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ABS TRACT 

A Web Browser is a computer application used to access information on the World Wide Web. 

The browser‟s parsing capability has advanced over years since its inception. The advancements 

have consequently increased demand for memory as manifested by computer crawl. 

Contemporary browsers are anchored on reference architecture that lacks memory control 

mechanism that can limit maximum memory a browser can use thus posing a challenge in 

multiprogramming environments with less memory thereby making the computer to freeze. 

Enhanced browser reference architecture was developed for investigation. The main objective of 

the study was to develop and integrate a memory analyzer to the browser with a view to 

evaluating its performance in Web browsers. Specific objectives were to specify the functional 

requirements for the browser prototype, to design and develop a browser prototype, to design, 

implement, and integrate memory analyzer and to evaluate the performance of the memory 

analyzer in the developed architecture. Prototyping technique and software reuse were adopted in 

formulating the model. The memory analyzer component acted as a memory meter and a 

memory optimizer. It controlled memory hogging by limiting memory usage to a particular value 

set by the user and optimizing available memory by calling the garbage collector. Experiments 

were carried out to validate the Mozilla–based developed prototype by using Mozilla Firefox 

browser as a control. All tests were carried on windows environment in parallel. Memory 

consumption between the two browsers was recorded and statistically analyzed to test the 

researcher‟s hypothesis. To evaluate the performance of the analyzer, memory demands posed by 

access to popular sites such as electronic mail service providers, social networks entertainment 

and search engines were examined. Statistical T-test on memory consumption between the two 

browsers revealed that memory analyzer-integrated browser consumed 38.65 MB and 52.08 MB 

less with homogeneous and heterogeneous tabs respectively compared to contemporary Mozilla 

Firefox browser. This value is computationally significant as it provides suitable environment 

that facilitates concurrency in computer systems that have low memory. The study provides 

insights on the performance of enhanced browser reference architecture with regard to memory 

optimization. The study recommends further research on memory optimization approaches, as 

browser memory consumption is dynamic and browser technologies change often.    
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CHAPTER 1 

INTRODUCTION 

The chapter introduces the subject under investigation. Section 1.1 gives the background of study 

and evolution of web browsers. Section 1.2 to 1.9 summarizes the research study under the 

sections aforementioned.  

1. 1 Background to the Study 

The Internet is progressively becoming an indispensable component of today‟s life. Most often 

than not, people largely rely on the expediency and elasticity of Internet-connected devices in 

learning, shopping, entertainment, communication and in broad-spectrum activities, that would 

otherwise necessitate their physical presence (Sagar et al., 2010). To access information or 

services via the Internet, it requires a medium; a browser operates as a medium. It is the prime 

software of a computer system when the Internet is of importance. A browser retrieves, displays, 

and traverses information resources on the Web (World Wide Web Consortium, 2004).  

Information resources comprise text, image, video, or other pieces of content. These resources 

are identified and accessed by a Uniform Resource Identifier (URI).  

The first browser known as WorldWideWeb was made in the early 1990s by Tim Berners-Lee 

and later named Nexus (Tim Berners-Lee, 1999). Since then, browsers have seen tremendous 

advancements ranging from their architectures and usage. The earliest browsers; Nexus, Mosaic 

and Netscape were less complex and used considerably low computer memory (Gordon, 2017). 

However, they were commonly used for viewing basic HTML pages. With the advancement of 

the Internet, browsers have had a lot of popularity in usage globally. Today, the browser is the 

most used computer application in the world (Allan & Michael, 2006a; Antero et al., 2008). With 

limited computer power to process voluminous data generated from various sources, users have 

resorted to other technologies like the cloud computing and other online solutions where there is 

robust computer processing power, vast storage, scalability, reliability and on-demand services. 

In these cases, resources are accessed as services via the Internet with thin clients especially the 

browsers.  

Originally, web information comprised a set of documents that in most cases contained text and 

hyperlinks to other related documents, having little or no client-side code. All rendered content 

originated from a single source. Web content has increasingly become more complex in pursuit 

to incorporate interactive features. Today, web programs have advanced to become highly 
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interactive applications that execute on both the server side and client machine. With these 

advancements, web pages today are no longer simple documents; they now comprise highly 

dynamic contents that work together with each other. In other words, a web page is now said to 

be a “system”–having dynamic contents as programs running in it, interacting with users, 

accessing other contents both on the web page and in the hosting browser, invoking browser 

Application Programming Interfaces (APIs), and interacting with programs on the server side. 

These advancements require adequate computer memory in order to run properly from the host 

computer. 

Consequently, these advancements have brought along rising memory demands. In fact, memory 

allocation to a browser rises gradually from tens of Megabytes (MBs) to hundreds of MBs and 

eventually to Gigabytes (Doug, 2012). This fact only categorizes browsers as today‟s memory 

wolfs. Indeed, it leads to browser crash. The size of RAM determines the nature of software a 

computing device can run and consequently the level of multiprogramming. A single process 

consuming nearly a gigabyte of RAM in a one GB computer will lead to starvation of other 

processes and therefore lower multiprogramming level and finally leads to a crawl. However, 

these browsers behave differently in different platforms and with the content the browser loads. 

Currently, web browsers have add-ons and extensions that users can use to free memory from 

them. This strategy does not stop the computer from freezing (Wayne, 2018).  

1.1.1 Web Browser Evolution 

Key concepts of web browsers can be drawn back from systems envisaged by Vannevar Bush in 

the 1940s (Nyce & Kahn, 1991) and Ted Nelson in the 1960s (Ted Nelson, 1965). However, the 

World Wide Web (WWW) was first described in a proposal made by Tim Berners-Lee in 1990 

at the European Nuclear Research Center (CERN), (Tim Berners-Lee, 1999). By the end of 

1991, he had written the first web browser. This browser served as an HTML editor. In the same 

year, scholars at the University of Kansas had in parallel initiated a project on a text-only 

browser, which was given the name Lynx, (Legan & Dallas, 2001). Moreover, around the year, 

National Center for Supercomputing Applications (NCSA) developed a graphical web browser, 

which was branded Mosaic, (Andreessen et al, 1994). Mosaic had the capability of parsing both 

images and text. 

As the commercial potential of the web began to grow, NCSA founded an offshoot company 

called Spyglass to commercialize its technologies and Mosaic's co-author left to co-found his 
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own company, Netscape. Later, Andreessen and his team poised to release Mosaic Netscape (Lasar 

and Matthew, 2011). In 1994, Berners-Lee initiated the World Wide Web Consortium (W3C), 

which its core mandate was to guide the development of the web and offer support on 

interoperability of web technologies. In the following year, Microsoft developed Internet 

Explorer (IE), which ignited an intense competition with Netscape. Microsoft in due course 

dominated the market, and Netscape released its open-source browser with the name Mozilla in 

1998 (Dave Titus, 2002). Figure 1.1 illustrates a timeline of the various releases of several 

outstanding web browsers and their dominance in the market. Since then, Mozilla has had much 

advancement in its architectural design with the aim of improving its usability and security. 

Today, there are a number of web browsers in the market which include Galeon (Krause && 

Ralph, 2002), Konqueror (Nick, 2010), Maxthon (Maxthon, 2005), Avant (Avant Force, 2004), 

NetCaptor (Wayner & Peter, 2005), Chrome (Google, 2008), Safari (Pour & Andreas, 2003) and 

Opera (Opera, 2003). 

 

 

Figure 1.1: Browser timeline 1994-2010 (Michał Karzyński, 2010) 

1.2 Statement of the Problem 

Memory demand by today‟s browsers is overwhelming. The existing browser reference 

architecture does not have a control of memory usage and thus the browser continuously 

demands more and more memory until the operating system can no longer allocate any extra 
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memory making the computer to freeze. Contemporary browsers  like Google Chrome, Mozilla 

Firefox and Internet Explorer have over years been enhanced to lower their memory 

consumption levels by use of extensions which end up requiring more memory. Third-party tools 

adopted for memory optimization by aforementioned browsers depict a similar challenge. This 

reduces Operating System (OS) concurrency and ultimately renders the computer unusable. 

1.3 Justification of the Study 

Browser memory consumption is on the rise. There is a need to investigate memory demands for 

a browser since it has become today‟s application platform (Antero, 2007). The study sought to 

develop a memory analyzer that integrated seamlessly with the existing reference browser model 

with a view to evaluating its performance in Web browsers. The new model would provide a 

guideline to browser architects and web developers in their consideration in building intelligent 

applications that are highly memory optimized for sophisticated and dynamic web technologies 

that utilize it. In addition, web developers would adopt recommended web principles and 

standards for all applications they intend to develop. Consequently, the users would also change 

their browsing techniques and adopt methods that would improve their browsing experience. 

1.4 Main Objective 

The main objective of the study was to develop and integrate a memory analyzer to the browser 

with a view to evaluating its performance in Web browsers.  

1.4.1 Specific Objectives 

Specific objectives of the study were to: 

i. To specify the functional requirements for the browser 

ii. To design and develop the browser prototype 

iii. To implement the design and integrate the memory analyzer  

iv. To test the performance of the memory analyzer with regard to memory optimization  

1.5 Hypothesis 

The following hypothesis was tested at the end of the study:  

Memory consumption by analyzer–integrated browser and non-analyzer integrated browser is 

the same. 
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1.6 Scope and Limitations 

The research focused on Mozilla Firefox-based browser. Global market share (Statista, 2018) places 

Mozilla Firefox in position two after Google Chrome. Furthermore, Mozilla project is open 

source and hence has no proprietary restrictions. The specified browser was investigated on 

Windows operating system of 32-bit architecture. While there are many browsers in existence 

today, the absolute scale of material to cover together with the pace at which browser 

technologies change lead to these limitations.  

1.7 Assumptions of the Study 

The study was based on the following assumptions:  

i) The computer system to be used would be secured against viruses or any other vulnerability 

ii) Internet connection and power supply would be stable throughout the experiment period. 

iii) There would be negligible change on web content from where results were to be obtained. 

iv) Computer users have relevant skills for browser configuration 

v) The environment setup would be based on windows 32 bit with a maximum of 1 GB  RAM 

1.8 Significance of the study 

The study provides insights on the performance of enhanced browser reference architecture with 

regard to memory optimization and lays a foundation for further research on memory 

optimization approaches. 

1.9 Ethical Considerations 

The researcher commits to ensuring the quality and integrity of the study by complying with 

research regulatory bodies. Refer to appendices.  
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CHAPTER 2 

LITERATURE REVIEW 

This chapter aims to provide what other scholars have written regarding memory optimization 

techniques in Web browsers. To accurately portray the developments in browser technologies 

with regard to memory optimization, an overview of the literature is presented in the following 

manner. Section 2.1 gives a historical perspective on browser technologies and web content 

parsing. Section 2.2 through 2.4 explores the causes of high memory demands by web browsers 

and tools that have been used to control memory hogging. Another important aspect in this study 

was a review on contemporary browser reference models, which is discussed under section 2.5. 

The chapter aimed at establishing the weaknesses of the reviewed tools and reference model to 

as to set stage for chapter 3  

2.1 Browser and Web browsing. 

Browser has evolved since its inception. In the present day, people play games, watch videos, 

run applications and so much more other activities that go beyond simple browsing. However, all 

these rich media content comes at a cost. Most modern browsers require bigger RAM to render 

dynamic interactive content. Mozilla Firefox and Google Chrome are the most popular Open 

Source web browsers dominating the market today. In due course, they have both increased their 

features, and consequently the amount of system resources they consume while running. Adding 

a few of the thousand extensions available for these browsers makes them consume hundreds of 

megabytes of memory and take up large amounts of disc space. Despite the developer‟s efforts to 

optimize memory usage, a majority of browser users still complain these browsers use far much 

more memory than they should (HAL9000, 2013). 

