
INTEGRATION OF A MEMORY ANALYZER TO THE BROWSER

REFERENCE ARCHITECTURE

BY

 KAMAU HARUN KARIUKI

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN

COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

MASENO UNIVERSITY

©2019

i

DECLARATION

This thesis is my original work and has not been submitted for a degree in any other university.

Signature: ------------------------------- Date: -------------------------

Harun Kariuki Kamau

This thesis has been submitted for examination with our approval as university supervisors.

Supervised by:

Signature: ------------------------------- Date: -------------------------

Dr. Okoth Sylvester McOyowo

School of Computing and Informatics,

Maseno University

Signature: ------------------------------- Date: -----------------------

Dr. Okoyo Henry Okora

School of Computing and Informatics,

Maseno University

ii

ACKNOWLEDGMENT
The longest journey begins with a single step, and the peak of creativity is achieved by a team.

Having come this far, I would like to first thank the Almighty Father for His grace since the time

this journey begun. To the supervisors, Dr. Okoth Sylvester McOyowo and Dr. Henry Okora

Okoyo, this thesis would not have been possible without you. Your guidance, dedication in

reading research work and constant encouragements made it all possible. It has been an honor

working with you. I acknowledge the Maseno University for giving me the opportunity to study

and experience the critical knowledge in computer science. To my parents, brothers, sisters and

my extended family, it is a joy being part of you and knowing that you are always praying for

me.

.

iii

DEDICATION
I dedicate this research work to my family

iv

ABS TRACT

A Web Browser is a computer application used to access information on the World Wide Web.

The browser‟s parsing capability has advanced over years since its inception. The advancements

have consequently increased demand for memory as manifested by computer crawl.

Contemporary browsers are anchored on reference architecture that lacks memory control

mechanism that can limit maximum memory a browser can use thus posing a challenge in

multiprogramming environments with less memory thereby making the computer to freeze.

Enhanced browser reference architecture was developed for investigation. The main objective of

the study was to develop and integrate a memory analyzer to the browser with a view to

evaluating its performance in Web browsers. Specific objectives were to specify the functional

requirements for the browser prototype, to design and develop a browser prototype, to design,

implement, and integrate memory analyzer and to evaluate the performance of the memory

analyzer in the developed architecture. Prototyping technique and software reuse were adopted in

formulating the model. The memory analyzer component acted as a memory meter and a

memory optimizer. It controlled memory hogging by limiting memory usage to a particular value

set by the user and optimizing available memory by calling the garbage collector. Experiments

were carried out to validate the Mozilla–based developed prototype by using Mozilla Firefox

browser as a control. All tests were carried on windows environment in parallel. Memory

consumption between the two browsers was recorded and statistically analyzed to test the

researcher‟s hypothesis. To evaluate the performance of the analyzer, memory demands posed by

access to popular sites such as electronic mail service providers, social networks entertainment

and search engines were examined. Statistical T-test on memory consumption between the two

browsers revealed that memory analyzer-integrated browser consumed 38.65 MB and 52.08 MB

less with homogeneous and heterogeneous tabs respectively compared to contemporary Mozilla

Firefox browser. This value is computationally significant as it provides suitable environment

that facilitates concurrency in computer systems that have low memory. The study provides

insights on the performance of enhanced browser reference architecture with regard to memory

optimization. The study recommends further research on memory optimization approaches, as

browser memory consumption is dynamic and browser technologies change often.

v

TABLE OF CONTENTS

DECLARATION ... i

ACKNOWLEDGMENT ... ii

DEDICATION ... iii

TABLE OF CONTENTS .. v

LIST OF ACRONYMS ... viii

OPERATIONAL DEFINITION OF TERMS .. ix

LIST OF TABLES .. x

LIST OF FIGURES ... xi

CHAPTER 1: INTRODUCTION .. 1

1. 1 Background to the Study .. 1

1.1.1 Web Browser Evolution ... 2

1.2 Statement of the Problem .. 3

1.3 Justification of the Study .. 4

1.4 Main Objective .. 4

1.4.1 Specific Objectives .. 4

1.5 Hypothesis... 4

1.6 Scope and Limitations ... 5

1.7 Assumptions of the Study ... 5

1.8 Significance of the study ... 5

1.9 Ethical Considerations .. 5

CHAPTER 2: LITERATURE REVIEW .. 6

2.1 Browser and Web browsing. ... 6

2.2 Causes of high memory demands by web browsers. .. 6

2.2.1 Memory management in JavaScript ... 9

2.2.2 Managing memory leaks in Mozilla Firefox .. 9

2.3 Average memory consumption for web browsers .. 10

2.4 Tools to optimize the memory usage in web browsers ... 10

2.4.1 Firemin ... 11

2.4.2 Wise memory optimizer ... 12

2.4.3 SpeedyFox ... 12

2.4.4 All Browsers Memory Zip ... 13

vi

2.5 Browser Architectures .. 14

2.5.1 Google Chrome .. 14

2.5.2 Microsoft Internet Explorer ... 16

2.5.3 Mozilla Firefox .. 17

2.6 Browser Reference Model .. 19

2.6.1 Weaknesses of the current Browser Reference Architecture ... 20

2.7 Research Gap .. 20

CHAPTER 3: THE ENHANCED BROWSER REFERENCE ARCHITECTURE 22

3.1 Contemporary Browser Architecture .. 22

3.1.1 User Interface ... 22

3.1.2 Browser Engine .. 22

3.1.3 Rendering Engine... 22

3.1.4 Display/UI Backend ... 25

3.1.5 Data Persistence ... 25

3.2 The Enhanced Browser Architecture .. 26

3.2.1 Memory Analyzer .. 26

3.2.2 Flow diagram of memory analyzer .. 27

3.3 Summary ... 27

CHAPTER 4: METHODOLOGY ... 28

4.1 Research Design .. 28

4.2 Development of Browser Prototype .. 28

4.2.1 Prototyping Model ... 29

4.2.2 Development Procedure ... 29

4.2.3 Architectural Model ... 29

4.2.4 Design of the Software System .. 29

4.3 Memory Analyzer ... 34

4.3.1 Memory Analyzer Interface Design ... 34

4.3.2: Setting Memory Threshold ... 35

4.3.3: Memory Computation Logic ... 36

4. 4 Experimental Setup .. 39

4.4.1 Evaluation Metrics ... 39

4.5 Population, Sample and Sampling Procedure ... 40

4.6 Data Analysis .. 40

vii

4.7 Summary ... 40

CHAPTER 5: RESULTS AND DISCUSSION ... 42

5.1 Presentation of results ... 42

5.1.1: Memory consumption by default processes .. 42

5.1.2 Browser memory consumption .. 43

5.1.3 Memory consumption averages by MOB and Mozilla Firefox with homogeneous website tabs 43

5.1.4 Memory consumption by MOB and Mozilla Firefox with heterogeneous website tabs 51

5.1.4.2 Memory consumption .. 53

5.1.4.3 Memory consumption .. 54

5.1.4.4 Variation of consumed and available memories ... 55

5.2 Hypothesis Testing .. 57

5.3 Summary ... 58

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS ... 59

6.1 Conclusion .. 59

6.2 Recommendations ... 60

REFERENCES .. 61

APPENDICES ... 65

viii

LIST OF ACRONYMS

API: Application Programming Interface

CERN: European Nuclear Research Center

CPU Central processing Unit

CSS: Cascading Style Sheet

FTP: File Transfer Protocol

GB: Giga Byte

GC: Garbage Collector

GPU: Graphical Processing Unit

HTML: Hypertext Markup Language

HTTP: Hypertext Transfer Protocol

IE: Internet Explorer

LCIE: Loosely coupled Internet Explorer

MB: Megabyte

MIME: Multi-Purpose Internet Mail Extensions

MSDN: Microsoft Developer Network

NCSA: National Center for Supercomputing Applications

RAM: Random Access Memory

UI: User interface

URI: Uniform Resource Identifier

URL: Uniform Resource Locator

W3C: World Wide Web Consortium

WWW: World Wide Web

XML: Extensible Markup Language

ix

OPERATIONAL DEFINITION OF TERMS

Virus: It is a malicious software program or programming code that replicates by being copied or

initiating its copying to another program, computer boot sector or document.

Browser: It is a software application for retrieving, presenting, and traversing information resources on

the World Wide Web.

Freeze: A state that occurs when either a computer program or system ceases to respond to inputs.

Hogging: A state where an application takes or uses most or all part of a resource.

Crawl: A state where computer starts responding slowly.

Crash: This is an event wherein the operating system or a computer application stops

functioning properly.

Memory leak: This is a failure in a program to release discarded memory, causing impaired

performance or failure.

x

LIST OF TABLES

Table 5.1: Memory consumption by default processes (Research)…………………………………………….42

Table 5.2: Mozilla Firefox and MOB memory consumption (Research)……………………………………..43

Table 5.3: MOB and Mozilla Firefox memory consumption averages with homogenous website tabs

(Research)………..44

Table 5.4: Browser memory consumption in MB for two tabs (Research)……………………………………52

Table 5.5: Browser memory consumption (MB) for a combination of three various websites (Research).53

Table 5.6: Memory consumption (MB) for a combination of four or more various websites (Research)...55

Table 5.7: Variation of consumed and available memories with heterogeneous website tabs

 (Research)……….56

xi

LIST OF FIGURES
Figure 1.1: Browser timeline 1994-2010(Michal karzynski, 2010)…………………………………………..3

Figure 2.1: Firemin (Brinkmann, 2014)…………………………………………………………………………11

Figure 2.2: Wise memory Optimizer(Brinkmann, 2014)………………………………………………………..12

Figure 2.3: SpeedyFox (Brinkmann, 2014)………………………………………………………………………13

Figure 2.4: All browsers memory zip usage controller (Brinkmann, 2014)…………………………………14

Figure 2.5: Google chrome architecture (Jesse et al., 2009)…………………………………………………..15

Figure 2.6: Internet Explorer architecture (MSDN, 2016)……………………………………………………..17

Figure 2.7: Mozilla Firefox architecture (Allan & Michael, 2006)……………………………………………18

Figure 2.8: Reference architecture for Web browsers (Allan & Michael, 2006)…………………………….20

Figure 3.1: The Gecko rendering engine (Tali & Paul, 2011a)……………………………………………......23

Figure 3.2: Rendering engine-Functions flow diagram (Tali & Paul, 2011b)……………………………….24

Figure 3.3: The enhanced browser architecture (Research)……………………………………………………26

Figure 3.4: The flow diagram of a memory analyzer (Research)………………………………………………27

Figure 4.1: Unpacking GeckoFx package (Research)…………………………………………………………..31

Figure 4.2: Adding GeckoFx assembly files as references (Research)………………………………………..31

Figure 4.3: Selecting GeckoFx assembly files (Research)………………………………………………………32

Figure 4.4: Adding GeckoFx browser control to the toolbox (Research)…………………………………….32

Figure 4.5: Adding GeckoFx browser control to a windows form (Research)……………………………….33

Figure 4.6: GeckoFx browser prototype code-snippet (Research)…………………………………………….33

Figure 4.7: GeckoFx browser prototype in action (Research)………………………………………………....34

Figure 4.8: Memory analyzer interface design (Research)……………………………………………………..35

Figure 4.9: Setting memory in the memory analyzer (Research)………………………………………………36

Figure 4.10: Physical memory computation logic (Research)………………………………………………….37

Figure 4.11: Memory Layout in single processor system (Research)…………………………………………38

Figure 4.12: Browser Memory consumption computation logic (Research)………………………………...38

Figure 5.1: Variation of Available and Consumed memories with Google tabs (Research)………………46

Figure 5.2: Variation of Available and Consumed memories with YouTube tab (Research)……………..48

Figure 5.3: Variation of Available and Consumed memories with Facebook tabs (Research)…………...49

Figure 5.4: Variation of Available and Consumed memories with Gmail tabs (Research)………………..50

Figure 5.5: Browser memory consumption for a combination of two various websites (Research)………52

Figure 5.6: Memory consumption for a combination of three various websites (Research)……………….54

Figure 5.7: Dependence of available and consumed memory on browser tabs (Research)………………..57

1

CHAPTER 1

INTRODUCTION

The chapter introduces the subject under investigation. Section 1.1 gives the background of study

and evolution of web browsers. Section 1.2 to 1.9 summarizes the research study under the

sections aforementioned.

