system of ordinary differential equations with a parameter φ, that is

dx

dt
= f(x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R). (11)

Without loss of generality, it is assumed that 0 is an equilibrium for (11) for
all values of the parameter φ.
Assume

A1 A = Dxf(0, 0) =

{
∂fi
∂xi

(0, 0)

}
, is the linearization of (11) around the

equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and
all other eigenvalues of A have negative real parts;

A2 Matrix A has a nonnegative right eigenvector w and a left eigenvector v
corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
∑

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (12)

b =
∑

vkwi
∂2fk
∂xi∂φ

(0, 0).

The local dynamics of (11) around 0 are totally determined by a and b.

i a > 0, b > 0. When φ < 0 with φ � 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium; when 0 < φ � 1, 0
is unstable and there exists a negative and locally asymptotically stable
equilibrium;

ii a < 0, b < 0. When φ < 0 with φ � 1, 0 is unstable; when 0 < φ �
1, 0 is locally asymptotically stable and there exists a positive unstable
equilibrium;

iii a > 0, b < 0. When φ < 0 with φ � 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ � 1, 0 is
stable and a positive unstable equilibrium appears;

iv a < 0, b > 0. When φ changes from negative to positive, 0 changes its
stability from stable to unstable. Correspondingly, a negative unstable
equilibrium becomes positive and locally asymptotically stable.



2676 J. Otieno, J. Y. T. Mugisha, B. K. Nannyonga and P. Oleche

3.4 Local stability analysis of ε∗

To establish the local asymptotic stability of the endemic equilibrium ε∗, using
the Centre Manifold theorem the following definitions are made: Sc = x1,
Ic = x2, Sv = x3, Iv = x4, Sw = x5 and Iw = x6. Using the vector notation
X = (x1, x2, x3, x4, x5)

T , the system (2) under these condition can be written

in the form
dX

dt
= F = (f1, f2, f3, f4, f5)

T , such that

dx1
dt

= f1 = Λc − (µc + α1τ1ε
x4

x1 + x2
)x1,

dx2
dt

= f2 = α1τ1ε
x4

x1 + x2
x1 − (µc + κ)x2,

dx3
dt

= f3 = Λv − (α1τ2
x2

x1 + x2
+ α2τ3

x6
x5 + x6

+ µv)x3,

dx4
dt

= f4 = (α1τ2
x2

x1 + x2
+ α2τ3

x6
x5 + x6

)x3 − µvx4, (13)

dx5
dt

= f5 = Λw − (α2τ4ε
x4

x5 + x6
+ µw)x5,

dx6
dt

= f6 = α2τ4ε
x4

x5 + x6
x5 − µwx6.

The method involves evaluating the Jacobian of (13) at the disease-free equi-
librium (εo) denoted by J(εo). The reproduction number of the (13) is given
as in (7).
The tsetse fly bites both the wild animal and cattle populations yet the rate
at which they bite the wild animal population is higher [19], so that α1 < α2.
This means that α2 = θα1, where θ > 1 is the modification parameter which
captures the increased transmissibility of animal trypanosomiasis when the
vectors feed on the wild animal population. If we let α = α1 and choose α to
be the bifurcation parameter, solving for α = α∗ when R0 = 1 gives,

α∗ =

√
µvµw(µc + κ)

θ2τ4τ3ερ(µc + κ) + τ2τ1εhµw
. (14)

The linearized system of the transformed (13) with α = α∗ chosen as a bifur-
cation parameter has a simple zero eigenvalue. Hence, the Jacobian of (13) at
α = α∗ has a right eigenvector (corresponding to the zero eigenvalue) given by
w = (w1, w2, w3, w4, w5, w6)

T , with

w1 =
α∗τ1ε

µc
ηw4; w2 =

α∗τ1ε

(µc + κ)
w4; w3 = ηw4;

w4 > 0; w5 = −θα
∗τ4ε

µw
w4; w6 =

θα∗τ4ε

µw
w4,
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where η =
α∗2τ2τ1εh

µv(µc + κ)
+
θα∗2τ4τ3ερ

µvµw
, and it has a left eigenvector (corresponding

to the zero eigenvalue) given by v = (v1, v2, v3, v4, v5, v6)
T , with

v1 = 0; v2 =
α∗τ2h

(µc + κ)
v4; v3 = 0; v4 > 0; v5 = 0; v6 =

θα∗τ3ρ

µw
v4.

For (13), the associated non-zero partial derivatives of F at εo are given by

∂2f2
∂x2∂x4

= −α
∗τ1εµc
Λc

;
∂2f4
∂x1∂x2

= −α
∗τ2hµc
Λc

;
∂2f4
∂x22

= −2α∗τ2hµc
Λc

;

∂2f4
∂x2∂x3

=
α∗τ2µc

Λc

;
∂2f4
∂x3∂x6

=
θα∗τ3µw

Λw

;
∂2f4
∂x5∂x6

= −θα
∗τ3ρµw
Λw

; (15)

∂2f4
∂x26

= −2θα∗τ3ρµw
Λw

.