Modern browsers are probably the most complex piece of user-orientated software on a home 

computer. Not only do they need to understand correctly formatted code but also badly formatted 

code. Moreover, not only do they need to execute arbitrarily complex software internally but also 

cope with deliberately malicious code while providing at least the illusion of security (Gordon, 

2017). This fact has led to the continued use of browsers in everyday life. 

2.2 Causes of high memory demands by web browsers. 

As the browser gets used, it gradually takes more time to load during startup. In general, the 

speed might decrease, and browsing starts to slow down. This is a very frequent problem and 
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occurs partially because of fragmentation in the databases the browser uses (Kimak et al., 2014). 

In particular, if Mozilla Firefox is left running for a number of hours, consumed memory of well 

over a Gigabyte is observed even with only a few tabs open; a long running memory leak issue 

that plagues Firefox sometimes (Doug, 2012). 

The more the tabs are opened, the more the RAM the browser will use. Each tab is designed to 

cache pictures, text and other active data, which keeps page data persistent while using multiple 

tabs. Of course, browsers like Chrome and Firefox have ways to turn this behavior off, but the 

user may not wish it to happen. Without caching, YouTube videos will not play in the 

background, and most real-time web applications will fail to work correctly (Brinkmann, 2018). 

In an attempt to achieve greater stability and manage memory more effectively, most modern 

browsers launch new tabs as their own process. This practice has been seen in action with the use 

of Activity Monitor, Task Manager or a similar process monitoring application. However, this is 

only part of the picture. Browsers such as Chrome, Firefox and Safari often place plug-ins in a 

process of their own (Nield, 2018). Flash, for example, is known for poor memory management 

and giving it separate sandbox helps increase stability and better manages the amount of memory 

used. In fact, this is the same strategy used to sandbox extensions, which are often the biggest 

culprits behind memory leaks and poorly managed memory usage (Braga, 2011). 

Similar to all software, the Windows operating system requires maintenance to get the most 

performance out of it. This is done by updating files, cleaning temp files, verifying file integrity, 

and removing stray registry entries after uninstalling programs – all of these help contribute to a 

smoother operating system (Karl, 2013a). Browser is no different. In Firefox, it is common to 

remove stray entries left behind in the “Firefox registry” and calling the “about: config” function 

to remove unnecessary add-ons. Failure to do so, over time, will lead to a slower browser trying 

to parse chunks of extraneous code.  

The techniques used for measuring, clearing, and improving memory in operating systems 

similarly apply to browsers (Karl, 2013b). One of the reasons why browsers consume excessive 

memory and start slowing down is typically due to opening many tabs and having too many add-

ons installed. Browser developers have devised browser add-ons that monitor browser‟s memory 

and checking for any add-ons that are memory-heavy or memory-leaky. Examples of these 

include “add-ons-memory” which is an incredible add-on for measuring the memory demands 

of all add-ons installed in the browser (Williams, 2017).  
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A computer program for instance, the browser, may be optimized so that it executes more 

rapidly, capable of operating with less memory storage or other resources, or draw less power. In 

an application where memory space is at a premium, one might deliberately choose a slower 

algorithm in order to use less memory. Often, there is no "one size fits all" design which works 

well in all cases, so engineers make trade-offs to optimize the attributes of greatest interest. With 

regard to browsers, memory consumption has been the most intricate issue (Otto & Antonsson, 

1991). 

Memory leak is another problem. A memory leak happens when the browser for some reason 

does not release memory from objects, which are not needed any more. This may happen 

because of browser bugs, browser extensions problems and, much more rarely, browser 

developer mistakes in the code architecture. Leaks may occur because of browser extensions, 

interacting with the page. More importantly, a leak may occur because of two extensions 

interacting bugs. For instance, when Skype extension and the antivirus are enabled, memory 

leaks and when any of them is off, it does not (Ilya, 2011). 

Memory leaks are caused by the following but not limited to: 

i. Variable referencing 

In modern browsers, web developers are mandated to reclaim memory from variables not in use. 

Garbage-collected environments do not collect memory that is still being referenced to, and there 

are many ways to keep referencing memory without meaning to (e.g. create a closure to attach as 

an event handler and accidentally include a bunch of variables in that closure's scope). A web 

developer can solve these leaks completely by properly handling variable references in their 

code. A page reload typically frees up the memory (Sebrechts, 2012). 

ii. Add-ons 

If add-ons are also written in a garbage-collected language (like JavaScript), then they suffer 

from the same issue. However, a page reload will typically not free up this memory, so it appears 

as if the browser is leaking memory whereas it is actually the add-on developer's fault(Mozilla 

Developer Network, 2019). 

iii. Browser engine 

All modern browser engines are written in C++, which is not garbage-collected, but uses explicit 

memory allocation instead. If developers allocate memory and then forget to deallocate it, the 
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engine leaks memory. Though it is not 100% fixed, and never will be, but it is not a huge 

problem anymore (Pryden, 2015). 

2.2.1 Memory management in JavaScript 

The central concept of JavaScript memory management is a concept of reachability (Ilushin & 

Namiot, 2015). A distinguished set of objects are assumed reachable: these are known as the 

roots. Typically, these include all the objects referenced from anywhere in the call stack (that is, 

all local variables and parameters in the functions currently being invoked), and any global 

variables. Objects are kept in memory while they are accessible from roots through a reference or 

a chain of references. There is a Garbage Collector in the browser, which cleans memory 

occupied by unreachable objects. However, the browser does not clean memory immediately. 

Most algorithms of garbage collection free memory from time to time. The browser may also 

postpone memory cleanup until the certain limit is occupied. 

2.2.2 Managing memory leaks in Mozilla Firefox 

Mozilla's Servo browser engine project is designed to improve Document Object Model 

(DOM) memory management, with the JavaScript garbage collector to be tasked with managing 

native-code DOM objects. The approach would be an alternative to reference-counting for 

tracking pointers between low-level DOM objects, which can bring about complications like the 

leaking of memory objects. Two bloggers of Mozilla research blog, Josh & McAllisterin (2014) 

records that they established a new approach for DOM memory management, of which they use 

the Rust language's exciting features which includes auto-generated trait implementations, 

lifetime checking, and custom static analysis plug-ins. 

Giving the garbage collector responsibility for managing these DOM objects requires complex 

interaction between Servo's Rust code and the Spider Monkey garbage collector. "Fortunately, 

Rust provides some good features that let us build this in a way that's fast, secure, and 

maintainable," Mozilla's researchers said. Mozilla collaborated with Samsung on Servo, which is 

intended to leverage multicore, heterogeneous architectures, and plans to productize Servo in the 

2015 timeframe (Krill, 2014a). 

Memory management on the DOM is a real problem that has needed to be solved (Krill, 2014b). 

Mozilla's researchers say it is "an open question" of how the garbage-collected DOM will 

perform compared to a traditional, reference-counted DOM. "The Blink team has performed 
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similar experiments, but they don't have Servo's luxury of starting from a clean slate and using a 

cutting-edge language. We expect the biggest gains will come when we move to allocating DOM 

objects within the JavaScript reflectors themselves. Since the reflectors need to be traced no 

matter what, this will reduce the cost of managing native DOM structures to almost nothing.” 

2.3 Average memory consumption for web browsers 

When comparing the RAM usage of today's top browsers, there are a few scenarios to take into 

consideration. The baseline measurement is the amount of memory used when the browser is 

first launched which is the ability to release RAM previously used by closed tabs and plugins 

back to the operating system (Braga, 2011). 

A research study aimed at testing memory consumption by popular Web browsers christened the 

Web Browser Grand Prix, revealed some interesting data. On a Windows 7 test system, Internet 

Explorer 9 actually used the least amount of memory for a single tab running Google's 

homepage, at 24 MB, edging out Google Chrome by just 3 MB. On the upper end of that 

spectrum, Firefox and Safari used 60 MB and 62 MB respectively (Adam, 2011). 

Invesitigations carried out by Rosso (2015) on Mozilla Firefox 38, Google Chrome 42, Internet 

Explorer 11 and Opera 29 running on Windows 8.1 had the following data for a single tab. 

Internet Explorer 11 took the lead in terms of its low consumption of resources, 13 MB. It was 

followed by Opera which consumed 78 MB. On the upper end of that spectrum, Firefox and 

Google Chrome used 92 MB and 195 MB respectively. With five tabs open, Google chrome 

remains a giant memory consumer with 310 MB. Opera come second with 179 MB. On the 

lower end of that spectrum, Firefox and internet Exlorer used 139 MB and 99 MB respectively.  

2.4 Tools to optimize the memory usage in web browsers 

Brinkmann (2014a) postulates that, web browsers can use a lot of memory on a computer 

system. Once additional webpages in tabs are opened it is noticed that memory usage gets up. 

Firefox does a better job at that as Chrome but both can easily consume more than 1 GB of 

memory. High memory usage may not be an issue if the system in use has plenty memory. If it 

has 4, 8, 16, or even more Gigabytes of RAM, then the computer user may never run into any 

memory related issues. Indeed, as many may dislike how much memory a single program is 

using on the system but if it is not affecting performance or other operations, there is not really 

anything to worry about. 
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Internet users, who run systems with less RAM, especially 1 Gigabyte and below, sit in a 

different boat. Their systems may not have enough RAM for all processes running on it, that may 

reduce the overall performance of the system due to caching, being used to overcome this 

limitation. The following desktop programs attempts to free up memory using various API calls 

or techniques (Brinkmann, 2014b). 

2.4.1 Firemin 

With Firemin for Firefox, browser users can effectively stop Firefox memory leaks 

automatically. As memory usage of this popular browser increases, the system slows down and 

the user are stuck with limited system resources. In fact, Firefox can use up to 500 MB of 

memory if a user uses the browser continuously Firemin forces Firefox to reclaim the memory 

allocated to it by Windows and allows the user to use Firefox in an optimized environment 

(Ortega, 2013).  

Firemin does not do anything that Windows does not do itself when the system runs out of RAM. 

It calls the Windows function EmptyWorkingSet over and over again in a loop to free up 

memory. Calling the function removes as many pages as possible from the working set of the 

specified process. The program ships with a slider that a user can use to set the desired interval in 

which he/she wants it to call the function. 

The SQLite database optimize function is available through the tray icon context menu and 

simply click “Optimize Firefox” to start the compacting process. Firefox will need to be closed 

to do this. This tool is compatible with Windows 2000 and above. Figure 2.1 shows Firemin in 

action. 

 

Figure 2.1: Firemin (Brinkmann, 2014) 
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However, the limitations of Firemin.exe are that, the technical security rating is 30% dangerous. 

This is because it records keyboard and mouse inputs, monitors applications and manipulates 

other programs. Moreover, some malware camouflages itself as Firemin.exe, particularly when 

located in the C:\windows or C:\windows\System32 folder. Moreover, Firemin is only 

compatible with Mozilla Firefox. 

2.4.2 Wise memory optimizer 

Wise Memory Optimizer helps a user to free up and tune up the physical memory taken up by 

some unknown non-beneficial applications to enhance PC performance. A user can enable 

automatic optimization mode when the free PC memory goes below a value that he/she may 

specify, and make Wise Memory Optimizer run even when the CPU is idle, as well as adjust the 

amount of memory he/she wants to free up. Then it will optimize PC memory automatically in 

the background. Figure 2.2 shows wise memory optimizer in action. 