1. 1 Background to the Study

The Internet is progressively becoming an indispensable component of today‟s life. Most often

than not, people largely rely on the expediency and elasticity of Internet-connected devices in

learning, shopping, entertainment, communication and in broad-spectrum activities, that would

otherwise necessitate their physical presence (Sagar et al., 2010). To access information or

services via the Internet, it requires a medium; a browser operates as a medium. It is the prime

software of a computer system when the Internet is of importance. A browser retrieves, displays,

and traverses information resources on the Web (World Wide Web Consortium, 2004).

Information resources comprise text, image, video, or other pieces of content. These resources

are identified and accessed by a Uniform Resource Identifier (URI).

The first browser known as WorldWideWeb was made in the early 1990s by Tim Berners-Lee

and later named Nexus (Tim Berners-Lee, 1999). Since then, browsers have seen tremendous

advancements ranging from their architectures and usage. The earliest browsers; Nexus, Mosaic

and Netscape were less complex and used considerably low computer memory (Gordon, 2017).

However, they were commonly used for viewing basic HTML pages. With the advancement of

the Internet, browsers have had a lot of popularity in usage globally. Today, the browser is the

most used computer application in the world (Allan & Michael, 2006a; Antero et al., 2008). With

limited computer power to process voluminous data generated from various sources, users have

resorted to other technologies like the cloud computing and other online solutions where there is

robust computer processing power, vast storage, scalability, reliability and on-demand services.

In these cases, resources are accessed as services via the Internet with thin clients especially the

browsers.

Originally, web information comprised a set of documents that in most cases contained text and

hyperlinks to other related documents, having little or no client-side code. All rendered content

originated from a single source. Web content has increasingly become more complex in pursuit

to incorporate interactive features. Today, web programs have advanced to become highly

2

interactive applications that execute on both the server side and client machine. With these

advancements, web pages today are no longer simple documents; they now comprise highly

dynamic contents that work together with each other. In other words, a web page is now said to

be a “system”–having dynamic contents as programs running in it, interacting with users,

accessing other contents both on the web page and in the hosting browser, invoking browser

Application Programming Interfaces (APIs), and interacting with programs on the server side.

These advancements require adequate computer memory in order to run properly from the host

computer.

Consequently, these advancements have brought along rising memory demands. In fact, memory

allocation to a browser rises gradually from tens of Megabytes (MBs) to hundreds of MBs and

eventually to Gigabytes (Doug, 2012). This fact only categorizes browsers as today‟s memory

wolfs. Indeed, it leads to browser crash. The size of RAM determines the nature of software a

computing device can run and consequently the level of multiprogramming. A single process

consuming nearly a gigabyte of RAM in a one GB computer will lead to starvation of other

processes and therefore lower multiprogramming level and finally leads to a crawl. However,

these browsers behave differently in different platforms and with the content the browser loads.

Currently, web browsers have add-ons and extensions that users can use to free memory from

them. This strategy does not stop the computer from freezing (Wayne, 2018).

1.1.1 Web Browser Evolution

Key concepts of web browsers can be drawn back from systems envisaged by Vannevar Bush in

the 1940s (Nyce & Kahn, 1991) and Ted Nelson in the 1960s (Ted Nelson, 1965). However, the

World Wide Web (WWW) was first described in a proposal made by Tim Berners-Lee in 1990

at the European Nuclear Research Center (CERN), (Tim Berners-Lee, 1999). By the end of

1991, he had written the first web browser. This browser served as an HTML editor. In the same

year, scholars at the University of Kansas had in parallel initiated a project on a text-only

browser, which was given the name Lynx, (Legan & Dallas, 2001). Moreover, around the year,

National Center for Supercomputing Applications (NCSA) developed a graphical web browser,

which was branded Mosaic, (Andreessen et al, 1994). Mosaic had the capability of parsing both

images and text.

As the commercial potential of the web began to grow, NCSA founded an offshoot company

called Spyglass to commercialize its technologies and Mosaic's co-author left to co-found his

3

own company, Netscape. Later, Andreessen and his team poised to release Mosaic Netscape (Lasar

and Matthew, 2011). In 1994, Berners-Lee initiated the World Wide Web Consortium (W3C),

which its core mandate was to guide the development of the web and offer support on

interoperability of web technologies. In the following year, Microsoft developed Internet

Explorer (IE), which ignited an intense competition with Netscape. Microsoft in due course

dominated the market, and Netscape released its open-source browser with the name Mozilla in

1998 (Dave Titus, 2002). Figure 1.1 illustrates a timeline of the various releases of several

outstanding web browsers and their dominance in the market. Since then, Mozilla has had much

advancement in its architectural design with the aim of improving its usability and security.

Today, there are a number of web browsers in the market which include Galeon (Krause &&

Ralph, 2002), Konqueror (Nick, 2010), Maxthon (Maxthon, 2005), Avant (Avant Force, 2004),

NetCaptor (Wayner & Peter, 2005), Chrome (Google, 2008), Safari (Pour & Andreas, 2003) and

Opera (Opera, 2003).

Figure 1.1: Browser timeline 1994-2010 (Michał Karzyński, 2010)

1.2 Statement of the Problem

Memory demand by today‟s browsers is overwhelming. The existing browser reference

architecture does not have a control of memory usage and thus the browser continuously

demands more and more memory until the operating system can no longer allocate any extra

4

memory making the computer to freeze. Contemporary browsers like Google Chrome, Mozilla

Firefox and Internet Explorer have over years been enhanced to lower their memory

consumption levels by use of extensions which end up requiring more memory. Third-party tools

adopted for memory optimization by aforementioned browsers depict a similar challenge. This

reduces Operating System (OS) concurrency and ultimately renders the computer unusable.

1.3 Justification of the Study

Browser memory consumption is on the rise. There is a need to investigate memory demands for

a browser since it has become today‟s application platform (Antero, 2007). The study sought to

develop a memory analyzer that integrated seamlessly with the existing reference browser model

with a view to evaluating its performance in Web browsers. The new model would provide a

guideline to browser architects and web developers in their consideration in building intelligent

applications that are highly memory optimized for sophisticated and dynamic web technologies

that utilize it. In addition, web developers would adopt recommended web principles and

standards for all applications they intend to develop. Consequently, the users would also change

their browsing techniques and adopt methods that would improve their browsing experience.

1.4 Main Objective

The main objective of the study was to develop and integrate a memory analyzer to the browser

with a view to evaluating its performance in Web browsers.

1.4.1 Specific Objectives

Specific objectives of the study were to:

i. To specify the functional requirements for the browser

ii. To design and develop the browser prototype

iii. To implement the design and integrate the memory analyzer

iv. To test the performance of the memory analyzer with regard to memory optimization

1.5 Hypothesis

The following hypothesis was tested at the end of the study:

Memory consumption by analyzer–integrated browser and non-analyzer integrated browser is

the same.

5

1.6 Scope and Limitations

The research focused on Mozilla Firefox-based browser. Global market share (Statista, 2018) places

Mozilla Firefox in position two after Google Chrome. Furthermore, Mozilla project is open

source and hence has no proprietary restrictions. The specified browser was investigated on

Windows operating system of 32-bit architecture. While there are many browsers in existence

today, the absolute scale of material to cover together with the pace at which browser

technologies change lead to these limitations.

1.7 Assumptions of the Study

The study was based on the following assumptions:

i) The computer system to be used would be secured against viruses or any other vulnerability

ii) Internet connection and power supply would be stable throughout the experiment period.

iii) There would be negligible change on web content from where results were to be obtained.

iv) Computer users have relevant skills for browser configuration

v) The environment setup would be based on windows 32 bit with a maximum of 1 GB RAM

1.8 Significance of the study

The study provides insights on the performance of enhanced browser reference architecture with

regard to memory optimization and lays a foundation for further research on memory

optimization approaches.

1.9 Ethical Considerations

The researcher commits to ensuring the quality and integrity of the study by complying with

research regulatory bodies. Refer to appendices.

6

CHAPTER 2

LITERATURE REVIEW

This chapter aims to provide what other scholars have written regarding memory optimization

techniques in Web browsers. To accurately portray the developments in browser technologies

with regard to memory optimization, an overview of the literature is presented in the following

manner. Section 2.1 gives a historical perspective on browser technologies and web content

parsing. Section 2.2 through 2.4 explores the causes of high memory demands by web browsers

and tools that have been used to control memory hogging. Another important aspect in this study

was a review on contemporary browser reference models, which is discussed under section 2.5.

The chapter aimed at establishing the weaknesses of the reviewed tools and reference model to

as to set stage for chapter 3

2.1 Browser and Web browsing.

Browser has evolved since its inception. In the present day, people play games, watch videos,

run applications and so much more other activities that go beyond simple browsing. However, all

these rich media content comes at a cost. Most modern browsers require bigger RAM to render

dynamic interactive content. Mozilla Firefox and Google Chrome are the most popular Open

Source web browsers dominating the market today. In due course, they have both increased their

features, and consequently the amount of system resources they consume while running. Adding

a few of the thousand extensions available for these browsers makes them consume hundreds of

megabytes of memory and take up large amounts of disc space. Despite the developer‟s efforts to

optimize memory usage, a majority of browser users still complain these browsers use far much

more memory than they should (HAL9000, 2013).