From (15), the parameter a as defined in (12) is given by

a = −2α∗2
[
M1M4 + η

{
M5 +

M1

Λc

+M1M3

}]
v4w

2
4 < 0 (16)

where M1 =
τ2τ1εh

µc + κ
, M2 =

θ2τ4τ3ε

Λw

, M3 =
2θα∗τ4ερ

µw
, M4 =

3α∗τ1εµc
Λc

and

M5 =
α∗τ1
µc + κ

.

To calculate b, the associated non-vanishing partial derivatives are:

∂2f4
∂x2∂α

= τ2h;
∂2f4
∂x6∂α

= θτ3ρ

so that

b =

{
ατ2τ1εh

µc + κ
+
θ2ατ4τ3ερ

µw

}
v4w4 > 0. (17)

From (16) and (17), a < 0, b > 0 Lemma (3.4) follows.

Lemma 3.4. The endemic equilibrium for the system (2) exists and is locally
asymptotically stable whenever R0 > 1 as stated in [2] Theorem 4.1 (iv).

The system (1) exhibits a supercritical bifurcation. This means that the ex-
change of stability between the disease-free and endemic steady states guar-
antees that the endemic steady state is locally asymptotically stable whenever
R0 > 1.
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3.5 Global stability analysis of ε∗

In this sub-section, the global stability of the endemic equilibrium of (2) is
established using the Lyapunov direct method (also called the second method
of Lyapunov). This method makes it possible to determine the stability of a
system without explicitly integrating the differential equations in the system.

Theorem 3.5. Let L(x, t) be a non-negative function with derivative L̇ along
the trajectories of the system. If L(x, t) is a positive definite, then the origin
of the system is globally asymptotically stable.

Theorem (3.5) gives sufficient conditions for the global stability of a sys-
tem. Though the search for a Lyapunov function establishing stability of
an equilibrium point could be arduous, the Lyapunov function of the form

L̂(x1, x2, ..., xn) =
∑n

i=1 ci

{
xi − x∗i − x∗i log

xi
x∗i

}
can be especially useful for

host-vector models with any number of compartments, [7].
From the general theory a unique endemic equilibrium exists which satisfies
the following relations:

Λc = µcS
∗
c + α1τ1ε

I∗v
N∗
c

S∗
c ,

(µc + κ)I∗c = α1τ1ε
I∗v
N∗
c

S∗
v ,

Λv = α1τ2
I∗c
N∗
c

S∗
v + α2τ3

I∗w
N∗
w

S∗
v + µvS

∗
v , (18)

µvI
∗
v = α1τ2

I∗c
N∗
c

S∗
v + α2τ3

I∗w
N∗
w

S∗
v ,

Λw = α2τ4ε
I∗v
N∗
w

S∗
w + µwS

∗
w,

µwI
∗
w = α2τ4ε

I∗v
N∗
w

S∗
w.

Theorem 3.6. If R0 > 1 then ε∗ is globally asymptotically stable in Ω.

Proof. We define the possible Lyapunov function
L : (Sc, Ic, Sv, Iv, Sw, Iw) ∈ Ω : Sc, Ic, Sv, Iv, Sw, Iw > 0→ R by

L(Sc, Ic, Sv, Iv, Sw, Iw) =c1

{
Sc − S∗

c − S∗
c log

Sc
S∗
c

}
+ c2

{
Ic − I∗c − I∗c log

Ic
I∗c

}
+

c3

{
Sv − S∗

v − S∗
v log

Sv
S∗
v

}
+ c4

{
Iv − I∗v − I∗v log

Iv
I∗v

}
+

c5

{
Sw − S∗

w − S∗
w log

Sw
S∗
w

}
+ c6

{
Iw − I∗w − I∗w log

Iw
I∗w

}
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where

c1 = c2 = α1τ1ε
I∗v
N∗
c

S∗
c ,

c3 = c4 =

{
α1τ2

I∗c
N∗
c

+ α2τ3
I∗w
N∗
w

}
S∗
v ,

c5 = c6 = α2τ4ε
I∗v
N∗
w

S∗
w.

This means L is C1 (one time continuously differentiable) on the interior of Ω,
ε∗ is the global minimum of L on Ω and L(S∗

c , I
∗
c , S

∗
v , I

∗
v , S

∗
w, I

∗
w) = 0.