 

Figure 2.2: Wise memory optimizer (Brinkmann, 2014) 

However, this tool does not prevent the browser from hogging memory it only reclaims memory 

from unknown non-beneficial applications. 

2.4.3 SpeedyFox 

SpeedyFox is a tool designed specifically for compacting the SQLite database files, which will in 

turn reduce the time taken to read from and write to them. In addition to Firefox, which it was 

originally designed for, SpeedyFox, can now also compact the databases for the Chrome, Epic 
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Browser, SRWare Iron and Pale Moon browsers. It also supports the Mozilla Thunderbird and 

Skype tools as well (Serea, 2019).  

Upon running the portable executable, SpeedyFox automatically detects and loads the default 

profile for each of the supported applications. As they are very popular these days, it is also 

possible to load custom profiles for Firefox or Chrome portable versions. Click the SpeedyFox 

menu bar and select “Add custom profile” or drag the profile folder and drop it onto the 

SpeedyFox window. Simply tick the application profiles to optimize and click the Optimize! 

button. SpeedyFox starts compacting the SQLite databases. Figure 2.3 shows SpeedyFox in 

action. 

 

Figure 2.3: SpeedyFox (Brinkmann, 2014) 

The progress window shows what databases are optimized and also how much space is saved. A 

user needs to make sure that the programs being optimized are not running at the time or they 

will not be processed. In a quick test, it reduced 14 MB of Firefox databases to 6 MB and 192 

MB of Chrome databases to 186 MB. SpeedyFox developer recommends running the tool every 

1-2 weeks depending on user browser usage of the included browsers. 

Though tool increases Mozilla Firefox launch speed, it does not prevent memory hogging. It just 

clears cache over some time. 

2.4.4 All Browsers Memory Zip 

All Browsers Memory Zip has no database compacting functions but is a dedicated memory-

optimizing tool for a large number of popular web browsers. In addition to Chrome and Firefox, 
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it also works with other popular browsers like Opera, Internet Explorer, and Maxthon etc. The 

program is portable but has separate 32-bit and 64-bit versions, and when a user runs it there will 

be a small tooltip and then All Browsers Memory Zip will sit in the system tray optimizing the 

memory of any running supported browsers. Figure 2.4 illustrates All Browsers Memory Zip in 

action 

 

Figure 2.4: All browsers zip usage controller (Brinkmann, 2014) 

Right click on the tray icon to pause the program from optimizing and pressing Usage Controller 

pops up the window above which enables the user to set the RAM for each browser and edit the 

shortcut keys. Just select the browser from the dropdown, enter the max amount in Megabytes, 

and click Set. This tool works in Windows XP and above. 

However, this tool must execute all times a browser process is running. It requires a significant 

amount of memory. Consequently, it impacts negatively when streaming content over the 

Internet. 

2.5 Browser Architectures 

The following three browser architectures were critically explored to find out whether they are 

true derivations of the browser reference architecture. 

2.5.1 Google Chrome  

Google Chrome uses a multi-process architecture which gives it a competitive edge in 

performance over other browsers (Google, 2008). Each tab has its own process which runs 

independently from other tabs. Figure 2.5 illustrates the Google Chrome‟s major components. 
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Figure 2.5: Google chrome architecture (Jesse et al, 2009) 

This allows one tab process to dedicate itself to a single web-application, thereby increasing 

browser performance. This protects the browser application from bugs and glitches in the 

rendering engine. Furthermore, it restricts access from each rendering engine process to others 

and to the rest of the system. This scenario offers memory protection and access control as 

manifested in operating systems. The multi-process architecture also increases the stability of the 

browser, as it provides insulation. In the case that one process encounters a bug and crashes, the 

browser itself and the other applications running in parallel are preserved. Functionally, this is an 

improvement over other browsers, as highly valuable user information in other tabs will be 

preserved (Klein, 2019). Google Chrome has used the WebKit as a layout engine until version 

27. Later versions have been using Blink. V8 has been used as JavaScript Interpreter in all 

versions. The components of Chrome are distributed under various open source licenses. 

Although Google developers have variant components in their architectural design, the browser 

flow logic is derived from the browser reference architecture.  



16 
 

2.5.2 Microsoft Internet Explorer  

Essential to the browser's architecture is the use of the Component Object Model (COM), which 

governs the interaction of all of its components and enables component reuse and extensibility 

(MSDN, 2016). Internet Explorer uses JScript and VBScript as JavaScript interpreter and Trident 

layout engine. Figure 2.6 illustrates Internet Explorer's major components.  

A description of each of these six components that form the architecture is as follows: 

i. IExplore.exe is at the top level, and is the Internet Explorer executable. It is a small 

application that relies on the other main components of Internet Explorer to do the 

work of rendering, navigation, protocol implementation, and so on. 

ii. Browsui.dll provides the user interface to Internet Explorer. Often referred to as the 

"chrome," this DLL includes the Internet Explorer address bar, status bar, menus, and 

so on. 

iii. Shdocvw.dll provides functionality such as navigation and history. It is commonly 

referred to as the WebBrowser control. This Dynamic-link library (DLL) exposes 

ActiveX Control interfaces, enabling you to easily host the DLL in a Windows 

application using frameworks such as Microsoft Visual Basic, Microsoft Foundation 

Classes (MFC), Active Template Library (ATL), or Microsoft .NET Windows Forms. 

When a user‟s application hosts the WebBrowser control, it obtains all the 

functionality of Internet Explorer except for the user interface provided by 

Browseui.dll. This means that a user needs to provide individual implementations of 

toolbars and menus. 

iv. Mshtml.dll is at the heart of Internet Explorer and takes care of its HTML and 

Cascading Style Sheets (CSS) parsing and rendering functionality. Mshtml.dll is 

sometimes referred to by its code name, "Trident". Mshtml.dll exposes interfaces that 

enable you to host it as an active document. Other applications such as Microsoft 

Word, Microsoft Excel, Microsoft Visio, and many non-Microsoft applications also 

expose active document interfaces so they can be hosted by shdocvw.dll. For 

example, when a user browses from an HTML page to a Word document, mshtml.dll 

is swapped out for the DLL provided by Word, which then renders that document 

type. Mshtml.dll may be called upon to host other components depending on the 

HTML document's content, such as scripting engines (for example, Microsoft JScript 
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or Microsoft Visual Basic Scripting Edition (VBScript)), ActiveX controls, XML 

data, and so on. 

v. Urlmon.dll offers functionality for MIME handling and code download. 

vi. WinInet.dll is the Windows Internet Protocol handler. It implements the HTTP and 

File Transfer Protocol (FTP) protocols along with cache management. Microsoft‟s 

Internet Explorer architecture utilizes the reference model components though variant 

in design. IExplorer.exe is a wrapper for the whole application.  

 

Figure 2.6: Internet Explorer architecture (MSDN, 2016) 

A closer look at figure 2.6  demonstrates that Internet Explorer is derived from the contemporary browser 

reference architecture 

2.5.3 Mozilla Firefox  

The following model has been used in the design of Mozilla Firefox (Andre et al., 2007). Figure 

2.7 illustrates Firefox major components. The User Interface is split over two subsystems; user 

interface and XPToolkit, allowing for parts of it to be reused in other applications in the Mozilla 

suite such as the mail/news client. This toolkit is a collection of loosely related facilities, from 

which application writers can pick and choose, which provide a platform independent API to 

some commonly exploited platform-specific machinery, e.g., bringing up a dialog. All data 
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persistence is provided by Mozilla‟s profile mechanism, which stores both high-level data such 

as bookmarks and low-level data such as a page cache.  

 

Figure 2.7: Mozilla browser architecture (Allan and Michael, 2006) 

Mozilla‟s Rendering Engine is larger and more complex than that of other browsers. One reason 

for this is Mozilla‟s excellent ability to parse and render malformed or broken HTML. Another 

reason is that the Rendering Engine also renders the application‟s cross-platform user interface. 

The User Interface (UI) is specified in platform-independent Extensible User Interface Language 

(XUL), which in turn is mapped onto platform-specific libraries using specially written adapter 

components. This architecture distinguishes Mozilla from other browsers in which the platform-

specific display and  widget libraries are used directly, and it minimizes the  maintenance effort 

required to support multiple, diverse platforms. 

In 2006, the core of Mozilla was transformed into a common runtime called XULRunner, 

exposing the Rendering Engine, Networking, JavaScript Interpreter, Display Backend, and Data 

Persistence subsystems to other applications. XULRunner allows developers to use modern web 

technologies to create rich client applications, as opposed to typical browser-based web 

applications. Mozilla developers are working on transitioning newer Mozilla-based applications 

such as Firefox and Thunderbird to use XULRunner directly, rather than each using a separate 
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copy of the core libraries (Allan & Michael, 2006). All components of this model fit exactly to 

those in the browser reference architecture.  

2.6 Browser Reference Model 

This study was anchored on the conceptual model in Figure 2.8, which shows the Reference 

architecture for web browsers (Alan & Michael, 2006). The architecture constitutes five major 

modules which include: User interface, Browser engine, Rendering engine, Display backend, and 

Data persistence. These modules work collaboratively to interpret intricate protocols and provide 

a visual display of the URL fetched (Siva et al., 2016). 

The User Interface component provides the methods with which a user interacts with the 

Browser Engine. The User Interface provides standard features (preferences, printing, 

downloading, and toolbars) users expect when dealing with a desktop application. 

The Browser Engine component provides a high-level interface to the Rendering Engine. The 

Browser Engine provides methods to initiate the loading of a Uniform Resource Locator (URL) 

and other high-level browsing actions (reload, back, forward). The Browser Engine also provides 

the User interface with various messages relating to error messages and loading progress. 

The Rendering Engine component produces the visual representation of a given URL. The 

Rendering Engine interprets the HTML, Extensible Markup Language (XML), and JavaScript 

that comprises a given URL and generates the layout that is displayed in the User Interface. A 

prime component of the Rendering Engine is the HTML parser, this HTML parser is quite 

complex because it allows the Rendering Engine to display poorly formed HTML pages. 

The Networking component provides functionality to handle URLs retrieval using the common 

Internet protocols of Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP). The 

Networking components handle all aspects of Internet communication and security, character set 

translations and MIME type resolution. The Network component may implement a cache of 

retrieved documents to minimize network traffic. 

The JavaScript Interpreter component executes the JavaScript code that is embedded in a 

website. Results of the execution are passed to the Rendering Engine for display. The Rendering 

Engine may disable various actions based on user defined properties. 

The XML Parser component is used to parse XML documents. 

The Display Backend component is tightly coupled with the host operating system. It provides 

primitive drawing and windowing methods that are host operating system dependent. 
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The Data Persistence component manages user data such as bookmarks and preferences. 

 

 

Figure 2.8: Reference architecture for web browsers (Alan and Michael, 2006) 

2.6.1 Weaknesses of the current Browser Reference Architecture 

a) The rendering engine processes the requests made by the browser engine by rendering the 

fetched content provided there is little memory available for use by the browser. If the 

operating system can no longer allocate any more memory, the computer freezes hence 

becomes unusable. 

b) The browser process prevents other legitimate processes from being loaded in the main 

memory if it consumes almost all-available memory. This reduces the level of 

multiprogramming. 