Modern browsers are probably the most complex piece of user-orientated software on a home

computer. Not only do they need to understand correctly formatted code but also badly formatted

code. Moreover, not only do they need to execute arbitrarily complex software internally but also

cope with deliberately malicious code while providing at least the illusion of security (Gordon,

2017). This fact has led to the continued use of browsers in everyday life.

2.2 Causes of high memory demands by web browsers.

As the browser gets used, it gradually takes more time to load during startup. In general, the

speed might decrease, and browsing starts to slow down. This is a very frequent problem and

7

occurs partially because of fragmentation in the databases the browser uses (Kimak et al., 2014).

In particular, if Mozilla Firefox is left running for a number of hours, consumed memory of well

over a Gigabyte is observed even with only a few tabs open; a long running memory leak issue

that plagues Firefox sometimes (Doug, 2012).

The more the tabs are opened, the more the RAM the browser will use. Each tab is designed to

cache pictures, text and other active data, which keeps page data persistent while using multiple

tabs. Of course, browsers like Chrome and Firefox have ways to turn this behavior off, but the

user may not wish it to happen. Without caching, YouTube videos will not play in the

background, and most real-time web applications will fail to work correctly (Brinkmann, 2018).

In an attempt to achieve greater stability and manage memory more effectively, most modern

browsers launch new tabs as their own process. This practice has been seen in action with the use

of Activity Monitor, Task Manager or a similar process monitoring application. However, this is

only part of the picture. Browsers such as Chrome, Firefox and Safari often place plug-ins in a

process of their own (Nield, 2018). Flash, for example, is known for poor memory management

and giving it separate sandbox helps increase stability and better manages the amount of memory

used. In fact, this is the same strategy used to sandbox extensions, which are often the biggest

culprits behind memory leaks and poorly managed memory usage (Braga, 2011).

Similar to all software, the Windows operating system requires maintenance to get the most

performance out of it. This is done by updating files, cleaning temp files, verifying file integrity,

and removing stray registry entries after uninstalling programs – all of these help contribute to a

smoother operating system (Karl, 2013a). Browser is no different. In Firefox, it is common to

remove stray entries left behind in the “Firefox registry” and calling the “about: config” function

to remove unnecessary add-ons. Failure to do so, over time, will lead to a slower browser trying

to parse chunks of extraneous code.

The techniques used for measuring, clearing, and improving memory in operating systems

similarly apply to browsers (Karl, 2013b). One of the reasons why browsers consume excessive

memory and start slowing down is typically due to opening many tabs and having too many add-

ons installed. Browser developers have devised browser add-ons that monitor browser‟s memory

and checking for any add-ons that are memory-heavy or memory-leaky. Examples of these

include “add-ons-memory” which is an incredible add-on for measuring the memory demands

of all add-ons installed in the browser (Williams, 2017).

8

A computer program for instance, the browser, may be optimized so that it executes more

rapidly, capable of operating with less memory storage or other resources, or draw less power. In

an application where memory space is at a premium, one might deliberately choose a slower

algorithm in order to use less memory. Often, there is no "one size fits all" design which works

well in all cases, so engineers make trade-offs to optimize the attributes of greatest interest. With

regard to browsers, memory consumption has been the most intricate issue (Otto & Antonsson,

1991).

Memory leak is another problem. A memory leak happens when the browser for some reason

does not release memory from objects, which are not needed any more. This may happen

because of browser bugs, browser extensions problems and, much more rarely, browser

developer mistakes in the code architecture. Leaks may occur because of browser extensions,

interacting with the page. More importantly, a leak may occur because of two extensions

interacting bugs. For instance, when Skype extension and the antivirus are enabled, memory

leaks and when any of them is off, it does not (Ilya, 2011).

Memory leaks are caused by the following but not limited to:

i. Variable referencing

In modern browsers, web developers are mandated to reclaim memory from variables not in use.

Garbage-collected environments do not collect memory that is still being referenced to, and there

are many ways to keep referencing memory without meaning to (e.g. create a closure to attach as

an event handler and accidentally include a bunch of variables in that closure's scope). A web

developer can solve these leaks completely by properly handling variable references in their

code. A page reload typically frees up the memory (Sebrechts, 2012).

ii. Add-ons

If add-ons are also written in a garbage-collected language (like JavaScript), then they suffer

from the same issue. However, a page reload will typically not free up this memory, so it appears

as if the browser is leaking memory whereas it is actually the add-on developer's fault(Mozilla

Developer Network, 2019).

iii. Browser engine

All modern browser engines are written in C++, which is not garbage-collected, but uses explicit

memory allocation instead. If developers allocate memory and then forget to deallocate it, the

9

engine leaks memory. Though it is not 100% fixed, and never will be, but it is not a huge

problem anymore (Pryden, 2015).

2.2.1 Memory management in JavaScript

The central concept of JavaScript memory management is a concept of reachability (Ilushin &

Namiot, 2015). A distinguished set of objects are assumed reachable: these are known as the

roots. Typically, these include all the objects referenced from anywhere in the call stack (that is,

all local variables and parameters in the functions currently being invoked), and any global

variables. Objects are kept in memory while they are accessible from roots through a reference or

a chain of references. There is a Garbage Collector in the browser, which cleans memory

occupied by unreachable objects. However, the browser does not clean memory immediately.

Most algorithms of garbage collection free memory from time to time. The browser may also

postpone memory cleanup until the certain limit is occupied.

2.2.2 Managing memory leaks in Mozilla Firefox

Mozilla's Servo browser engine project is designed to improve Document Object Model

(DOM) memory management, with the JavaScript garbage collector to be tasked with managing

native-code DOM objects. The approach would be an alternative to reference-counting for

tracking pointers between low-level DOM objects, which can bring about complications like the

leaking of memory objects. Two bloggers of Mozilla research blog, Josh & McAllisterin (2014)

records that they established a new approach for DOM memory management, of which they use

the Rust language's exciting features which includes auto-generated trait implementations,

lifetime checking, and custom static analysis plug-ins.

Giving the garbage collector responsibility for managing these DOM objects requires complex

interaction between Servo's Rust code and the Spider Monkey garbage collector. "Fortunately,

Rust provides some good features that let us build this in a way that's fast, secure, and

maintainable," Mozilla's researchers said. Mozilla collaborated with Samsung on Servo, which is

intended to leverage multicore, heterogeneous architectures, and plans to productize Servo in the

2015 timeframe (Krill, 2014a).

Memory management on the DOM is a real problem that has needed to be solved (Krill, 2014b).

Mozilla's researchers say it is "an open question" of how the garbage-collected DOM will

perform compared to a traditional, reference-counted DOM. "The Blink team has performed

10

similar experiments, but they don't have Servo's luxury of starting from a clean slate and using a

cutting-edge language. We expect the biggest gains will come when we move to allocating DOM

objects within the JavaScript reflectors themselves. Since the reflectors need to be traced no

matter what, this will reduce the cost of managing native DOM structures to almost nothing.”

2.3 Average memory consumption for web browsers

When comparing the RAM usage of today's top browsers, there are a few scenarios to take into

consideration. The baseline measurement is the amount of memory used when the browser is

first launched which is the ability to release RAM previously used by closed tabs and plugins

back to the operating system (Braga, 2011).

A research study aimed at testing memory consumption by popular Web browsers christened the

Web Browser Grand Prix, revealed some interesting data. On a Windows 7 test system, Internet

Explorer 9 actually used the least amount of memory for a single tab running Google's

homepage, at 24 MB, edging out Google Chrome by just 3 MB. On the upper end of that

spectrum, Firefox and Safari used 60 MB and 62 MB respectively (Adam, 2011).

Invesitigations carried out by Rosso (2015) on Mozilla Firefox 38, Google Chrome 42, Internet

Explorer 11 and Opera 29 running on Windows 8.1 had the following data for a single tab.

Internet Explorer 11 took the lead in terms of its low consumption of resources, 13 MB. It was

followed by Opera which consumed 78 MB. On the upper end of that spectrum, Firefox and

Google Chrome used 92 MB and 195 MB respectively. With five tabs open, Google chrome

remains a giant memory consumer with 310 MB. Opera come second with 179 MB. On the

lower end of that spectrum, Firefox and internet Exlorer used 139 MB and 99 MB respectively.

2.4 Tools to optimize the memory usage in web browsers

Brinkmann (2014a) postulates that, web browsers can use a lot of memory on a computer

system. Once additional webpages in tabs are opened it is noticed that memory usage gets up.

Firefox does a better job at that as Chrome but both can easily consume more than 1 GB of

memory. High memory usage may not be an issue if the system in use has plenty memory. If it

has 4, 8, 16, or even more Gigabytes of RAM, then the computer user may never run into any

memory related issues. Indeed, as many may dislike how much memory a single program is

using on the system but if it is not affecting performance or other operations, there is not really

anything to worry about.

11

Internet users, who run systems with less RAM, especially 1 Gigabyte and below, sit in a

different boat. Their systems may not have enough RAM for all processes running on it, that may

reduce the overall performance of the system due to caching, being used to overcome this

limitation. The following desktop programs attempts to free up memory using various API calls

or techniques (Brinkmann, 2014b).

2.4.1 Firemin

With Firemin for Firefox, browser users can effectively stop Firefox memory leaks

automatically. As memory usage of this popular browser increases, the system slows down and

the user are stuck with limited system resources. In fact, Firefox can use up to 500 MB of

memory if a user uses the browser continuously Firemin forces Firefox to reclaim the memory

allocated to it by Windows and allows the user to use Firefox in an optimized environment

(Ortega, 2013).

Firemin does not do anything that Windows does not do itself when the system runs out of RAM.

It calls the Windows function EmptyWorkingSet over and over again in a loop to free up

memory. Calling the function removes as many pages as possible from the working set of the

specified process. The program ships with a slider that a user can use to set the desired interval in

which he/she wants it to call the function.

The SQLite database optimize function is available through the tray icon context menu and

simply click “Optimize Firefox” to start the compacting process. Firefox will need to be closed

to do this. This tool is compatible with Windows 2000 and above. Figure 2.1 shows Firemin in

action.

Figure 2.1: Firemin (Brinkmann, 2014)

12

However, the limitations of Firemin.exe are that, the technical security rating is 30% dangerous.

This is because it records keyboard and mouse inputs, monitors applications and manipulates

other programs. Moreover, some malware camouflages itself as Firemin.exe, particularly when

located in the C:\windows or C:\windows\System32 folder. Moreover, Firemin is only

compatible with Mozilla Firefox.

2.4.2 Wise memory optimizer

Wise Memory Optimizer helps a user to free up and tune up the physical memory taken up by

some unknown non-beneficial applications to enhance PC performance. A user can enable

automatic optimization mode when the free PC memory goes below a value that he/she may

specify, and make Wise Memory Optimizer run even when the CPU is idle, as well as adjust the

amount of memory he/she wants to free up. Then it will optimize PC memory automatically in

the background. Figure 2.2 shows wise memory optimizer in action.