The derivative of L computed along the solutions of (1) is given by

dL

dt
=m∗S∗

c

{
1− S∗

c

Sc

}
dSc
dt

+m∗S∗
c

{
1− I∗c

Ic

}
dIc
dt

+ n∗S∗
v

{
1− S∗

v

Sv

}
dSv
dt

(19)

+ n∗S∗
v

{
1− I∗v

Iv

}
dIv
dt

+ p∗S∗
w

{
1− S∗

w

Sw

}
dSw
dt

+ p∗S∗
w

{
1− I∗w

Iw

}
dIw
dt

where m∗ = α1τ1ε
I∗v
N∗
c

, m = α1τ1ε
Iv
Nc

, n∗ = α1τ2
I∗c
N∗
c

+ α2τ3
I∗w
N∗
w

, n = α1τ2
Ic
Nc

+

α2τ3
Iw
Nw

, p∗ = α2τ4ε
I∗v
N∗
w

and p = α2τ4ε
Iv
Nw

.

Substituting for the expressions of
dSc
dt

,
dIc
dt

,
dSv
dt

,
dIv
dt

,
dSw
dt

and
dIw
dt

in (19)

and simplifying we get

dL

dt
=− µcm∗S

∗
c

Sc
{S∗

c − Sc}
2 −mm∗S∗2

c

{
Sc
S∗
c

I∗c
Ic
− 1

}
−m∗2S∗2

c

{
S∗
c

Sc

+
Ic
I∗c
− 2

}
− n∗2S

∗
v

I∗v

S∗
v

Sv
{S∗

v − Sv}
2 − nn∗S∗2

v

{
Sv
S∗
v

I∗v
Iv
− 1

}
−

n∗2S∗2
v

{
S∗
v

Sv
− 1

}
− p∗2S

∗
w

Sw

S∗
w

I∗w
{S∗

w − Sw}
2 − p∗2S∗2

w

{
S∗
w

Sw

+
Iw
I∗w
− 2

}
− pp∗S∗2

w

{
I∗w
Iw

Sw
S∗
w

− 1

}
(20)

Since the arithmetic mean is greater than or equal to the geometric mean we

have:
Sc
S∗
c

I∗c
Ic
≥ 1,

S∗
c

Sc
+
Ic
I∗c
≥ 2,

Sv
S∗
v

I∗v
Iv
≥ 1,

S∗
v

Sv
≥ 1,

S∗
w

Sw
+
Iw
I∗w
≥ 2,

I∗w
Iw

Sw
S∗
w

≥ 1,

∀Sc, Ic, Sv, Iv, Sw, Iw ≥ 0.

Clearly from (20),
dL

dt
≤ 0 always holds except at the steady state ε∗, the

endemic equilibrium of the system (2). Furthermore
dL

dt
= 0 if and only if
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Sc = S∗
c , Ic = I∗c , Sv = S∗

v , Iv = I∗v , Sw = S∗
w and Iw = I∗w. By LaSalle’s

invariant principle, ε∗ is globally asymptotically stable in Ω. This completes
the proof of Theorem (3.6).

From the analysis of the model (1), it is clear that the dynamics of trypanoso-
miasis in a cattle population is determined by R0. However, since R0 is a
function of a number of disease and population parameters, a sensitivity anal-
ysis of these parameter value will aid decision making especially on which
parameters to monitor in order to control the disease.

4 Sensitivity analysis of R0

Whereas R0 reports a single summary outcome, the actual number of in-
fected(s) will depend on the level of confidence or uncertainty in the various
parameters that define R0. Sensitivity analysis of R0 allows the evaluation of
its estimate to the uncertainty in estimating the values of each of its input
parameters. A sensitivity index gives the ratio of the change of the output
to change in input while other parameters remain constant [24]. When an
explicit algebraic equation describes the relationship between the independent
variable and the dependent variable, the sensitivity index ΥR0

i for a particu-
lar independent variable can be calculated from the partial derivative of the
dependent variable, i.e.

ΥR0
α1

=
∂R0

∂α1

α1

R0

,

where the quotient,
α1

R0

, is introduced to normalize the index by removing the

effects of units [?].
The normalized sensitivity indices for the thirteen model parameters are given
by ΥR0

α2
= η1

R2
0γ2

, ΥR0
α1

= η2
R2

0γ1
, ΥR0

τ4
= 1

2
η1
R2

0γ2
, ΥR0

τ3
= 1

2
η1
R2

0γ2
, ΥR0

τ2
= 1

2
η2
R2

0γ1
,

ΥR0
τ1

= 1
2

η2
R2

0γ1
, ΥR0

ε = 1
2
, ΥR0

h = 1
2

η2
R2

0γ1
, ΥR0

ρ = 1
2

η1
R2

0γ2
, ΥR0

µv = −1
2
, ΥR0

µw = −1
2

η1
R2

0γ2
,

ΥR0
κ = −1

2
η2κ
R2

0m
and ΥR0

µc = −1
2
η2µc
R2

0m
. where R0 is (7) and

η1 = α2
2τ4τ3ερ, η2 = α2

1τ2τ1εh, γ1 = µv(µc + κ), γ2 = µvµw,

m = µv(µc + κ)2.