2.7 Research Gap 

Based on the review of the above literature, it is evident enough that memory hogging among 

various browsers remains a thorny issue. In attempt to reduce its impact on computers, third 

party applications have been developed in quest to reduce memory consumption. These 

programs include Firemin, All Browsers memory zip, Wise Memory Optimizer, SpeedyFox and 

others. These memory optimization programs work as independent applications and do not thereby 

control browser memory usage effectively. It is desired that computer applications use little memory 

and execute faster with a view to allow as many programs to be loaded in the main memory for 
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execution. With browsers being among such applications, this remains an issue under 

investigation.  

Performance of the reviewed tools highlighted specific challenges while working with them. 

These weaknesses include, inefficient memory control, poor compatibility issues, overhead to 

users and decrease in browser performance. An interesting issue was found on the browser 

reference architecture. The contemporary architecture in use by browsers today, aggravates this 

problem. The architecture lacks memory control mechanism, which would complement these 

third party applications. From the weaknesses aforementioned, there was need to relook at the 

architecture so as to provide a control mechanism for browser memory usage.  
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CHAPTER 3 

THE ENHANCED BROWSER REFERENCE ARCHITECTURE 

The chapter discusses the structure and behavior of the enhanced browser reference architecture. 

It discusses the structural components the architectural model adopted in the design of  

contemporary browsers. The memory analyzer component is integrated as a module in the 

enhanced architecture.  

3.1 Contemporary Browser Architecture 

Current browsers adopt the reference architecture for web browsers discussed in section 2.6 of 

chapter 2. Each module functionality is discussed in the sections herein. An illustration of the 

interaction of the mentioned modules is as shown in figure 2.8. 

3.1.1 User Interface 

This module provides the methods with which a user interacts with the Browser Engine. It 

provides standard web browser features including user preferences, printing functionality, 

downloading, opening and closing tabs, etc. Browser designers have variant approaches in 

designing the user interface of the target browser. However, a given browser version depicts 

slight differences in the user interface from another version of the same type. For instance, 

earlier versions of Mozilla Firefox had the reload button positioned to the right of the address bar 

while current versions have it positioned to the left. 

3.1.2 Browser Engine 

This module provides a high-level interface to the Rendering Engine. It provides methods to 

initiate the loading of a URL and other high-level browsing actions like reload, back and 

forward. Furthermore, it provides the User interface with various messages relating to error 

messages and loading progress. When the browser fails to fetch the content specified by the 

URL, appropriate messages are conveyed to the User Interface, seeking the intervention of the 

browser user. 

3.1.3 Rendering Engine  

This module provides the visual representation of the fetched URL. It comprises various 

subsystems that enable the browser to interpret the content of the URL. A URL contains two 

major parts: protocol and web resource. The protocol defines the mechanism through which 
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resource will be fetched. Common protocols include HTTP and FTP. Web resources include text 

documents, images/graphics, audio, and video. The multimedia content is interpreted by the 

appropriate parser to visually human-readable format. A prime component of the Rendering 

Engine is the HTML parser. The HTML parser is often tightly integrated with the rendering 

engine for performance reasons and can provide varying levels of support for broken or 

nonstandard HTML. It can display other types of data via plug-ins or extension; for example, 

displaying PDF documents using a PDF viewer plug-in. The rendering engine has XML parser 

subsystem that parses XML data. The JavaScript Interpreter interprets the JavaScript content in 

the URL. Detailed functionality of mentioned subsystems is discussed in subsections 3.1.3.3 

through 3.1.3.5. Different browsers use different rendering engines: Internet Explorer uses 

Trident, Firefox uses Gecko, and Safari uses WebKit. Google Chrome and Opera Web browsers 

from version 15 use Blink, a fork of WebKit. The study focussed on Gecko-based browsers 

whose functionality is described subsections 3.1.3.1 and 3.1.1.2. 

3.1.3.1 Gecko Rendering engine 

This module has the following items that facilitate its functions. Figure 3.1 shows the Gecko 

subsystems and how they interact with each other (Tali & Paul, 2011a). 

 

Figure 3.1: The Gecko rendering engine (Tali & Paul, 2011). 
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i) Document Parser (HTML & XML Parser) 

ii) Style System: contains the CSS Parser and is responsible for getting the CSS data from  Necko 

and   parsing it before sending it to the  frame constructor 

iii) Platform-Specific Rendering and Widgets 

iv) Image Library: Interacts with Necko in order to retrieve image data before sending it to the Frame 

Constructor 

v) Content Model: Interacts with the various  components of Gecko, DOM Storage to gather all the 

data needed before sending it to the frame constructor 

vi) Frame Constructor: Carries out the task of piece together all the information and actually from the 

rendered web page before sending it back to the UI through the Platform-Specific Rendering 

subsystem. 

3.1.3.2 Gecko Rendering Engine : Components functions flow 

The Gecko rendering engine components work together to give a visual representation of each 

content retrieved by the browser engine in a fashion described in four steps as outlined below 

(Tali & Paul, 2011b). The components are as shown in figure 3.2 

 

Figure 3.2: Rendering engine-Functions flow diagram (Tali & Paul, 2011b). 

 Step 1: Parsing the HTML document and convert elements to DOM nodes in a tree called the “content 

tree” – HTML Parser 

 Step 2: Parse the style data, both in external  CSS files and in style element together with visual 

instructions in HTML will be used to create another tree, call “render tree” – CSS Parser 

Step 3: After the construction of the render tree it goes through a “layout" process. This means 

giving each node the exact coordinates  where it should appear on the screen 
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Step 4: The next stage is painting–the render tree will be traversed and each node will be painted 

using the UI backend layer - Painting. 

3.1.3.3 Networking Component 

This component provides the functionality to handle URLs retrieval using the common Internet 

protocols like HTTP and FTP. It handles all aspects of Internet communication and security; 

character set translations and Multi-Purpose Internet Mail Extensions (MIME) type resolution. 

This component may also implement a cache of retrieved documents to minimize network traffic 

 3.1.3.4 JavaScript Interpreter 

This component executes the JavaScript code that is embedded in a URL. Results of the 

execution are passed to the Rendering Engine for display. The Rendering Engine may disable 

various actions based on user-defined properties. Where the browser user has set JavaScript code 

to be disabled, the rendering engine ignores the interpreted material. 

 3.1.3.5 XML Parser 

This is a software library or a package that provides an interface for client applications to work 

with XML documents. The parser is a generic and reusable component with a standard that has 

well-defined interface. It checks for proper format of the XML document and may validate the 

XML documents. Modern day browsers have built-in XML parsers. The goal of a parser is to 

transform XML data into a human-readable code. 

3.1.4 Display/UI Backend  

This component is tightly coupled with the host operating system. It provides primitive drawing 

and windowing methods that are host operating system dependent. Common widgets like combo 

box, an input box, a checkbox, etc. are drawn using UI properties. 

3.1.5 Data Persistence 

The Data Persistence component manages the user‟s data such as bookmarks, cookies, and 

preferences. The browser may need to save all sorts of data locally. Browsers also support 

storage mechanisms such as localStorage, IndexedDB, WebSQL and FileSystem (Michael 

Coates, 2010). 
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3.2 The Enhanced Browser Architecture 

The enhanced architecture incorporates a Memory Analyzer component as shown in figure 3.3. 

The memory analyzer component interacts with the operating system to track memory usage in 

real-time and to check browser memory consumption against the set threshold total memory. 

After analysis, the user is provided with possible actions to take to prevent memory hogging. 

Consequently, more applications can be run from the system. This guarantees that browsers do 

not make computer to freeze by delimiting other legitimate applications from running. As a result, 

it improves the level of multiprogramming and ultimately improves the user-browsing experience. The 

analyzer is implemented as a software module included in the web browser application. 

 

Figure 3.3: The enhanced browser architecture(Source: Research) 

3.2.1 Memory Analyzer 

This component checks real-time memory consumption for the browser against the threshold 

total memory limit set by the user and gives feedback information to the user on possible actions 

to take in order to prevent memory hogging by the browser. Memory analysis is done after the 

browser engine has retrieved a resource. The rendering engine interprets and gives a visual 

representation of the URL with the help of parsers and JavaScript interpreter if memory space is 

available. It was envisioned that this component would provide a memory control mechanism 

that would hence control memory hogging. Furthermore, the analyzer provides a garbage 

collection mechanism to reclaim unused memory from the browser objects. 
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3.2.2 Flow diagram of memory analyzer  

A conceptualized design of a Memory Analyzer and its interactions with other modules is as 

shown in figure 3.4. When a user enters a URL on the browser‟s address bar and hits the Go 

button, the Browser Engine takes the URL and attempts to fetch its content. The Memory 

Analyzer performs analysis of the memory consumed against the threshold memory as set by the 

user. If the memory is lower than the threshold memory, it passes the content of the URL to the 

rendering engine for further actions. However, if the consumed memory gets higher than the 

threshold memory, a notification error message is passed to the higher modules for action to be 

taken by the user. 

 

Figure 3.4: The Flow diagram of a memory analyzer(Source: Research) 

3.3 Summary 

Memory hogging is a habitual phenomenon in browser applications in computers with limited 

memory. In an attempt to solve this problem, the memory analyzer was integrated to the current 

model to play the role played by third-party applications discussed in chapter two and notify the 

user when memory hogging is detected. The researcher designed a browser prototype and 

integrated the memory analyzer in it. A detailed report on the design and implementation of the 

new strategy is discussed in chapter 4.   
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CHAPTER 4 

METHODOLOGY 

The chapter discusses the processes involved in realizing the research objectives. It begins by 

outlining the approach adopted by the researcher in designing and developing a browser 

prototype which incorporates a memory analyzer in its architecture. Section 4.1 highlights the 

adopted research design. Section 4.2 through 4.3 discusses the software development process 

where the techniques and development tools used in development of the browser prototype and 

memory analyzer are discussed. Section 4.4 through section 4.6 discusses the research method 

and data collection tools used for evaluation of the developed prototype. Systematic experiments 

are carried out to attest the necessity of the memory analyzer in the proposed browser 

architecture.  

4.1 Research Design 

The study adopted experimental research design with a view to assessing the memory 

consumption for the selected browsers on various websites running on Windows operating 

system. This design was appropriate for this research since it provided a basis for evaluating the 

efficacy of integrating the memory analyzer in the browser reference architecture. Target 

browser was Mozilla Firefox. This target was adopted based on its global market share and the 

fact that its code is open source.  

4.2 Development of Browser Prototype 

Prototyping methodology was adopted for this study. A browser prototype based on the Mozilla 

Firefox project was used to simulate how the proposed architecture works. Visual Studio 2010 

was used as the development platform. The choice of this platform was informed by its 

integrated environment for developing windows applications. The prototype was coded using C 

Sharp (C#) language. This choice was preferred based on the language used in coding GeckoFx 

wrapper class. The GeckoFx package with a corresponding Extended User Language (XUL) 

runtime for a particular version of the Mozilla Firefox browser is readily available from the 

Bitbucket repository. This provided an enabling environment for reuse and integration of the 

Gecko rendering engine in the developed browser prototype. Visual studio 2010 software suite 

was the  adopted Integrated Development Environment (IDE) for realizing the prototype. 
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4.2.1 Prototyping Model 

Prototyping technique can be used in developing a large and complex system. A browser is 

among such software systems. The study adopted this technique with a view to providing a 

comparative study in terms of performance during its evaluation. This technique was used in 

both requirements phase and the design phase to demonstrate a concept and options such as 

interfaces and technology to be used (Pawel & Marcin, 2015).  