Figure 2.2: Wise memory optimizer (Brinkmann, 2014)

However, this tool does not prevent the browser from hogging memory it only reclaims memory

from unknown non-beneficial applications.

2.4.3 SpeedyFox

SpeedyFox is a tool designed specifically for compacting the SQLite database files, which will in

turn reduce the time taken to read from and write to them. In addition to Firefox, which it was

originally designed for, SpeedyFox, can now also compact the databases for the Chrome, Epic

13

Browser, SRWare Iron and Pale Moon browsers. It also supports the Mozilla Thunderbird and

Skype tools as well (Serea, 2019).

Upon running the portable executable, SpeedyFox automatically detects and loads the default

profile for each of the supported applications. As they are very popular these days, it is also

possible to load custom profiles for Firefox or Chrome portable versions. Click the SpeedyFox

menu bar and select “Add custom profile” or drag the profile folder and drop it onto the

SpeedyFox window. Simply tick the application profiles to optimize and click the Optimize!

button. SpeedyFox starts compacting the SQLite databases. Figure 2.3 shows SpeedyFox in

action.

Figure 2.3: SpeedyFox (Brinkmann, 2014)

The progress window shows what databases are optimized and also how much space is saved. A

user needs to make sure that the programs being optimized are not running at the time or they

will not be processed. In a quick test, it reduced 14 MB of Firefox databases to 6 MB and 192

MB of Chrome databases to 186 MB. SpeedyFox developer recommends running the tool every

1-2 weeks depending on user browser usage of the included browsers.

Though tool increases Mozilla Firefox launch speed, it does not prevent memory hogging. It just

clears cache over some time.

2.4.4 All Browsers Memory Zip

All Browsers Memory Zip has no database compacting functions but is a dedicated memory-

optimizing tool for a large number of popular web browsers. In addition to Chrome and Firefox,

14

it also works with other popular browsers like Opera, Internet Explorer, and Maxthon etc. The

program is portable but has separate 32-bit and 64-bit versions, and when a user runs it there will

be a small tooltip and then All Browsers Memory Zip will sit in the system tray optimizing the

memory of any running supported browsers. Figure 2.4 illustrates All Browsers Memory Zip in

action

Figure 2.4: All browsers zip usage controller (Brinkmann, 2014)

Right click on the tray icon to pause the program from optimizing and pressing Usage Controller

pops up the window above which enables the user to set the RAM for each browser and edit the

shortcut keys. Just select the browser from the dropdown, enter the max amount in Megabytes,

and click Set. This tool works in Windows XP and above.

However, this tool must execute all times a browser process is running. It requires a significant

amount of memory. Consequently, it impacts negatively when streaming content over the

Internet.

2.5 Browser Architectures

The following three browser architectures were critically explored to find out whether they are

true derivations of the browser reference architecture.

2.5.1 Google Chrome

Google Chrome uses a multi-process architecture which gives it a competitive edge in

performance over other browsers (Google, 2008). Each tab has its own process which runs

independently from other tabs. Figure 2.5 illustrates the Google Chrome‟s major components.

15

Figure 2.5: Google chrome architecture (Jesse et al, 2009)

This allows one tab process to dedicate itself to a single web-application, thereby increasing

browser performance. This protects the browser application from bugs and glitches in the

rendering engine. Furthermore, it restricts access from each rendering engine process to others

and to the rest of the system. This scenario offers memory protection and access control as

manifested in operating systems. The multi-process architecture also increases the stability of the

browser, as it provides insulation. In the case that one process encounters a bug and crashes, the

browser itself and the other applications running in parallel are preserved. Functionally, this is an

improvement over other browsers, as highly valuable user information in other tabs will be

preserved (Klein, 2019). Google Chrome has used the WebKit as a layout engine until version

27. Later versions have been using Blink. V8 has been used as JavaScript Interpreter in all

versions. The components of Chrome are distributed under various open source licenses.

Although Google developers have variant components in their architectural design, the browser

flow logic is derived from the browser reference architecture.

16

2.5.2 Microsoft Internet Explorer

Essential to the browser's architecture is the use of the Component Object Model (COM), which

governs the interaction of all of its components and enables component reuse and extensibility

(MSDN, 2016). Internet Explorer uses JScript and VBScript as JavaScript interpreter and Trident

layout engine. Figure 2.6 illustrates Internet Explorer's major components.

A description of each of these six components that form the architecture is as follows:

i. IExplore.exe is at the top level, and is the Internet Explorer executable. It is a small

application that relies on the other main components of Internet Explorer to do the

work of rendering, navigation, protocol implementation, and so on.

ii. Browsui.dll provides the user interface to Internet Explorer. Often referred to as the

"chrome," this DLL includes the Internet Explorer address bar, status bar, menus, and

so on.

iii. Shdocvw.dll provides functionality such as navigation and history. It is commonly

referred to as the WebBrowser control. This Dynamic-link library (DLL) exposes

ActiveX Control interfaces, enabling you to easily host the DLL in a Windows

application using frameworks such as Microsoft Visual Basic, Microsoft Foundation

Classes (MFC), Active Template Library (ATL), or Microsoft .NET Windows Forms.

When a user‟s application hosts the WebBrowser control, it obtains all the

functionality of Internet Explorer except for the user interface provided by

Browseui.dll. This means that a user needs to provide individual implementations of

toolbars and menus.

iv. Mshtml.dll is at the heart of Internet Explorer and takes care of its HTML and

Cascading Style Sheets (CSS) parsing and rendering functionality. Mshtml.dll is

sometimes referred to by its code name, "Trident". Mshtml.dll exposes interfaces that

enable you to host it as an active document. Other applications such as Microsoft

Word, Microsoft Excel, Microsoft Visio, and many non-Microsoft applications also

expose active document interfaces so they can be hosted by shdocvw.dll. For

example, when a user browses from an HTML page to a Word document, mshtml.dll

is swapped out for the DLL provided by Word, which then renders that document

type. Mshtml.dll may be called upon to host other components depending on the

HTML document's content, such as scripting engines (for example, Microsoft JScript

17

or Microsoft Visual Basic Scripting Edition (VBScript)), ActiveX controls, XML

data, and so on.

v. Urlmon.dll offers functionality for MIME handling and code download.

vi. WinInet.dll is the Windows Internet Protocol handler. It implements the HTTP and

File Transfer Protocol (FTP) protocols along with cache management. Microsoft‟s

Internet Explorer architecture utilizes the reference model components though variant

in design. IExplorer.exe is a wrapper for the whole application.

Figure 2.6: Internet Explorer architecture (MSDN, 2016)

A closer look at figure 2.6 demonstrates that Internet Explorer is derived from the contemporary browser

reference architecture

2.5.3 Mozilla Firefox

The following model has been used in the design of Mozilla Firefox (Andre et al., 2007). Figure

2.7 illustrates Firefox major components. The User Interface is split over two subsystems; user

interface and XPToolkit, allowing for parts of it to be reused in other applications in the Mozilla

suite such as the mail/news client. This toolkit is a collection of loosely related facilities, from

which application writers can pick and choose, which provide a platform independent API to

some commonly exploited platform-specific machinery, e.g., bringing up a dialog. All data

18

persistence is provided by Mozilla‟s profile mechanism, which stores both high-level data such

as bookmarks and low-level data such as a page cache.

Figure 2.7: Mozilla browser architecture (Allan and Michael, 2006)

Mozilla‟s Rendering Engine is larger and more complex than that of other browsers. One reason

for this is Mozilla‟s excellent ability to parse and render malformed or broken HTML. Another

reason is that the Rendering Engine also renders the application‟s cross-platform user interface.

The User Interface (UI) is specified in platform-independent Extensible User Interface Language

(XUL), which in turn is mapped onto platform-specific libraries using specially written adapter

components. This architecture distinguishes Mozilla from other browsers in which the platform-

specific display and widget libraries are used directly, and it minimizes the maintenance effort

required to support multiple, diverse platforms.

In 2006, the core of Mozilla was transformed into a common runtime called XULRunner,

exposing the Rendering Engine, Networking, JavaScript Interpreter, Display Backend, and Data

Persistence subsystems to other applications. XULRunner allows developers to use modern web

technologies to create rich client applications, as opposed to typical browser-based web

applications. Mozilla developers are working on transitioning newer Mozilla-based applications

such as Firefox and Thunderbird to use XULRunner directly, rather than each using a separate

19

copy of the core libraries (Allan & Michael, 2006). All components of this model fit exactly to

those in the browser reference architecture.

2.6 Browser Reference Model

This study was anchored on the conceptual model in Figure 2.8, which shows the Reference

architecture for web browsers (Alan & Michael, 2006). The architecture constitutes five major

modules which include: User interface, Browser engine, Rendering engine, Display backend, and

Data persistence. These modules work collaboratively to interpret intricate protocols and provide

a visual display of the URL fetched (Siva et al., 2016).

The User Interface component provides the methods with which a user interacts with the

Browser Engine. The User Interface provides standard features (preferences, printing,

downloading, and toolbars) users expect when dealing with a desktop application.

The Browser Engine component provides a high-level interface to the Rendering Engine. The

Browser Engine provides methods to initiate the loading of a Uniform Resource Locator (URL)

and other high-level browsing actions (reload, back, forward). The Browser Engine also provides

the User interface with various messages relating to error messages and loading progress.

The Rendering Engine component produces the visual representation of a given URL. The

Rendering Engine interprets the HTML, Extensible Markup Language (XML), and JavaScript

that comprises a given URL and generates the layout that is displayed in the User Interface. A

prime component of the Rendering Engine is the HTML parser, this HTML parser is quite

complex because it allows the Rendering Engine to display poorly formed HTML pages.

The Networking component provides functionality to handle URLs retrieval using the common

Internet protocols of Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP). The

Networking components handle all aspects of Internet communication and security, character set

translations and MIME type resolution. The Network component may implement a cache of

retrieved documents to minimize network traffic.

The JavaScript Interpreter component executes the JavaScript code that is embedded in a

website. Results of the execution are passed to the Rendering Engine for display. The Rendering

Engine may disable various actions based on user defined properties.

The XML Parser component is used to parse XML documents.

The Display Backend component is tightly coupled with the host operating system. It provides

primitive drawing and windowing methods that are host operating system dependent.

20

The Data Persistence component manages user data such as bookmarks and preferences.

Figure 2.8: Reference architecture for web browsers (Alan and Michael, 2006)

2.6.1 Weaknesses of the current Browser Reference Architecture

a) The rendering engine processes the requests made by the browser engine by rendering the

fetched content provided there is little memory available for use by the browser. If the

operating system can no longer allocate any more memory, the computer freezes hence

becomes unusable.

b) The browser process prevents other legitimate processes from being loaded in the main

memory if it consumes almost all-available memory. This reduces the level of

multiprogramming.