All the sensitivity indices are positive except ΥR0
µv , ΥR0

µw , ΥR0
µc and ΥR0

κ . The
natural death rate of the vectors, the natural death rate of the wild animals
and the natural and disease-induced death rate in cattle that have the effect of
reducing R0. Further, all are functions of the parameter values except ΥR0

ε and
ΥR0
µv and will change as the parameter values change. The parameter values

from previous studies are used to determine how sensitive parameter values are.
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Parameter Description Value Ref
α1 Rate at which tsetse fly bite cattle 0.032 [19]
α2 Rate at which tsetse fly bite wild animals 0.97 [19]
µc Natural mortality rate of cattle (inc. slaughter)days−1 0.00055 [25]
µv Natural mortality rate of vector days−1 0.97 [5]
µw Natural mortality rate of wild animals days−1 0.0006 [19]
κ Disease-induced death rate in cattle days−1 0.006 [20]
τ1 Transmission probability from vector to cattle 0.62 [5]
τ2 Transmission probability from cattle to vector 0.7 [25]
τ3 Transmission probability from wild animal to vector 0.05 [19]
τ4 Transmission probability from vector to wild animal 0.2 [19]
ε Survival rate of vector 0.5 Estimated
ρ Ratio of susceptible vectors to cattle population 76 [19]
h Ratio of susceptible vectors to wild animal population 76 [19]
Λc Cattle recruitment rate 22.0 [25]
Λv Tsetse recruitment rate 24.0 Estimated
Λw Wild animal recruitment rate 27.5 Estimated

Table 1: Parameter values from previous studies

Using the parameter values in Table 1, the sensitivity indices are provided in
Table 2. The magnitude of the sensitivity indices indicates the more sensitive
parameter in R0, while the sign of the sensitivity index of R0 indicates whether
R0 increases (+) or decreases (−) when a parameter increases, the rest of the
parameters being constant [14].
The most sensitive parameter, the one with the highest influence on R0, is the
rate at which the vectors bite the wild animal population, α2. Decreasing (or
increasing) α2 by 10% decreases (or increases) R0 by 9.997%. Other important
parameters include the vector survival rate ε and the vector death rate µv .

5 Discussion

From the analysis, the disease can invade into the susceptible cattle population
and a unique endemic state exists if R0 > 1, whereas the disease dies out when
R0 < 1. However, R0 is a function of various disease and population param-
eters. Controlling the disease suggests reducing R0 to less than 1. Targeting
the parameters which have a high influence on R0, the vector biting rate on
the wild animal population, the survival rate of the vectors and vector death
rate would provide suggestions on control.
The vector death rate has the highest effect of reducing R0 as it increases. Ob-
viously, with no vectors to transmit the disease, the disease will be eradicated
from the population. The wild animal population are tolerant to and provide
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Parameter Sensitivity Index
α2 +0.99569
ε +0.50000
µv - 0.50000
τ4 +0.49785
τ3 +0.49785
ρ +0.49785
µw - 0.49785
α1 +0.00431
τ2 +0.00215
τ1 +0.00215
h +0.00215
κ - 0.00197
µc - 0.00018

Table 2: Sensitivity indices of parameter values in R0

a reservoir to the trypanosome so that vectors that contact the them are more
likely to be infected. They accelerate the disease in a cattle population. Just
as in [19], a close monitoring of the disease dynamics in the wild animal pop-
ulation would suggest methods of disease control in the cattle population.
The vector survival rate if increased, increases endemicity of the disease. The
cyclic transmission of the disease implies that once the tsetse fly become in-
fected, it remains infective for a long period [18]. The longer the vector
survives, the more cattle one would expect it to infect. Figures 1 and 2 show
the number of infected cattle for varying values of α2 and ε. The parameters
that drive the disease in a cattle population if targeted would greatly enhance
disease control. in this particular case, control strategies that minimize contact
between the vector and the cattle populations would be a way of eradicating
the disease.
The particular values of the sensitivity indices of the reproduction number,
R0, to the different parameters depend on the parameter values provided in
Table 2 and on the assumptions on which the model (1) is made. To effec-
tively guide policy, the model and parameter values would need to be tested
against recent data from trypanosomiasis-endemic regions. The current anal-
ysis however remains an important step in simplifying the study of the general
trypanosomiasis disease dynamics in a given cattle population.
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Figure 1: Infected cattle population at various vector wild animal biting rate

Figure 2: Infected cattle population at various vector survival rate