Rapid Architected Analysis (RAA) was adopted in the requirements phase. This approach 

attempts to derive system models from existing systems or discovery prototypes (Xi Yang, et al., 

2017). The rapid architected analysis employs reverse engineering techniques to unveil the 

components of a system (Chua, Leong & Lim, 2010). It is a process of discovering the 

technological principles of a device, object, or system through analysis of its structure, function, 

and operation (Elda, 2007). Software reuse technique was also adopted in developing the 

prototype. The main component that was reused in this process was the rendering engine. The 

Gecko rendering engine already implemented in C# was integrated with other browser modules 

as provided by the browser control object in the Visual Studio. 

4.2.2 Development Procedure 

The study developed a browser prototype with a memory analyzer component incorporated into 

it. Microsoft Visual Studio 2010 was used as a development environment and all the components 

were coded in C# language. 

4.2.3 Architectural Model 

The browser prototype was anchored on the reference browser architecture as postulated by 

Allan and Michael (2006). The model structure and detailed description of its functionality is 

given in section 3.1. Current browsers have referred to the architectural model in designing and 

developing their web browsers. This acted as a benchmark in developing the browser prototype. 

4.2.4 Design of the Software System 

The architectural design of the target system was modularized with a view to providing 

manageable units. Each module was implemented seperately and later merged  with other 

modules with a view to having complete the prototype.  



30 
 

4.2.4.1 Browser prototype 

A development environment for a general windows application was set in the visual studio. 

Visual Studio browser control object was used to provide a managed wrapper for the web 

browser ActiveX control, which duplicates Internet Explorer Web browsing functionality. 

However, the proposed approach focused on Mozilla based browser, which would provide a 

reasonable testing environment with Mozilla Firefox as a controlled browser during the 

experiments. This necessitated a change of the target rendering engine. Mozilla based browsers 

use Gecko as the rendering engine. The study, therefore, integrated GeckoFx wrapper class as an 

assembly in Visual Studio project. A XUL Runner runtime package matching the target version 

of Mozilla Firefox was also included as a dependency to the GeckoFx-core assembly file. 

4.2.4.2 Embedding Gecko Rendering Engine 

To embed the Gecko rendering engine in a Windows browser application, the following 

components were required: 

i. XulRunner: XULRunner is a Mozilla runtime package that can be used to bootstrap 

XUL+XPCOM applications that are as rich as Firefox and Thunderbird. It provides 

mechanisms for installing, upgrading, and uninstalling these applications. This 

component was downloaded from http://ftp.mozilla.org/pub/mozilla.org/xulrunner/ 

ii.  GeckoFx: GeckoFx is a .NET assembly file, which contains the Gecko rendering 

engine. The chosen version must match with the XulRunner version. The research 

used version 33.0, which was downloaded from https://bitbucket.org/geckofx. 

4.2.4.3 Embedding Procedure 

 The procedure was done in seven steps as outlined herein. 

i. Download the GeckoFx assembly file and unpack it to extract the files as shown in figure 

4.1. There are two assembly files that are important in the target directory. These are 

Geckofx-Core.dll and Geckofx-winforms.dll. Geckofx-Core.dll provides an 

implementation of the core functions of the components that work in collaboration to 

render the content fetched by the browser engine. Geckofx-winforms.dll provides 

methods for handling browser events. 

http://ftp.mozilla.org/pub/mozilla.org/xulrunner/
https://bitbucket.org/geckofx
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Figure 4.1: Unpacking GeckoFx package (Source: Research) 

ii. Add references of the assembly files to the browser project by clicking browse and 

selecting the Geckofx-Core.dll and Geckofx-Winforms.dll as shown in figure 4.2. 

 

Figure 4.2: Adding GeckoFx assembly files as references (Source: Research) 

iii. Select the respective assembly files and click Add button to add them to the project as 

shown in figure 4.3. 
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Figure 4.3: Selecting GeckoFx assembly files (Source: Research) 

iv. In the toolbox, right-click, and then select “Choose Item”, select Geckofx-Winforms.dll, 

and the Gecko winform control will pop up in the toolbox as shown in figure 4.4 

 

Figure 4.4: Adding GeckoFx browser control to the toolbox (Source: Research) 

v. Drag a GeckoWebBrowser control to the winform designer, and name it 

“embeddedBrowser.” The windows form adds browser control object, which indicates 

the version of Mozilla Firefox browser it implements as shown in figure 4.5. 
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Figure 4.5: Adding GeckoFx browser control to a windows form (Source: Research)  

vi. To change the rendering engine used by the browser control, the Gecko class has to be 

imported in the program. As indicated section 4.2.4.2, the Gecko engine depends on 

Xpcom components shipped in the xulrunner package. In the form1.cs file, import the 

Gecko class and reference the Xpcom component file path as shown in figure 4.6. 

 

Figure 4.6 GeckoFx browser prototype code-snippet (Source: Research) 

vii. The line Gecko.Xpcom.Initialize (@”..\xulrunner”); specifies where the xulrunner 

runtime is located. In this case, it is put into a folder (@”..\xulrunner”). To demonstrate 

how the prototype works, the navigate method call is made with the URL as a parameter. 
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The browser engine fetches the content of the specified URL and invokes the components 

in the Gecko rendering to give its visual representation. To achieve this, the application 

needs to be built and run using the Visual Studio build tools. After running the 

application, a visual representation of the URL  passed in the browser using the 

„geckoWebBrowser1.navigate’ method shown in figure 4.6 is depicted in figure 4.7 

 

 

Figure 4.7: GeckoFx browser prototype in action (Source: Research) 

4.3 Memory Analyzer 

This component checks real-time memory consumption for the browser against the threshold 

total memory limit set by the user and gives feedback information to the user on possible actions 

to take to prevent memory hogging by the browser. Memory analysis is done after the browser 

engine has retrieved a resource. The rendering engine interprets and gives a visual representation 

of the URL with the help of parsers and JavaScript interpreter if memory space is available.  

4.3.1 Memory Analyzer Interface Design 

To demonstrate the proposed approach, the researcher designed the memory analyzer interface 

with a view to showing how memory settings would be made by the user, computation of 

available memory and consumed memory by the browser process. Figure 4.8 shows the interface 

design of the memory analyzer. In the diagram, the labels attached to total physical RAM, 

available memory, threshold memory, MOB memory consumption, and Mozilla Firefox buttons, 

are updated upon execution of the analyzer logic. MOB is the name of the newly developed 

browser prototype. 
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Figure 4.8: Memory analyzer interface design (Source: Research) 

4.3.2: Setting Memory Threshold 

The maximum amount of memory the user desires the browser to consume is set using textbox 

control and the setting logic implemented when the user clicks the set button. Success or fail 

message is displayed to confirm the event was fired. The analyzer checks the memory threshold 

value from browser system properties and uses it as a reference. However, the user changes the 

default value depending on the size of RAM in the host computer. Validation is done to 

guarantee that the input value does not exceed the value of the memory available for use in the 

entire system. Upon successful memory setting, the browser adapts to the new change 

accordingly. Any time the browser memory consumption reaches the set memory threshold, a 

notification is made to the user that the browser is hogging memory. 

The values displayed besides the memory settings-group box in figure 4.9, demonstrates the 

current memory readings fetched from the operating system. The input box takes in the desired 

value for computation. The browser user makes a valid setting if the specified value is less than 
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the available memory. However, if the value specified is higher than the available memory, the 

validation function returns false. 

 

Figure 4.9: Setting memory in the memory analyzer (Source: Research) 

4.3.3: Memory Computation Logic 

To carry out memory analysis, memory computation was inevitable. Total physical memory, 

available memory, and consumed memory values were computed using the generic Windows 

routines as in the case of Windows Task Manager. 

4.3.3.1 :Physical Memory Computation Logic 

The flow chart in figure 4.10 describes the logic function for computing physical memory. The 

function returns the total amount of physical memory available in a host computer. 
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Figure 4.10: Physical memory computation logic (Source: Research) 

4.3.3.2: Available Memory Logic 

This function computes the available memory for use by computer programs. It is not equal to 

the physical capacity of the installed memory but is much lower. It constitutes to the free 

memory that is available for allocation by the operating system for any process that would be 

scheduled for execution. For any given process to be executed, the operating system must load it 

in the main memory. In a multiprogramming environment, this memory space is shared among 

all processes that have been scheduled to run by the operating system. Figure 4.11 illustrates the 

memory layout in an environment where there are several programs ready to run. The empty 

space in the diagram corresponds to the available memory space. The jobs represent the 

programs in the main memory. 
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Figure 4.11: Memory Layout in single processor system (Source: Research)  

4.3.3.3: Browser Memory Consumption 

The function calculates the amount of memory space the active process has consumed. The logic 

implementation is described by the figure 4.12. In this context, the value fluctuates since browser 

memory consumption is dynamic. 

 

Figure 4.12: Browser Memory consumption computation logic (Source: Research) 
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As the browser starts, memory consumption rises exponentially and then stabilizes after the 

content of the URL has been fully rendered. In a dynamic webpage, memory consumption may 

fluctuate persistently depending on background activities. However, this phenomenon is different 

when a static web page is loaded.  

4.3.3.4: Memory computation events timer 

To capture memory consumption readings, the computation logic is executed after every 5 

seconds. This necessitates a timer function. Computation logic for available memory and 

browser memory consumption is executed when the timer event is fired. In this fashion, memory 

readings are recorded for later analysis. 

4. 4 Experimental Setup 

The study evaluated Mozilla-based browser prototype based on GeckoFx version 33.0 with an 

integrated memory analyzer and a contemporary Mozilla Firefox version 33. The developed 

prototype was christened MOB. For each experiment, each browser was tested individually in a 

single target computer configured to run a Windows operating system of 32-bit architecture. 

Selected sites like electronic mail service providers (Gmail.com), social networks 

(Facebook.com), entertainment (Youtube.com) and search engines (Google.com) were 

investigated. Selection of these sites was based on the global market share (SimilarWeb, 2018). 

Memory consumption by the developed prototype and Mozilla Firefox browsers were compared 

in ten sets each in parallel. Memory consumption by both browsers was investigated on both 

homogeneous and heterogeneous website tabs. This was aimed at determining the variance in 

memory consumption while opening browser tabs for various websites. Memory consumption 

readings were done after the browser finished loading the content.  

4.4.1 Evaluation Metrics 

A number of metrics were adopted during the investigation. These included: available memory, 

consumed memory, and threshold memory.  

i. Available Memory(AM). This value represented the total available memory for use by 

all programmes. It is lower than the actual value of installed RAM. AM determines the 

number of programs that can comfortably get loaded in the main memory ready for 

execution. This translates to the degree of multiprogramming. A computer system with a 

larger size of AM can accommodate a higher number of programs in the main memory 
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compared to one with less. The research evaluated the performance of the two browsers 

on 1 GB RAM, machine. 

ii. Consumed Memory(CM): This represented the memory demand posed by the browser 

to render a given URL. The value of CM was evaluated in both browsers running in 

parallel. The research evaluated how CM, directly and indirectly, affected AM. 

iii. Threshold Memory(TM): The capped memory in which the browser should not exceed. 

This value was varied from 100 MB at an interval of 100 MB. TM indicates the highest 

amount of memory the browser process is allowed to consume. The moment CM 

supersedes TM; a red flag is raised to give a warning of memory hogging. 