2.7 Research Gap

Based on the review of the above literature, it is evident enough that memory hogging among

various browsers remains a thorny issue. In attempt to reduce its impact on computers, third

party applications have been developed in quest to reduce memory consumption. These

programs include Firemin, All Browsers memory zip, Wise Memory Optimizer, SpeedyFox and

others. These memory optimization programs work as independent applications and do not thereby

control browser memory usage effectively. It is desired that computer applications use little memory

and execute faster with a view to allow as many programs to be loaded in the main memory for

21

execution. With browsers being among such applications, this remains an issue under

investigation.

Performance of the reviewed tools highlighted specific challenges while working with them.

These weaknesses include, inefficient memory control, poor compatibility issues, overhead to

users and decrease in browser performance. An interesting issue was found on the browser

reference architecture. The contemporary architecture in use by browsers today, aggravates this

problem. The architecture lacks memory control mechanism, which would complement these

third party applications. From the weaknesses aforementioned, there was need to relook at the

architecture so as to provide a control mechanism for browser memory usage.

22

CHAPTER 3

THE ENHANCED BROWSER REFERENCE ARCHITECTURE

The chapter discusses the structure and behavior of the enhanced browser reference architecture.

It discusses the structural components the architectural model adopted in the design of

contemporary browsers. The memory analyzer component is integrated as a module in the

enhanced architecture.

3.1 Contemporary Browser Architecture

Current browsers adopt the reference architecture for web browsers discussed in section 2.6 of

chapter 2. Each module functionality is discussed in the sections herein. An illustration of the

interaction of the mentioned modules is as shown in figure 2.8.

3.1.1 User Interface

This module provides the methods with which a user interacts with the Browser Engine. It

provides standard web browser features including user preferences, printing functionality,

downloading, opening and closing tabs, etc. Browser designers have variant approaches in

designing the user interface of the target browser. However, a given browser version depicts

slight differences in the user interface from another version of the same type. For instance,

earlier versions of Mozilla Firefox had the reload button positioned to the right of the address bar

while current versions have it positioned to the left.

3.1.2 Browser Engine

This module provides a high-level interface to the Rendering Engine. It provides methods to

initiate the loading of a URL and other high-level browsing actions like reload, back and

forward. Furthermore, it provides the User interface with various messages relating to error

messages and loading progress. When the browser fails to fetch the content specified by the

URL, appropriate messages are conveyed to the User Interface, seeking the intervention of the

browser user.

3.1.3 Rendering Engine

This module provides the visual representation of the fetched URL. It comprises various

subsystems that enable the browser to interpret the content of the URL. A URL contains two

major parts: protocol and web resource. The protocol defines the mechanism through which

23

resource will be fetched. Common protocols include HTTP and FTP. Web resources include text

documents, images/graphics, audio, and video. The multimedia content is interpreted by the

appropriate parser to visually human-readable format. A prime component of the Rendering

Engine is the HTML parser. The HTML parser is often tightly integrated with the rendering

engine for performance reasons and can provide varying levels of support for broken or

nonstandard HTML. It can display other types of data via plug-ins or extension; for example,

displaying PDF documents using a PDF viewer plug-in. The rendering engine has XML parser

subsystem that parses XML data. The JavaScript Interpreter interprets the JavaScript content in

the URL. Detailed functionality of mentioned subsystems is discussed in subsections 3.1.3.3

through 3.1.3.5. Different browsers use different rendering engines: Internet Explorer uses

Trident, Firefox uses Gecko, and Safari uses WebKit. Google Chrome and Opera Web browsers

from version 15 use Blink, a fork of WebKit. The study focussed on Gecko-based browsers

whose functionality is described subsections 3.1.3.1 and 3.1.1.2.

3.1.3.1 Gecko Rendering engine

This module has the following items that facilitate its functions. Figure 3.1 shows the Gecko

subsystems and how they interact with each other (Tali & Paul, 2011a).

Figure 3.1: The Gecko rendering engine (Tali & Paul, 2011).

24

i) Document Parser (HTML & XML Parser)

ii) Style System: contains the CSS Parser and is responsible for getting the CSS data from Necko

and parsing it before sending it to the frame constructor

iii) Platform-Specific Rendering and Widgets

iv) Image Library: Interacts with Necko in order to retrieve image data before sending it to the Frame

Constructor

v) Content Model: Interacts with the various components of Gecko, DOM Storage to gather all the

data needed before sending it to the frame constructor

vi) Frame Constructor: Carries out the task of piece together all the information and actually from the

rendered web page before sending it back to the UI through the Platform-Specific Rendering

subsystem.

3.1.3.2 Gecko Rendering Engine : Components functions flow

The Gecko rendering engine components work together to give a visual representation of each

content retrieved by the browser engine in a fashion described in four steps as outlined below

(Tali & Paul, 2011b). The components are as shown in figure 3.2

Figure 3.2: Rendering engine-Functions flow diagram (Tali & Paul, 2011b).

 Step 1: Parsing the HTML document and convert elements to DOM nodes in a tree called the “content

tree” – HTML Parser

 Step 2: Parse the style data, both in external CSS files and in style element together with visual

instructions in HTML will be used to create another tree, call “render tree” – CSS Parser

Step 3: After the construction of the render tree it goes through a “layout" process. This means

giving each node the exact coordinates where it should appear on the screen

25

Step 4: The next stage is painting–the render tree will be traversed and each node will be painted

using the UI backend layer - Painting.

3.1.3.3 Networking Component

This component provides the functionality to handle URLs retrieval using the common Internet

protocols like HTTP and FTP. It handles all aspects of Internet communication and security;

character set translations and Multi-Purpose Internet Mail Extensions (MIME) type resolution.

This component may also implement a cache of retrieved documents to minimize network traffic

 3.1.3.4 JavaScript Interpreter

This component executes the JavaScript code that is embedded in a URL. Results of the

execution are passed to the Rendering Engine for display. The Rendering Engine may disable

various actions based on user-defined properties. Where the browser user has set JavaScript code

to be disabled, the rendering engine ignores the interpreted material.

 3.1.3.5 XML Parser

This is a software library or a package that provides an interface for client applications to work

with XML documents. The parser is a generic and reusable component with a standard that has

well-defined interface. It checks for proper format of the XML document and may validate the

XML documents. Modern day browsers have built-in XML parsers. The goal of a parser is to

transform XML data into a human-readable code.

3.1.4 Display/UI Backend

This component is tightly coupled with the host operating system. It provides primitive drawing

and windowing methods that are host operating system dependent. Common widgets like combo

box, an input box, a checkbox, etc. are drawn using UI properties.

3.1.5 Data Persistence

The Data Persistence component manages the user‟s data such as bookmarks, cookies, and

preferences. The browser may need to save all sorts of data locally. Browsers also support

storage mechanisms such as localStorage, IndexedDB, WebSQL and FileSystem (Michael

Coates, 2010).

26

3.2 The Enhanced Browser Architecture

The enhanced architecture incorporates a Memory Analyzer component as shown in figure 3.3.

The memory analyzer component interacts with the operating system to track memory usage in

real-time and to check browser memory consumption against the set threshold total memory.

After analysis, the user is provided with possible actions to take to prevent memory hogging.

Consequently, more applications can be run from the system. This guarantees that browsers do

not make computer to freeze by delimiting other legitimate applications from running. As a result,

it improves the level of multiprogramming and ultimately improves the user-browsing experience. The

analyzer is implemented as a software module included in the web browser application.

Figure 3.3: The enhanced browser architecture(Source: Research)

3.2.1 Memory Analyzer

This component checks real-time memory consumption for the browser against the threshold

total memory limit set by the user and gives feedback information to the user on possible actions

to take in order to prevent memory hogging by the browser. Memory analysis is done after the

browser engine has retrieved a resource. The rendering engine interprets and gives a visual

representation of the URL with the help of parsers and JavaScript interpreter if memory space is

available. It was envisioned that this component would provide a memory control mechanism

that would hence control memory hogging. Furthermore, the analyzer provides a garbage

collection mechanism to reclaim unused memory from the browser objects.

27

3.2.2 Flow diagram of memory analyzer

A conceptualized design of a Memory Analyzer and its interactions with other modules is as

shown in figure 3.4. When a user enters a URL on the browser‟s address bar and hits the Go

button, the Browser Engine takes the URL and attempts to fetch its content. The Memory

Analyzer performs analysis of the memory consumed against the threshold memory as set by the

user. If the memory is lower than the threshold memory, it passes the content of the URL to the

rendering engine for further actions. However, if the consumed memory gets higher than the

threshold memory, a notification error message is passed to the higher modules for action to be

taken by the user.

Figure 3.4: The Flow diagram of a memory analyzer(Source: Research)

3.3 Summary

Memory hogging is a habitual phenomenon in browser applications in computers with limited

memory. In an attempt to solve this problem, the memory analyzer was integrated to the current

model to play the role played by third-party applications discussed in chapter two and notify the

user when memory hogging is detected. The researcher designed a browser prototype and

integrated the memory analyzer in it. A detailed report on the design and implementation of the

new strategy is discussed in chapter 4.

28

CHAPTER 4

METHODOLOGY

The chapter discusses the processes involved in realizing the research objectives. It begins by

outlining the approach adopted by the researcher in designing and developing a browser

prototype which incorporates a memory analyzer in its architecture. Section 4.1 highlights the

adopted research design. Section 4.2 through 4.3 discusses the software development process

where the techniques and development tools used in development of the browser prototype and

memory analyzer are discussed. Section 4.4 through section 4.6 discusses the research method

and data collection tools used for evaluation of the developed prototype. Systematic experiments

are carried out to attest the necessity of the memory analyzer in the proposed browser

architecture.

4.1 Research Design

The study adopted experimental research design with a view to assessing the memory

consumption for the selected browsers on various websites running on Windows operating

system. This design was appropriate for this research since it provided a basis for evaluating the

efficacy of integrating the memory analyzer in the browser reference architecture. Target

browser was Mozilla Firefox. This target was adopted based on its global market share and the

fact that its code is open source.

4.2 Development of Browser Prototype

Prototyping methodology was adopted for this study. A browser prototype based on the Mozilla

Firefox project was used to simulate how the proposed architecture works. Visual Studio 2010

was used as the development platform. The choice of this platform was informed by its

integrated environment for developing windows applications. The prototype was coded using C

Sharp (C#) language. This choice was preferred based on the language used in coding GeckoFx

wrapper class. The GeckoFx package with a corresponding Extended User Language (XUL)

runtime for a particular version of the Mozilla Firefox browser is readily available from the

Bitbucket repository. This provided an enabling environment for reuse and integration of the

Gecko rendering engine in the developed browser prototype. Visual studio 2010 software suite

was the adopted Integrated Development Environment (IDE) for realizing the prototype.

29

4.2.1 Prototyping Model

Prototyping technique can be used in developing a large and complex system. A browser is

among such software systems. The study adopted this technique with a view to providing a

comparative study in terms of performance during its evaluation. This technique was used in

both requirements phase and the design phase to demonstrate a concept and options such as

interfaces and technology to be used (Pawel & Marcin, 2015).

Rapid Architected Analysis (RAA) was adopted in the requirements phase. This approach

attempts to derive system models from existing systems or discovery prototypes (Xi Yang, et al.,

2017). The rapid architected analysis employs reverse engineering techniques to unveil the

components of a system (Chua, Leong & Lim, 2010). It is a process of discovering the

technological principles of a device, object, or system through analysis of its structure, function,

and operation (Elda, 2007). Software reuse technique was also adopted in developing the

prototype. The main component that was reused in this process was the rendering engine. The

Gecko rendering engine already implemented in C# was integrated with other browser modules

as provided by the browser control object in the Visual Studio.

4.2.2 Development Procedure

The study developed a browser prototype with a memory analyzer component incorporated into

it. Microsoft Visual Studio 2010 was used as a development environment and all the components

were coded in C# language.

4.2.3 Architectural Model

The browser prototype was anchored on the reference browser architecture as postulated by

Allan and Michael (2006). The model structure and detailed description of its functionality is

given in section 3.1. Current browsers have referred to the architectural model in designing and

developing their web browsers. This acted as a benchmark in developing the browser prototype.

4.2.4 Design of the Software System

The architectural design of the target system was modularized with a view to providing

manageable units. Each module was implemented seperately and later merged with other

modules with a view to having complete the prototype.

30

4.2.4.1 Browser prototype

A development environment for a general windows application was set in the visual studio.

Visual Studio browser control object was used to provide a managed wrapper for the web

browser ActiveX control, which duplicates Internet Explorer Web browsing functionality.

However, the proposed approach focused on Mozilla based browser, which would provide a

reasonable testing environment with Mozilla Firefox as a controlled browser during the

experiments. This necessitated a change of the target rendering engine. Mozilla based browsers

use Gecko as the rendering engine. The study, therefore, integrated GeckoFx wrapper class as an

assembly in Visual Studio project. A XUL Runner runtime package matching the target version

of Mozilla Firefox was also included as a dependency to the GeckoFx-core assembly file.

4.2.4.2 Embedding Gecko Rendering Engine

To embed the Gecko rendering engine in a Windows browser application, the following

components were required:

i. XulRunner: XULRunner is a Mozilla runtime package that can be used to bootstrap

XUL+XPCOM applications that are as rich as Firefox and Thunderbird. It provides

mechanisms for installing, upgrading, and uninstalling these applications. This

component was downloaded from http://ftp.mozilla.org/pub/mozilla.org/xulrunner/

ii. GeckoFx: GeckoFx is a .NET assembly file, which contains the Gecko rendering

engine. The chosen version must match with the XulRunner version. The research

used version 33.0, which was downloaded from https://bitbucket.org/geckofx.

4.2.4.3 Embedding Procedure

 The procedure was done in seven steps as outlined herein.

i. Download the GeckoFx assembly file and unpack it to extract the files as shown in figure

4.1. There are two assembly files that are important in the target directory. These are

Geckofx-Core.dll and Geckofx-winforms.dll. Geckofx-Core.dll provides an

implementation of the core functions of the components that work in collaboration to

render the content fetched by the browser engine. Geckofx-winforms.dll provides

methods for handling browser events.

http://ftp.mozilla.org/pub/mozilla.org/xulrunner/
https://bitbucket.org/geckofx

31

Figure 4.1: Unpacking GeckoFx package (Source: Research)

ii. Add references of the assembly files to the browser project by clicking browse and

selecting the Geckofx-Core.dll and Geckofx-Winforms.dll as shown in figure 4.2.

Figure 4.2: Adding GeckoFx assembly files as references (Source: Research)

iii. Select the respective assembly files and click Add button to add them to the project as

shown in figure 4.3.

32

Figure 4.3: Selecting GeckoFx assembly files (Source: Research)

iv. In the toolbox, right-click, and then select “Choose Item”, select Geckofx-Winforms.dll,

and the Gecko winform control will pop up in the toolbox as shown in figure 4.4

Figure 4.4: Adding GeckoFx browser control to the toolbox (Source: Research)

v. Drag a GeckoWebBrowser control to the winform designer, and name it

“embeddedBrowser.” The windows form adds browser control object, which indicates

the version of Mozilla Firefox browser it implements as shown in figure 4.5.

33

Figure 4.5: Adding GeckoFx browser control to a windows form (Source: Research)

vi. To change the rendering engine used by the browser control, the Gecko class has to be

imported in the program. As indicated section 4.2.4.2, the Gecko engine depends on

Xpcom components shipped in the xulrunner package. In the form1.cs file, import the

Gecko class and reference the Xpcom component file path as shown in figure 4.6.

Figure 4.6 GeckoFx browser prototype code-snippet (Source: Research)

vii. The line Gecko.Xpcom.Initialize (@”..\xulrunner”); specifies where the xulrunner

runtime is located. In this case, it is put into a folder (@”..\xulrunner”). To demonstrate

how the prototype works, the navigate method call is made with the URL as a parameter.

34

The browser engine fetches the content of the specified URL and invokes the components

in the Gecko rendering to give its visual representation. To achieve this, the application

needs to be built and run using the Visual Studio build tools. After running the

application, a visual representation of the URL passed in the browser using the

„geckoWebBrowser1.navigate’ method shown in figure 4.6 is depicted in figure 4.7

Figure 4.7: GeckoFx browser prototype in action (Source: Research)

4.3 Memory Analyzer

This component checks real-time memory consumption for the browser against the threshold

total memory limit set by the user and gives feedback information to the user on possible actions

to take to prevent memory hogging by the browser. Memory analysis is done after the browser

engine has retrieved a resource. The rendering engine interprets and gives a visual representation

of the URL with the help of parsers and JavaScript interpreter if memory space is available.

4.3.1 Memory Analyzer Interface Design

To demonstrate the proposed approach, the researcher designed the memory analyzer interface

with a view to showing how memory settings would be made by the user, computation of

available memory and consumed memory by the browser process. Figure 4.8 shows the interface

design of the memory analyzer. In the diagram, the labels attached to total physical RAM,

available memory, threshold memory, MOB memory consumption, and Mozilla Firefox buttons,

are updated upon execution of the analyzer logic. MOB is the name of the newly developed

browser prototype.

35

Figure 4.8: Memory analyzer interface design (Source: Research)

4.3.2: Setting Memory Threshold

The maximum amount of memory the user desires the browser to consume is set using textbox

control and the setting logic implemented when the user clicks the set button. Success or fail

message is displayed to confirm the event was fired. The analyzer checks the memory threshold

value from browser system properties and uses it as a reference. However, the user changes the

default value depending on the size of RAM in the host computer. Validation is done to

guarantee that the input value does not exceed the value of the memory available for use in the

entire system. Upon successful memory setting, the browser adapts to the new change

accordingly. Any time the browser memory consumption reaches the set memory threshold, a

notification is made to the user that the browser is hogging memory.

The values displayed besides the memory settings-group box in figure 4.9, demonstrates the

current memory readings fetched from the operating system. The input box takes in the desired

value for computation. The browser user makes a valid setting if the specified value is less than

36

the available memory. However, if the value specified is higher than the available memory, the

validation function returns false.

Figure 4.9: Setting memory in the memory analyzer (Source: Research)

4.3.3: Memory Computation Logic

To carry out memory analysis, memory computation was inevitable. Total physical memory,

available memory, and consumed memory values were computed using the generic Windows

routines as in the case of Windows Task Manager.

4.3.3.1 :Physical Memory Computation Logic

The flow chart in figure 4.10 describes the logic function for computing physical memory. The

function returns the total amount of physical memory available in a host computer.

37

Figure 4.10: Physical memory computation logic (Source: Research)

4.3.3.2: Available Memory Logic

This function computes the available memory for use by computer programs. It is not equal to

the physical capacity of the installed memory but is much lower. It constitutes to the free

memory that is available for allocation by the operating system for any process that would be

scheduled for execution. For any given process to be executed, the operating system must load it

in the main memory. In a multiprogramming environment, this memory space is shared among

all processes that have been scheduled to run by the operating system. Figure 4.11 illustrates the

memory layout in an environment where there are several programs ready to run. The empty

space in the diagram corresponds to the available memory space. The jobs represent the

programs in the main memory.

38

Figure 4.11: Memory Layout in single processor system (Source: Research)

4.3.3.3: Browser Memory Consumption

The function calculates the amount of memory space the active process has consumed. The logic

implementation is described by the figure 4.12. In this context, the value fluctuates since browser

memory consumption is dynamic.

Figure 4.12: Browser Memory consumption computation logic (Source: Research)

39

As the browser starts, memory consumption rises exponentially and then stabilizes after the

content of the URL has been fully rendered. In a dynamic webpage, memory consumption may

fluctuate persistently depending on background activities. However, this phenomenon is different

when a static web page is loaded.

4.3.3.4: Memory computation events timer

To capture memory consumption readings, the computation logic is executed after every 5

seconds. This necessitates a timer function. Computation logic for available memory and

browser memory consumption is executed when the timer event is fired. In this fashion, memory

readings are recorded for later analysis.

4. 4 Experimental Setup

The study evaluated Mozilla-based browser prototype based on GeckoFx version 33.0 with an

integrated memory analyzer and a contemporary Mozilla Firefox version 33. The developed

prototype was christened MOB. For each experiment, each browser was tested individually in a

single target computer configured to run a Windows operating system of 32-bit architecture.

Selected sites like electronic mail service providers (Gmail.com), social networks

(Facebook.com), entertainment (Youtube.com) and search engines (Google.com) were

investigated. Selection of these sites was based on the global market share (SimilarWeb, 2018).

Memory consumption by the developed prototype and Mozilla Firefox browsers were compared

in ten sets each in parallel. Memory consumption by both browsers was investigated on both

homogeneous and heterogeneous website tabs. This was aimed at determining the variance in

memory consumption while opening browser tabs for various websites. Memory consumption

readings were done after the browser finished loading the content.

4.4.1 Evaluation Metrics

A number of metrics were adopted during the investigation. These included: available memory,

consumed memory, and threshold memory.

i. Available Memory(AM). This value represented the total available memory for use by

all programmes. It is lower than the actual value of installed RAM. AM determines the

number of programs that can comfortably get loaded in the main memory ready for

execution. This translates to the degree of multiprogramming. A computer system with a

larger size of AM can accommodate a higher number of programs in the main memory

40

compared to one with less. The research evaluated the performance of the two browsers

on 1 GB RAM, machine.

ii. Consumed Memory(CM): This represented the memory demand posed by the browser

to render a given URL. The value of CM was evaluated in both browsers running in

parallel. The research evaluated how CM, directly and indirectly, affected AM.

iii. Threshold Memory(TM): The capped memory in which the browser should not exceed.