4.5 Population, Sample and Sampling Procedure 

The research focused on Mozilla Firefox project. Cluster sampling method was used to get a 

representation of websites from which to obtain the data based on similar global web rankings 

(SimilarWeb, 2018). Websites were categorized into social network, search engine, TV and 

video and Email. Under Email, Google mail was investigated. In social networks category, 

Facebook was investigated. In third category, entertainment, YouTube was the put into focus. 

For search engines, Google was investigated.  

4.6 Data Analysis  

A quantitative data analysis procedure was adopted where descriptive statistics such as 

frequencies, percentages, means, and standard deviations were used to summarize data. Tables 

and figures were used to illustrate summarized data. Results from analyzed data were used to 

affirm the applicability of a memory analyzer in its effect in controlling memory hogging and 

inferences were drawn based on the results. Inferential statistics were used to deduce the general 

effect of integration of the memory analyzer to browser memory consumption. Linear regression 

model was used to assess the relationship between consumed memory and number of browser 

tabs. T-test was used to assess the statistical difference between memory consumption by MOB 

and Mozilla Firefox browsers. 

4.7 Summary 

This chapter gave a detailed account of the software development techniques and tools used to 

design the browser prototype. It highlighted the implementation techniques and described how 

the memory analyzer was integrated in the developed prototype. Secondly, the chapter discussed 
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the research design and methods/techniques used to collect as well as analyze the data about the 

research. It also provided an overview of how the research was carried out and how the data 

collected were used to generate results. The research methodology adopted was experimental. 

This method was adopted with a view to assessing the memory consumption for the selected 

browser on various websites running on Windows operating system. With this prototype model, 

it was possible to test the efficacy of the memory analyzer in controlling memory hogging and 

subsequently provided a reasonable ground for testing the hypothesis that, there is no difference 

in memory consumption by analyzer-integrated browser and non-analyzer integrated browser. 

The prototype further allowed the study to evaluate the performance and effectiveness of the 

integration of memory analyzer module before actual adoption. Presentation of results is 

discussed in detail in chapter 5. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter presents the results of the experiments that were conducted. Section 5.1 presents 

experimental results, analysis, and discussion while section 5.2 discusses the hypothesis test. 

Lastly, section 5.3 gives a conclusion about the findings.  

5.1 Presentation of results 

Results are presented based on data obtained from tests as described in section 4.3.  

5.1.1: Memory consumption by default processes 

The processes shown in table 5.1 characterized the testing environment. The researcher launched 

the browser processes only for the entire testing period. Several computer users owned these 

processes in the system including System, Test (Logged in user), Network service, and local 

service. Memory allocation is given in Kilobytes, abbreviated as “K”. 

Table 5.1: Memory consumption by default processes 

Applications/Processes 

Name Program file Instance Owner Memory 

Allocation 
Client server Runtime process Csrss.exe 1 System  752K 

Csrss.exe 2 System 796K 

Desktop Window manager Dwm.exe 1 Test 15,392K 

Windows explorer Explorer.exe  Test 20,600K 

Local security authority process Isaas.exe 1 System 1,860K 

Local session manager service ism.exe 1 System 616K 

Microsoft windows search 

indexer 

searchIndexer.exe 1 System 5,088K 

Services and controller app Services.exe 1 System 1940K 

Windows session manager smss.exe 1 System 128K 

Snipping tool snippingTool.exe 1 Test 1,368K 

Spooler subsystem app Spoolsv.exe 1 System 1,032K 

Host process for windows 

services 

Svchost.exe 1 System 1,496K 

Svchost.exe 2 Network 

service 

1,592K 

Svchost.exe 3 System 2,1036K 

Svchost.exe 4 System 8,480K 

Svchost.exe 5 Network 

service 

2,708K 

Svchost.exe 6 Local service 2,476K 

Svchost.exe 7 Local service 1,624K 

Svchost.exe 8 Local service 944K 
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Svchost.exe 9 Local service 4,096K 

Svchost.exe 10 System 1,708K 

system system 1 System 40K 

Percentage of time system is idle System idle process 1 System 24K 

host process for Windows tasks Taskhost.exe 1 Test 1,088K 

Windows task manager Taskmgr.exe 1 Test 1,840K 

WMI provider host WmPrvSE.exe 1 Network 

service 

1,572K 

Windows driver foundation WUDFHost.exe 1 Local service 484K 

Windows logon application Winlogon.exe 1 System 452K 

Windows start-up application Wininit.exe 1 System 384K 

(Source: Research) 

5.1.2 Browser memory consumption 

Mozilla Firefox and MOB memory consumption were critically investigated for analysis. 

Memory consumed by launching a single tab for each website category in both browsers was 

recorded in table 5.2.  

Table 5.2: Mozilla Firefox and MOB memory consumption 

Applications/Processes 

Browser

Name 

Program file Instance Owner Memory Allocation 

Mozilla 

Firefox 

Firefox.exe 1 Test On google 74,443K 

On youtube 183,628K 

On facebook 257,608K 

On gmail 262,052K 

MOB MOB.exe 1 Test On google 33,330K 

On youtube 130,615K 

On facebook 160,628K 

On gmail 210,012K 

(Source: Research) 

The results in table 5.2 indicate that the browser processes were the highest memory consumers 

amidst other processes shown in table 5.1. This characteristic depicts the browser as memory 

ravenous application. The browser consumes a minimum of 33.3 MB on a single Google tab 

while windows‟ explorer consumes the highest among the rest with a value of 20.6 MB. 

Interestingly, MOB browser consumes less memory compared to Mozilla Firefox in the four 

tested websites. 

5.1.3 Memory consumption averages by MOB and Mozilla Firefox with homogeneous website tabs 

Table 5.3 illustrates MOB and Mozilla Firefox memory consumption averages across the four 

tested websites. X represents computer freeze. Memory consumption by both browsers varied 
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with the number of opened tabs and with the content loaded in tabs. Memory consumption 

increased with the number of tabs open. Results indicate that memory increased gradually while 

accessing Google, YouTube, Facebook, and Gmail respectively in both browsers. To perform an 

online search using Google required an average of 33.3 MB and 74.4 MB on MOB and Mozilla 

Firefox respectively in a single tab. This value gradually increased as more tabs were opened. To 

give a visual representation of the searched content by Google search engine, which comprises 

mainly text required relatively low memory compared to other investigated website categories. 

Access to YouTube page, which comprises mainly video content, required relatively high 

memory in comparison to loading text. An average of 130.6 MB and 183.6 MB on MOB and 

Mozilla Firefox respectively were required to load content on a single tab and this value 

increased exponentially as numbers of tabs were increased. Although content on Facebook, 

comprise mainly text and images, access to these pages revealed debatable results. Access to 

Facebook required 160.6 MB and 257.6 MB on MOB and Firefox respectively, which is 

relatively higher memory than access to YouTube. Background processes on Facebook were 

characterized by timed events that executed severally hence requiring more memory. 

Table 5.3: MOB and Mozilla Firefox memory consumption averages with homogenous website tabs 

   M
O

B
 Website/ 

Memory (MB) 

Tabs 

1 2 3 4 5 6 7 8 9 10 

M
O

B
 

Google 

 

CM 33.3 38.4 42.5 49.2 53.6 56.0 59.8 65.6 70.9 73.1 

AM 620.4 609.8 606.5 597.6 594.8 591.2 588.4 586.0 580.3 578.8 

YouTube CM 130.6 190.3 277.0 326.7 394.2 432.2 494.9 550.4 612.3 X 

AM 523.7 483.6 412.9 320.3 275 229.2 182.6 122.4 75.3 X 

Facebook CM 160.6 236.5 365.6 448.1 515.3 579.7 640.8 694.4 X X 

AM 451.1 387.7 312.5 227.5 142.6 112.8 91.7 58.8 X X 

Gmail CM 210.0 344.7 462.9 584.3 628.5 678.1 698.3 X X X 

AM 344.4 310.1 214.0 110.5 92.2 79.4 49.6 X X X 
M

o
zilla

 F
irefo

x
 

Google 

 

CM 74.4 90.0 97.0 103.6 110.8 120.1 127.6 133.9 144.0 152.0 

AM 540.8 528.0 518.8 515.3 508.7 500.9 492.8 486.7 474.9 465.8 

YouTube CM 183.6 225.5 292.4 354.7 410.2 473.2 534.9 593.2 628.4 X 

AM 492.5 443.6 380.6 282.4 239.5 198.2 137.6 96.6 44.5 X 

Facebook CM 257.6 333.5 414.4 483.8 546.3 612.4 680.8 714.4 X X 

AM 382.3 306.7 237.5 174.5 125.6 93.8 71.7 35.3 X X 

Gmail CM 262.0 384.7 487.9 606.3 656.2 696.1 X X X X 

AM 324.9 289.1 198.5 93.8 63.2 46.3 X X X X 

(Source: Research) 

On average, to load a single tab on Gmail required 210 MB and 262 MB on MOB and Mozilla 

Firefox respectively. A similar phenomenon witnessed by access to Gmail was attributed to a 

series of background processes that execute sequentially to realize the Gmail application 
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functionality. Access to both Facebook and Gmail posed increased memory consumption as the 

number of tabs were increased for both browsers. 

Varying TM values guaranteed that MOB would consume not more than the set memory value 

thus controlling memory hogging. This phenomenon provided substantive value for AM, which 

provided for more programs in the main memory thus enhancing concurrency. In Mozilla 

Firefox, regulating how much memory it would consume was not possible as the model in which 

it is built-on, lacks memory analyzer. The study established that AM gradually reduces with an 

increase in CM. When the available memory reduces below 70 MB, the computer starts to crawl 

and eventually freezes.  

Computer froze while opening beyond seven, eight, and nine tabs for Gmail, Facebook, and 

YouTube respectively on MOB browser. However, the same phenomenon was witnessed while 

opening six, eight, and nine tabs for Gmail, Facebook, and YouTube respectively on Mozilla 

Firefox. The CM and AM values do not add to a constant since available memory is dynamically 

modified by operating system memory management routines.  

Figure 5.1 through Figure 5.4 shows how available memory and consumed memory varies by 

opening various homogenous website tabs. Analysis and discussion of results obtained are 

discussed in subsections herein. 

5.1.3.1 Variation of Available and Consumed memories with Google tabs 

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory 

increases by 4.45 MB relative to 1 unit change in a browser tab and a regression model is 

expressed as C = 4.457t + 29.727.  

In Mozilla Firefox, consumed memory increases by increases by 8.13 MB relative to 1 unit 

change in a browser tab. Regression model is expressed as C = 8.1345t+ 70.6. The value C in 

the equations represents consumed memory and t represents the number of tabs. In both 

browsers, memory consumption is directly proportional to the number of tabs with a high 

prediction of 99.36% and 99.33% on MOB and Mozilla Firefox respectively. The study 

established that there is a statistically significant association between browser tabs and consumed 

memory. Additionally, the difference in memory consumption by both browsers increases 

linearly with an increase in the number of tabs as expressed by Yc = 3.677x + 40.87 where Yc 

represents consumed memory difference and x represents the number of tabs. 
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Figure 4.1: Variation of Available and Consumed memories with Google tabs (Source: Research) 

Available memory decreases linearly with an increase in the number of tabs. In MOB, available 

memory decreases by 4.33 MB relative to 1 unit change in a browser tab and a regression model 

is expressed as A= -4.331t+ 619.2. In Mozilla Firefox, available memory decreases by 7.77 MB 

relative to 1 unit change in a browser tab and a regression model is expressed as A = -7.7727t + 

546.02. The value A in the equations represents available memory and t represents the number of 

tabs. In both browsers, available memory is inversely proportional to the number of tabs with a 

high prediction of 95.56% and 99.01% on MOB and Mozilla Firefox respectively. Additionally, 

the differences in available memory while both browsers are open increases linearly with an 

increase in number of tabs as expressed by Ya = 4.017x + 76.88 where Ya represents available 

memory difference and x represents the number of tabs. 