This value was varied from 100 MB at an interval of 100 MB. TM indicates the highest

amount of memory the browser process is allowed to consume. The moment CM

supersedes TM; a red flag is raised to give a warning of memory hogging.

4.5 Population, Sample and Sampling Procedure

The research focused on Mozilla Firefox project. Cluster sampling method was used to get a

representation of websites from which to obtain the data based on similar global web rankings

(SimilarWeb, 2018). Websites were categorized into social network, search engine, TV and

video and Email. Under Email, Google mail was investigated. In social networks category,

Facebook was investigated. In third category, entertainment, YouTube was the put into focus.

For search engines, Google was investigated.

4.6 Data Analysis

A quantitative data analysis procedure was adopted where descriptive statistics such as

frequencies, percentages, means, and standard deviations were used to summarize data. Tables

and figures were used to illustrate summarized data. Results from analyzed data were used to

affirm the applicability of a memory analyzer in its effect in controlling memory hogging and

inferences were drawn based on the results. Inferential statistics were used to deduce the general

effect of integration of the memory analyzer to browser memory consumption. Linear regression

model was used to assess the relationship between consumed memory and number of browser

tabs. T-test was used to assess the statistical difference between memory consumption by MOB

and Mozilla Firefox browsers.

4.7 Summary

This chapter gave a detailed account of the software development techniques and tools used to

design the browser prototype. It highlighted the implementation techniques and described how

the memory analyzer was integrated in the developed prototype. Secondly, the chapter discussed

41

the research design and methods/techniques used to collect as well as analyze the data about the

research. It also provided an overview of how the research was carried out and how the data

collected were used to generate results. The research methodology adopted was experimental.

This method was adopted with a view to assessing the memory consumption for the selected

browser on various websites running on Windows operating system. With this prototype model,

it was possible to test the efficacy of the memory analyzer in controlling memory hogging and

subsequently provided a reasonable ground for testing the hypothesis that, there is no difference

in memory consumption by analyzer-integrated browser and non-analyzer integrated browser.

The prototype further allowed the study to evaluate the performance and effectiveness of the

integration of memory analyzer module before actual adoption. Presentation of results is

discussed in detail in chapter 5.

42

CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents the results of the experiments that were conducted. Section 5.1 presents

experimental results, analysis, and discussion while section 5.2 discusses the hypothesis test.

Lastly, section 5.3 gives a conclusion about the findings.

5.1 Presentation of results

Results are presented based on data obtained from tests as described in section 4.3.

5.1.1: Memory consumption by default processes

The processes shown in table 5.1 characterized the testing environment. The researcher launched

the browser processes only for the entire testing period. Several computer users owned these

processes in the system including System, Test (Logged in user), Network service, and local

service. Memory allocation is given in Kilobytes, abbreviated as “K”.

Table 5.1: Memory consumption by default processes

Applications/Processes

Name Program file Instance Owner Memory

Allocation
Client server Runtime process Csrss.exe 1 System 752K

Csrss.exe 2 System 796K

Desktop Window manager Dwm.exe 1 Test 15,392K

Windows explorer Explorer.exe Test 20,600K

Local security authority process Isaas.exe 1 System 1,860K

Local session manager service ism.exe 1 System 616K

Microsoft windows search

indexer

searchIndexer.exe 1 System 5,088K

Services and controller app Services.exe 1 System 1940K

Windows session manager smss.exe 1 System 128K

Snipping tool snippingTool.exe 1 Test 1,368K

Spooler subsystem app Spoolsv.exe 1 System 1,032K

Host process for windows

services

Svchost.exe 1 System 1,496K

Svchost.exe 2 Network

service

1,592K

Svchost.exe 3 System 2,1036K

Svchost.exe 4 System 8,480K

Svchost.exe 5 Network

service

2,708K

Svchost.exe 6 Local service 2,476K

Svchost.exe 7 Local service 1,624K

Svchost.exe 8 Local service 944K

43

Svchost.exe 9 Local service 4,096K

Svchost.exe 10 System 1,708K

system system 1 System 40K

Percentage of time system is idle System idle process 1 System 24K

host process for Windows tasks Taskhost.exe 1 Test 1,088K

Windows task manager Taskmgr.exe 1 Test 1,840K

WMI provider host WmPrvSE.exe 1 Network

service

1,572K

Windows driver foundation WUDFHost.exe 1 Local service 484K

Windows logon application Winlogon.exe 1 System 452K

Windows start-up application Wininit.exe 1 System 384K

(Source: Research)

5.1.2 Browser memory consumption

Mozilla Firefox and MOB memory consumption were critically investigated for analysis.

Memory consumed by launching a single tab for each website category in both browsers was

recorded in table 5.2.

Table 5.2: Mozilla Firefox and MOB memory consumption

Applications/Processes

Browser

Name

Program file Instance Owner Memory Allocation

Mozilla

Firefox

Firefox.exe 1 Test On google 74,443K

On youtube 183,628K

On facebook 257,608K

On gmail 262,052K

MOB MOB.exe 1 Test On google 33,330K

On youtube 130,615K

On facebook 160,628K

On gmail 210,012K

(Source: Research)

The results in table 5.2 indicate that the browser processes were the highest memory consumers

amidst other processes shown in table 5.1. This characteristic depicts the browser as memory

ravenous application. The browser consumes a minimum of 33.3 MB on a single Google tab

while windows‟ explorer consumes the highest among the rest with a value of 20.6 MB.

Interestingly, MOB browser consumes less memory compared to Mozilla Firefox in the four

tested websites.

5.1.3 Memory consumption averages by MOB and Mozilla Firefox with homogeneous website tabs

Table 5.3 illustrates MOB and Mozilla Firefox memory consumption averages across the four

tested websites. X represents computer freeze. Memory consumption by both browsers varied

44

with the number of opened tabs and with the content loaded in tabs. Memory consumption

increased with the number of tabs open. Results indicate that memory increased gradually while

accessing Google, YouTube, Facebook, and Gmail respectively in both browsers. To perform an

online search using Google required an average of 33.3 MB and 74.4 MB on MOB and Mozilla

Firefox respectively in a single tab. This value gradually increased as more tabs were opened. To

give a visual representation of the searched content by Google search engine, which comprises

mainly text required relatively low memory compared to other investigated website categories.

Access to YouTube page, which comprises mainly video content, required relatively high

memory in comparison to loading text. An average of 130.6 MB and 183.6 MB on MOB and

Mozilla Firefox respectively were required to load content on a single tab and this value

increased exponentially as numbers of tabs were increased. Although content on Facebook,

comprise mainly text and images, access to these pages revealed debatable results. Access to

Facebook required 160.6 MB and 257.6 MB on MOB and Firefox respectively, which is

relatively higher memory than access to YouTube. Background processes on Facebook were

characterized by timed events that executed severally hence requiring more memory.

Table 5.3: MOB and Mozilla Firefox memory consumption averages with homogenous website tabs

 M
O

B
 Website/

Memory (MB)

Tabs

1 2 3 4 5 6 7 8 9 10

M
O

B

Google

CM 33.3 38.4 42.5 49.2 53.6 56.0 59.8 65.6 70.9 73.1

AM 620.4 609.8 606.5 597.6 594.8 591.2 588.4 586.0 580.3 578.8

YouTube CM 130.6 190.3 277.0 326.7 394.2 432.2 494.9 550.4 612.3 X

AM 523.7 483.6 412.9 320.3 275 229.2 182.6 122.4 75.3 X

Facebook CM 160.6 236.5 365.6 448.1 515.3 579.7 640.8 694.4 X X

AM 451.1 387.7 312.5 227.5 142.6 112.8 91.7 58.8 X X

Gmail CM 210.0 344.7 462.9 584.3 628.5 678.1 698.3 X X X

AM 344.4 310.1 214.0 110.5 92.2 79.4 49.6 X X X
M

o
zilla

 F
irefo

x

Google

CM 74.4 90.0 97.0 103.6 110.8 120.1 127.6 133.9 144.0 152.0

AM 540.8 528.0 518.8 515.3 508.7 500.9 492.8 486.7 474.9 465.8

YouTube CM 183.6 225.5 292.4 354.7 410.2 473.2 534.9 593.2 628.4 X

AM 492.5 443.6 380.6 282.4 239.5 198.2 137.6 96.6 44.5 X

Facebook CM 257.6 333.5 414.4 483.8 546.3 612.4 680.8 714.4 X X

AM 382.3 306.7 237.5 174.5 125.6 93.8 71.7 35.3 X X

Gmail CM 262.0 384.7 487.9 606.3 656.2 696.1 X X X X

AM 324.9 289.1 198.5 93.8 63.2 46.3 X X X X

(Source: Research)

On average, to load a single tab on Gmail required 210 MB and 262 MB on MOB and Mozilla

Firefox respectively. A similar phenomenon witnessed by access to Gmail was attributed to a

series of background processes that execute sequentially to realize the Gmail application

45

functionality. Access to both Facebook and Gmail posed increased memory consumption as the

number of tabs were increased for both browsers.

Varying TM values guaranteed that MOB would consume not more than the set memory value

thus controlling memory hogging. This phenomenon provided substantive value for AM, which

provided for more programs in the main memory thus enhancing concurrency. In Mozilla

Firefox, regulating how much memory it would consume was not possible as the model in which

it is built-on, lacks memory analyzer. The study established that AM gradually reduces with an

increase in CM. When the available memory reduces below 70 MB, the computer starts to crawl

and eventually freezes.

Computer froze while opening beyond seven, eight, and nine tabs for Gmail, Facebook, and

YouTube respectively on MOB browser. However, the same phenomenon was witnessed while

opening six, eight, and nine tabs for Gmail, Facebook, and YouTube respectively on Mozilla

Firefox. The CM and AM values do not add to a constant since available memory is dynamically

modified by operating system memory management routines.

Figure 5.1 through Figure 5.4 shows how available memory and consumed memory varies by

opening various homogenous website tabs. Analysis and discussion of results obtained are

discussed in subsections herein.

5.1.3.1 Variation of Available and Consumed memories with Google tabs

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory

increases by 4.45 MB relative to 1 unit change in a browser tab and a regression model is

expressed as C = 4.457t + 29.727.

In Mozilla Firefox, consumed memory increases by increases by 8.13 MB relative to 1 unit

change in a browser tab. Regression model is expressed as C = 8.1345t+ 70.6. The value C in

the equations represents consumed memory and t represents the number of tabs. In both

browsers, memory consumption is directly proportional to the number of tabs with a high

prediction of 99.36% and 99.33% on MOB and Mozilla Firefox respectively. The study

established that there is a statistically significant association between browser tabs and consumed

memory. Additionally, the difference in memory consumption by both browsers increases

linearly with an increase in the number of tabs as expressed by Yc = 3.677x + 40.87 where Yc

represents consumed memory difference and x represents the number of tabs.