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95% 

indicate that the probability that the two means were not different is 1.38E-52, which is, less than 
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the chosen α hence there is a statistical difference in memory consumption between MOB and 

Mozilla Firefox on Google. Mean difference in memory consumption is 53.93 MB. 

5.1.3.2 Variation of Available and Consumed memories with YouTube tabs 

Consumed memory increases linearly with number of tabs. In MOB, consumed memory 

increases by 59.14 MB relative to 1 unit change in a browser tab and a regression model is 

expressed as C = 59.14t + 83.033. In Mozilla Firefox, consumed memory increases by 58.10 

MB relative to 1 unit change in a browser tab. Regression model is expressed as C = 58.097t + 

120.19. The value C in the equations represents consumed memory and t represents the number 

of tabs. In both browsers, memory consumption is directly proportional to the number of tabs 

with a high prediction of 99.57% and 99.74% on MOB and Mozilla Firefox respectively. The 

study established that there is a statistically significant association between browser tabs and 

consumed memory. Available memory decreases linearly with an increase in the number of tabs. 

In MOB, available memory decreases by 57.15 MB relative to 1 unit change in a browser tab and 

a regression model is expressed as A= -57.148t + 577.41. 

In Mozilla Firefox, available memory decreases by 56.72 MB relative to 1 unit change in a 

browser tab and a regression model is expressed as A = -56.72t + 540.88. The value A in the 

equations represents available memory and t represents the number of tabs. In both browsers, 

available memory is inversely proportional to the number of tabs with a high prediction of 

99.10% and 98.94% on MOB and Mozilla Firefox respectively. Consumed memory means 

between MOB and Mozilla Firefox with a confidence interval of 95% indicate that the 

probability that the two means were not different is 0.1589, which is greater than the chosen α 

hence there is no statistical difference in memory consumption between MOB and Mozilla 

Firefox on Google. Mean difference in memory consumption is 32.14 MB. 

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95% 

indicate that the probability that the two means were not different is 0.1589, which is greater than 

the chosen α hence there is no statistical difference in memory consumption between MOB and 

Mozilla Firefox on Google. Mean difference in memory consumption is 32.14 MB 
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Figure 5.2: Variation of Available and Consumed memories with YouTube tabs (Source: Research) 

5.1.3.3 Variation of Available and Consumed memories with Facebook tabs 

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory 

increases by 76.99 MB relative to 1 unit change in a browser tab and a regression model is 

expressed as C = 76.99t + 108.65. In Mozilla Firefox, consumed memory increases by increases 

by 66.55 MB relative to 1 unit change in a browser tab. Regression model is expressed as C = 

66.55t + 205.9. The value C in the equations represents consumed memory and t represents the 

number of tabs. In both browsers, memory consumption is directly proportional to the number of 

tabs with a high prediction of 98.23% and 99.34% on MOB and Mozilla Firefox respectively. 

The study established that there is a statistically significant association between browser tabs and 

consumed memory.  

Available memory decreases linearly with an increase in the number of tabs. In MOB, available 

memory decreases by 58.45 MB relative to 1 unit change in a browser tab and a regression 

model is expressed as A=-58.45t + 486.13. In Mozilla Firefox, available memory decreases by 

48.62 MB relative to 1 unit change in browser tab and regression model is expressed as A  = -

48.62t + 397.21. The value A in the equations represents available memory and t represents the 
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number of tabs. In both browsers, available memory is inversely proportional to the number of 

tabs with a high prediction of 95.67% and 96.06% on MOB and Mozilla Firefox respectively.  

 

 

Figure 5.3: Variation of Available and Consumed memories with Facebook tabs (Source: Research) 

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95% 

indicate that the probability that the two means were not different is 0.229, which is greater than 

the chosen α hence there is no statistical difference in memory consumption between MOB and 

Mozilla Firefox on Google. The mean difference in memory consumption is 32.76 MB 

5.1.3.4 Variation of Available and Consumed memories with Gmail tabs 

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory 

increases by 84.25 MB relative to 1 unit change in a browser tab and a regression model is 

expressed as C = 84.25t + 91.789.  

In Mozilla Firefox, consumed memory increases by increases by 83.05 MB relative to 1 unit 

change in the browser tab. Regression model is expressed as C = 83.05t + 146.47. The value C 

in the equations represents consumed memory and t represents the number of tabs. In both 
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browsers, memory consumption is directly proportional to the number of tabs with a high 

prediction of 95.35% and 96.66% on MOB and Mozilla Firefox respectively. The study 

established that there is a statistically significant association between browser tabs and consumed 

memory.  

 

 

Figure 5.4: Variation of Available and Consumed memories with Gmail tabs (Source: Research) 

Available memory decreases linearly with an increase in the number of tabs. In MOB, available 

memory decreases by 52.41 MB relative to 1 unit change in the browser tab and a regression 

model is expressed as A=-52.41t + 381.11. In Mozilla Firefox, available memory decreases by 

62.15 MB relative to 1 unit change in the browser tab and a regression model is expressed as A = 

-62.15t + 386.84. The value A in the equations represents available memory and t represents the 

number of tabs. In both browsers, available memory is inversely proportional to the number of 

tabs with a high prediction of 91.29% and 94.55% on MOB and Mozilla Firefox respectively 

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95% 

indicate that the probability that the two means were not different is 0.29, which is greater than 
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the chosen α hence there is no statistical difference in memory consumption between MOB and 

Mozilla Firefox on Google. Mean difference in memory consumption is 30.78 MB. 

5.1.3.5 Deduction on consumed and available memories with homogeneous website tabs. 

The study established that MOB consumed less memory as compared to Mozilla Firefox in all 

tested websites. Memory consumption difference was statistically significant on Google tabs 

while the same was statistically insignificant on YouTube, Facebook, and Gmail tabs. Mean 

consumption difference for all websites combined was statistically significant with a p-value of 

0.025, which is less than the chosen α of 0.05. MOB consumed 38.65 MB less than Mozilla 

Firefox on average. MOB web browser froze computer later than Mozilla Firefox did. This was 

influenced by the Garbage Collector (GC), which was embedded in the memory analyzer 

integrated into the MOB web browser. The GC reclaimed unused memory from MOB browser 

objects that were unused making it consume less and ultimately gave  rise to available memory. 

5.1.4 Memory consumption by MOB and Mozilla Firefox with heterogeneous website tabs 

Consumed memory and available memory readings were made while opening a combination of 

two or more tabs to depict the behavior of most web users. Analysis and discussion are done 

subsection herein. 

5.1.4.1 Memory consumption by MOB and Mozilla Firefox for two heterogeneous website tabs 

Table 5.4 illustrates memory consumption for the two browsers by opening a combination of two 

various website tabs. The results in the table demonstrate that opening an additional tab raises 

memory demand to load the retrieved contents. The amount of memory required for the extra tab 

is not proportional to the memory required by opening the first tab since tabs share the memory 

allocated to the browser process. Browser tabs are executed as threads within the browser 

process. Figure 5.5 shows that a combination of Google and YouTube consumed the least 

memory while Gmail and Facebook consumed the highest. Computer users with the browsing 

habit of chatting on Facebook and reading mails from Gmail are likely to experience browser 

crawl much earlier than those who perform a search in the web at the same time streaming video 

on YouTube. 

Both Facebook and Gmail comprise of sophisticated protocols characterized by background 

processes that execute often as users interact with the application. Executions of these processes 
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require high computational resources like Central Processing Unit (CPU) time and physical 

memory. 

Table 5.4: Browser memory consumption in MB for two tabs  

Website/ 

Browser 

TEST Avg. S.D 

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 
 

 

G
o

o
g

le
 &

 

Y
o

u
T

u
b

e 
 

MOB 
142.5 142.3 140.9 140.2 140.1 141.1 141.2 143 140.6 141.9 141.4 0.9 

Mozilla 

Firefox 194.4 193.9 192.6 194.1 193.5 192.3 192.7 193.8 192.9 192.3 193.3 0.7 

G
o

o
g

le
 &

 

F
ac

eb
o

o
k
 

MOB 
167.4 167.3 160.6 167.9 160.9 165.8 160.9 160.2 161.7 165.3 163.8 3.0 

Mozilla 

Firefox 215.3 215.5 215.0 217.8 216.3 218.0 218.2 215.8 220.1 217.9 216.9 1.6 

G
o

o
g

le
 &

 

G
m

ai
l 

MOB 
222.2 218.9 221.6 219.0 223.0 224.1 224.1 225.4 225.1 224.5 222.8 2.2 

Mozilla 

Firefox 260.2 264.7 267.5 268.6 268.6 268.8 268.8 266.9 267.0 267.5 266.9 2.5 

F
ac

eb
o

o
k

  
 

&
Y

o
u

T
u

b
e 

MOB 
212.6 218.9 221.6 219.0 223.0 224.1 224.1 225.4 225.1 224.5 221.8 3.8 

Mozilla 

Firefox 302.7 308.0 307.1 303.6 305.0 311.2 313.2 302.1 306.7 315.2 307.5 4.2 

G
m

ai
l 

&
  

Y
o

u
T

u
b

e MOB 
290.3 293.9 296.1 299.8 291.5 294.2 294.4 296.4 296.6 293.7 294.7 2.5 

Mozilla 

Firefox 310.4 314.7 316.3 316.6 318.8 313.8 315.2 317.9 313.3 316.6 315.4 2.3 

G
m

ai
l 

&
 

F
ac

eb
o

o
k
 

MOB 
312.2 309.8 312.5 311.3 310.2 312.0 313.3 312.9 311.0 313.8 311.9 1.2 

Mozilla 

Firefox 350.2 350.6 351 349.9 350.6 355.6 355.4 357.6 355.0 357.9 353.4 3.0 

(Source: Research) 

 
Figure 5.5: Browser memory consumption for a combination of two various websites (Source: Research) 
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5.1.4.2 Memory consumption by MOB and Mozilla Firefox for three heterogeneous website tabs 

Table 5.5 illustrates memory consumptions for the two browsers by opening a combination of 

three various website tabs.  

Table 5.5: Browser memory consumption (MB) for a combination of three various websites 

Website/ 

Browser 
TEST 

 

AVG 

 

S.D 

 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

 
 

G
o

o
g

le
, 

G
m

ai
l 

&
 

F
ac

eb
o

o
k

 

MOB 318.2 317.8 317.5 317.3 319.6 317.1 319.4 318.2 317.3 316.5 317.9 0.9 

Mozilla 

Firefox 377.5 376.7 378.9 378.7 378.9 376.4 377.1 378.6 376.7 377.0 377.6 0.9 

G
o

o
g

le
, 

G
m

ai
l 

&
 

Y
o

u
T

u
b

e 

MOB 
302.4 302.2 302.4 303.1 304.1 304.9 303.5 303.5 303.8 303.6 303.4 0.8 

Mozilla 

Firefox 340.3 341.2 343.8 341.1 342.1 341.3 340.2 343.0 343.6 342.3 341.9 1.2 

F
ac

eb
o

o
k

, 
 

G
m

ai
l 

 &
 

Y
o

u
T

u
b

e 

MOB 
362.7 363.5 361.8 364.8 367.2 367.8 363.0 366.9 361.7 368.2 364.8 2.4 

Mozilla 

Firefox 402.2 406.2 403.4 404.8 399.7 407.9 400.3 404.6 403.9 407.6 404.1 2.6 

F
ac

eb
o

o
k

, 

G
o

o
g

le
 &

 

Y
o

u
T

u
b

e 

MOB 
218.2 218.5 219.0 219.1 219.6 218.5 218.2 218.6 218.5 218.1 218.6 0.4 

Mozilla 

Firefox 318.6 320.7 317.6 318.7 320.1 320.1 322.3 322.6 322.4 323.5 320.7 1.9 

(Source: Research) 

The results in the table demonstrate that opening an additional tab raises memory demand to load 

the contents. The amount of memory required for the extra tab is not proportional to the memory 

required by opening the first two tabs since tabs share the memory allocated to the browser 

process. Figure 5.6 indicates that a combination of Gmail, Facebook, and YouTube pose the 

highest demand for memory while a combination of Google, YouTube, and Facebook poses the 

least demand for memory. Computer users with browsing habits on Facebook, Gmail, and 

YouTube sites are likely to experience system crawl much earlier than those who stream video 

on YouTube, chat on Facebook and perform a web search on Google at the same time. 
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Figure 5.6: Memory consumption for a combination of three various websites (Source: Research) 

5.1.4.3 Memory consumption by MOB and Mozilla Firefox for four or  more heterogeneous website 

tabs 

Table 5.6 illustrates memory consumptions for the two browsers by opening a combination of 

four or more various website tabs. The results in the table demonstrate that opening an additional 

tab raises memory demand to load the contents. The amount of memory required for the extra tab 

is not proportional to the memory posed by opening the first three tabs and so on since tabs share 

the memory allocated to the browser process. 

Results indicate that a combination of Google, Gmail, Facebook, and YouTube poses a memory 

demand of at least 447.6 MB and 479.3 MB for the MOB and Mozilla Firefox respectively. 

Adding more tabs raises the memory demand to a point where the computer freezes. The 

additional tabs from the fifth tab comprised of YouTube data. While Facebook, Gmail, and 

Google were possible websites to use from the fifth tab, YouTube was more popular than the 

latter. Memory consumption of at least 656 MB and 658.2 MB in MOB and Mozilla Firefox 

respectively led to computer freezing. Memory demand for MOB was considerably less than that 

of Mozilla Firefox in all tested cases. X represents computer freeze and (–) means no value. 

Computer system froze by opening beyond seven and eight tabs in Mozilla Firefox and MOB 

respectively. 
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Table 5.6: Memory consumption (MB) for a combination of four or more various websites 

Tabs/ 

Browser 
 TEST 

Avg. S.D 

 
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

 
 

4 

M
O

B
 

448.8 454.6 453.2 447.6 455.7 452.3 452.6 455.7 455.8 453.3 452.9 2.7 

M
o

zi
ll

a 

F
ir

ef
o

x
 

481.6 482.5 479.3 483.4 484.2 494.5 495.0 492.0 492.1 493.5 487.8 
5.8 

5 M
O

B
 

488.4 496.4 197.8 487.9 500.9 500.7 501.1 494.3 490.9 496.9 465.5 4.7 

M
o

zi
ll

a 

F
ir

ef
o

x
 

517.4 517.5 517.3 517.1 517.4 516.9 516.7 516.6 516.7 516.6 517.0 0.3 

6 

M
O

B
 

542.1 548.2 535.9 553.4 545.4 551.8 548.4 552.0 541.2 545.1 546.3 5.2 

M
o

zi
ll

a 

F
ir

ef
o

x
 

606.7 606.6 606.3 605.6 605.6 605.6 605.1 603.4 603.9 608.2 605.7 1.3 

7 

M
O

B
 

612.6 614.6 613.6 616.7 619.8 620.8 612.9 617.9 617.8 613.7 616.0 2.8 

M
o

zi
ll

a 

F
ir

ef
o

x
 

658.4 661.5 656.8 653.1 650.7 651.8 663.1 663.3 668.2 655.2 658.2 5.4 

8 

M
O

B
 

652.6 654.6 653.6 656.7 659.8 660.8 652.9 657.9 657.8 653.7 656.0 2.8 

M
o

zi
ll

a 

F
ir

ef
o

x
 

X X X X X X X X X X - 

- 

9 

M
O

B
 

X X X X X X X X X X - 
- 

M
o

zi
ll

a 

F
ir

ef
o

x
 

X X X X X X X X X X - 

- 

(Source: Research) 

5.1.4.4 Variation of consumed and available memories with heterogeneous website tabs 

Table 5.7 illustrates how consumed and available memories vary with the number of opened 

heterogeneous website tabs.  

There is a gradual decrease in the value of available memory as the number of tabs increases as 

illustrated by the results in figure 5.7. Consumed memory increases gradually as the number of 

tabs are increased. Computer froze when available memory falls below 65 MB and 63 MB with 

Mozilla Firefox and MOB running respectively. X represents computer freeze.  
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Table 5.7: Variation of consumed and available memories with heterogeneous website tabs 

Tabs Available Memory in MB Consumed Memory in MB 

MOB Mozilla Firefox MOB Mozilla Firefox 

1 490.8 438.8 133.6 194.4 

2 434.2 384.3 226.1 275.5 

3 304.9 250.0 301.2 361.1 

4 187.1 154.1 452.9 487.8 

5 174.5 125.2 465.5 517.0 

6 112.4 92.3 546.3 605.7 

7 87.7 65.4 616.0 658.2 

8 63.4 X 656.0 X 

9 X X X X 

(Source: Research) 

Consumed memory increases linearly as the number of tabs increase. In MOB, consumed 

memory increases by 75.64 MB relative to 1 unit change in a browser tab and a regression model 

is expressed as C = 75.64t + 84.29. In Mozilla Firefox, consumed memory increases by 

increases by 78.84 MB relative to 1 unit change in a browser tab. Regression model is expressed 

as C = 78.84t + 127.4. The value C in the equations represents consumed memory and t 

represents the number of tabs. In both browsers, memory consumption is directly proportional to 

the number of tabs with a high prediction of 97.3% and 98.4% on MOB and Mozilla Firefox 

respectively. The study established that there is a statistically significant association between 

browser tabs and consumed memory. Available memory decreases exponentially with an 

increase in the number of tabs. In MOB, available memory decays at a rate of 30% per tab and 

regression model is expressed as A= 717.7e
-0.30t

. In Mozilla Firefox, available memory decays at 

a rate of 33% per tab and regression model is expressed as A = 654.3e
-0.33t

. The value A in the 

equations represents available memory and t represents the number of tabs. 

In both browsers, available memory is inversely proportional to the number of tabs with high 

prediction of 98.7% for both the MOB and Mozilla Firefox.  

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95% 

indicate that the probability that the two means were not different is 0.001, which is, less than the 

chosen α hence there is a statistical difference in memory consumption between MOB and 

Mozilla Firefox on heterogeneous website tabs.  
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Figure 5.7: Dependence of available and consumed memory on browser tabs (Source: Research) 

5.1.4.5 Deduction on consumed and available memories with heterogeneous website tabs. 

The study established that MOB consumed less memory as compared to Mozilla Firefox in all 

tested websites. On average, MOB consumed 52.08 MB less than Mozilla Firefox. The reduction 

in memory consumption is attributed to the enhancement made to the model, which MOB is built 

on. The memory analyzer was enriched with garbage collection mechanism to reclaim unused 

memory. The Garbage Collector freed memory thus reducing the consumed memory by 

reclaiming memory from browser objects whose memories were unused.  

5.2 Hypothesis Testing 

The hypothesis for this study was expressed as: 

H0: µnon-analyzer - µanalyzer = 0 ("the difference of the memory means is equal to zero") 

where µanalyzer and µnon-analyzer are the memory consumption means for browser integrated 

with memory analyzer and non-integrated browser respectively. With a confidence interval of 

95%, the mean memory consumption for the MOB and Mozilla Firefox is 323.62 MB and 

362.26 MB respectively with homogeneous tabs. The p-value is 0.025. Similarly, the mean 

memory consumption for the MOB and Mozilla Firefox is 289.24 MB and 341.33 MB 

respectively with heterogeneous tabs. The p-value is 0.001. Both cases depict lower p-value than 
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the chosen α hence; the study established that there is a statistical difference in memory 

consumption between MOB and Mozilla Firefox.  

5.3 Summary 

Memory consumption between Mozilla Firefox and MOB was compared on Google, YouTube, 

Facebook and Gmail websites. The comparative study aimed at finding the impact of the 

memory analyzer in MOB with regard to browser memory consumption. An independent t-test 

was adopted to deduce the difference in memory consumption was statistically significant or not. 

Regression analysis on obtained data aimed at deducing the rate of change of memory 

consumption by opening browser tabs. Conclusion about the presented results is given in chapter 

6.  
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

This chapter gives a conclusion and recommendations of the undertaken research. Section 6.1 

gives a detailed conclusion of the research findings while section 6.2 enumerates the 

recommendations.  

6.1 Conclusion 

This research was conducted to find out the applicability of a memory analyzer to the browser 

reference architecture with a view to controlling memory hogging by web browsers. A memory 

analyzer was developed successfully based on specified functional requirements. The analyzer was 

then integrated in the browser prototype and its performance on memory optimization was 

evaluated by comparing its memory consumption with that of the contemporary Mozilla Firefox. 

The study results indicated that the integration provided a control mechanism in which the 

maximum amount of memory a browser would consume was set. This phenomenon, controlled 

browser memory hogging which consequently raised the amount of available memory. 

The study confirmed that memory consumption by browsers increases by opening tabs. However, 

memory posed by the browser in accessing a webpage was not uniform across the investigated 

websites. Research findings indicate that memory consumption was dependent on the nature of 

web content that was fetched. Google page consumed the least memory in both browsers. 

YouTube page was second while Facebook was third. Gmail application was found to consume the 

highest memory in all tested cases.   

However, memory consumption by the two browsers was different though the trend was the same. 

The integration of the memory analyzer in the developed browser prototype showed positive 

results. The study found out that the average memory consumption for memory analyzer-

integrated browser was 38.65 MB and 52.08 MB less with homogeneous and heterogeneous tabs 

opened respectively compared to Mozilla Firefox. This was influenced by the role played by the 

Garbage Collector in reclaiming unused memory from browser objects.  

Furthermore, it was possible to limit how much memory a browser should use with the MOB 

browser thus controlling memory hogging. With a memory threshold at 100 MB, a computer 

user would only perform a Google search. Raising TM to 200 MB allowed the computer user to 

perform Google search, chat on Facebook, and watch a video from YouTube with YouTube and 
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Facebook on one tab each. The study established that integration of the memory analyzer in the 

browser architectural model lowered memory consumption by the browser thus increasing the 

amount of available memory, which translated to improved concurrency. 

The research study rejected the null hypothesis. 

6.2 Recommendations 

The researcher recommends that further investigations to be carried out to determine the best 

strategy that would optimize memory as well as improve the level of concurrency in computers 

with less memory. Having achieved the set objectives, the research recommends the following. 

i. Further research on the performance of the developed model on computer machines 

having more than 1 GB RAM.  

ii. Evaluation of the developed architecture in x64 bit operating systems. 

iii. Development and integration of the memory analyzer for UNIX-based operating systems. 
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