46

Figure 4.1: Variation of Available and Consumed memories with Google tabs (Source: Research)

Available memory decreases linearly with an increase in the number of tabs. In MOB, available

memory decreases by 4.33 MB relative to 1 unit change in a browser tab and a regression model

is expressed as A= -4.331t+ 619.2. In Mozilla Firefox, available memory decreases by 7.77 MB

relative to 1 unit change in a browser tab and a regression model is expressed as A = -7.7727t +

546.02. The value A in the equations represents available memory and t represents the number of

tabs. In both browsers, available memory is inversely proportional to the number of tabs with a

high prediction of 95.56% and 99.01% on MOB and Mozilla Firefox respectively. Additionally,

the differences in available memory while both browsers are open increases linearly with an

increase in number of tabs as expressed by Ya = 4.017x + 76.88 where Ya represents available

memory difference and x represents the number of tabs.

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95%

indicate that the probability that the two means were not different is 1.38E-52, which is, less than

47

the chosen α hence there is a statistical difference in memory consumption between MOB and

Mozilla Firefox on Google. Mean difference in memory consumption is 53.93 MB.

5.1.3.2 Variation of Available and Consumed memories with YouTube tabs

Consumed memory increases linearly with number of tabs. In MOB, consumed memory

increases by 59.14 MB relative to 1 unit change in a browser tab and a regression model is

expressed as C = 59.14t + 83.033. In Mozilla Firefox, consumed memory increases by 58.10

MB relative to 1 unit change in a browser tab. Regression model is expressed as C = 58.097t +

120.19. The value C in the equations represents consumed memory and t represents the number

of tabs. In both browsers, memory consumption is directly proportional to the number of tabs

with a high prediction of 99.57% and 99.74% on MOB and Mozilla Firefox respectively. The

study established that there is a statistically significant association between browser tabs and

consumed memory. Available memory decreases linearly with an increase in the number of tabs.

In MOB, available memory decreases by 57.15 MB relative to 1 unit change in a browser tab and

a regression model is expressed as A= -57.148t + 577.41.

In Mozilla Firefox, available memory decreases by 56.72 MB relative to 1 unit change in a

browser tab and a regression model is expressed as A = -56.72t + 540.88. The value A in the

equations represents available memory and t represents the number of tabs. In both browsers,

available memory is inversely proportional to the number of tabs with a high prediction of

99.10% and 98.94% on MOB and Mozilla Firefox respectively. Consumed memory means

between MOB and Mozilla Firefox with a confidence interval of 95% indicate that the

probability that the two means were not different is 0.1589, which is greater than the chosen α

hence there is no statistical difference in memory consumption between MOB and Mozilla

Firefox on Google. Mean difference in memory consumption is 32.14 MB.

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95%

indicate that the probability that the two means were not different is 0.1589, which is greater than

the chosen α hence there is no statistical difference in memory consumption between MOB and

Mozilla Firefox on Google. Mean difference in memory consumption is 32.14 MB

48

Figure 5.2: Variation of Available and Consumed memories with YouTube tabs (Source: Research)

5.1.3.3 Variation of Available and Consumed memories with Facebook tabs

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory

increases by 76.99 MB relative to 1 unit change in a browser tab and a regression model is

expressed as C = 76.99t + 108.65. In Mozilla Firefox, consumed memory increases by increases

by 66.55 MB relative to 1 unit change in a browser tab. Regression model is expressed as C =

66.55t + 205.9. The value C in the equations represents consumed memory and t represents the

number of tabs. In both browsers, memory consumption is directly proportional to the number of

tabs with a high prediction of 98.23% and 99.34% on MOB and Mozilla Firefox respectively.

The study established that there is a statistically significant association between browser tabs and

consumed memory.

Available memory decreases linearly with an increase in the number of tabs. In MOB, available

memory decreases by 58.45 MB relative to 1 unit change in a browser tab and a regression

model is expressed as A=-58.45t + 486.13. In Mozilla Firefox, available memory decreases by

48.62 MB relative to 1 unit change in browser tab and regression model is expressed as A = -

48.62t + 397.21. The value A in the equations represents available memory and t represents the

49

number of tabs. In both browsers, available memory is inversely proportional to the number of

tabs with a high prediction of 95.67% and 96.06% on MOB and Mozilla Firefox respectively.

Figure 5.3: Variation of Available and Consumed memories with Facebook tabs (Source: Research)

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95%

indicate that the probability that the two means were not different is 0.229, which is greater than

the chosen α hence there is no statistical difference in memory consumption between MOB and

Mozilla Firefox on Google. The mean difference in memory consumption is 32.76 MB

5.1.3.4 Variation of Available and Consumed memories with Gmail tabs

Consumed memory increases linearly with the number of tabs. In MOB, consumed memory

increases by 84.25 MB relative to 1 unit change in a browser tab and a regression model is

expressed as C = 84.25t + 91.789.

In Mozilla Firefox, consumed memory increases by increases by 83.05 MB relative to 1 unit

change in the browser tab. Regression model is expressed as C = 83.05t + 146.47. The value C

in the equations represents consumed memory and t represents the number of tabs. In both

50

browsers, memory consumption is directly proportional to the number of tabs with a high

prediction of 95.35% and 96.66% on MOB and Mozilla Firefox respectively. The study

established that there is a statistically significant association between browser tabs and consumed

memory.

Figure 5.4: Variation of Available and Consumed memories with Gmail tabs (Source: Research)

Available memory decreases linearly with an increase in the number of tabs. In MOB, available

memory decreases by 52.41 MB relative to 1 unit change in the browser tab and a regression

model is expressed as A=-52.41t + 381.11. In Mozilla Firefox, available memory decreases by

62.15 MB relative to 1 unit change in the browser tab and a regression model is expressed as A =

-62.15t + 386.84. The value A in the equations represents available memory and t represents the

number of tabs. In both browsers, available memory is inversely proportional to the number of

tabs with a high prediction of 91.29% and 94.55% on MOB and Mozilla Firefox respectively

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95%

indicate that the probability that the two means were not different is 0.29, which is greater than

51

the chosen α hence there is no statistical difference in memory consumption between MOB and

Mozilla Firefox on Google. Mean difference in memory consumption is 30.78 MB.

5.1.3.5 Deduction on consumed and available memories with homogeneous website tabs.

The study established that MOB consumed less memory as compared to Mozilla Firefox in all

tested websites. Memory consumption difference was statistically significant on Google tabs

while the same was statistically insignificant on YouTube, Facebook, and Gmail tabs. Mean

consumption difference for all websites combined was statistically significant with a p-value of

0.025, which is less than the chosen α of 0.05. MOB consumed 38.65 MB less than Mozilla

Firefox on average. MOB web browser froze computer later than Mozilla Firefox did. This was

influenced by the Garbage Collector (GC), which was embedded in the memory analyzer

integrated into the MOB web browser. The GC reclaimed unused memory from MOB browser

objects that were unused making it consume less and ultimately gave rise to available memory.

5.1.4 Memory consumption by MOB and Mozilla Firefox with heterogeneous website tabs

Consumed memory and available memory readings were made while opening a combination of

two or more tabs to depict the behavior of most web users. Analysis and discussion are done

subsection herein.

5.1.4.1 Memory consumption by MOB and Mozilla Firefox for two heterogeneous website tabs

Table 5.4 illustrates memory consumption for the two browsers by opening a combination of two

various website tabs. The results in the table demonstrate that opening an additional tab raises

memory demand to load the retrieved contents. The amount of memory required for the extra tab

is not proportional to the memory required by opening the first tab since tabs share the memory

allocated to the browser process. Browser tabs are executed as threads within the browser

process. Figure 5.5 shows that a combination of Google and YouTube consumed the least

memory while Gmail and Facebook consumed the highest. Computer users with the browsing

habit of chatting on Facebook and reading mails from Gmail are likely to experience browser

crawl much earlier than those who perform a search in the web at the same time streaming video

on YouTube.

Both Facebook and Gmail comprise of sophisticated protocols characterized by background

processes that execute often as users interact with the application. Executions of these processes

52

require high computational resources like Central Processing Unit (CPU) time and physical

memory.

Table 5.4: Browser memory consumption in MB for two tabs

Website/

Browser

TEST Avg. S.D

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

G
o

o
g

le
 &

Y
o

u
T

u
b

e

MOB
142.5 142.3 140.9 140.2 140.1 141.1 141.2 143 140.6 141.9 141.4 0.9

Mozilla

Firefox 194.4 193.9 192.6 194.1 193.5 192.3 192.7 193.8 192.9 192.3 193.3 0.7

G
o

o
g

le
 &

F
ac

eb
o

o
k

MOB
167.4 167.3 160.6 167.9 160.9 165.8 160.9 160.2 161.7 165.3 163.8 3.0

Mozilla

Firefox 215.3 215.5 215.0 217.8 216.3 218.0 218.2 215.8 220.1 217.9 216.9 1.6

G
o

o
g

le
 &

G
m

ai
l

MOB
222.2 218.9 221.6 219.0 223.0 224.1 224.1 225.4 225.1 224.5 222.8 2.2

Mozilla

Firefox 260.2 264.7 267.5 268.6 268.6 268.8 268.8 266.9 267.0 267.5 266.9 2.5

F
ac

eb
o

o
k

&
Y

o
u

T
u

b
e

MOB
212.6 218.9 221.6 219.0 223.0 224.1 224.1 225.4 225.1 224.5 221.8 3.8

Mozilla

Firefox 302.7 308.0 307.1 303.6 305.0 311.2 313.2 302.1 306.7 315.2 307.5 4.2

G
m

ai
l

&

Y
o

u
T

u
b

e MOB
290.3 293.9 296.1 299.8 291.5 294.2 294.4 296.4 296.6 293.7 294.7 2.5

Mozilla

Firefox 310.4 314.7 316.3 316.6 318.8 313.8 315.2 317.9 313.3 316.6 315.4 2.3

G
m

ai
l

&

F
ac

eb
o

o
k

MOB
312.2 309.8 312.5 311.3 310.2 312.0 313.3 312.9 311.0 313.8 311.9 1.2

Mozilla

Firefox 350.2 350.6 351 349.9 350.6 355.6 355.4 357.6 355.0 357.9 353.4 3.0

(Source: Research)

Figure 5.5: Browser memory consumption for a combination of two various websites (Source: Research)

53

5.1.4.2 Memory consumption by MOB and Mozilla Firefox for three heterogeneous website tabs

Table 5.5 illustrates memory consumptions for the two browsers by opening a combination of

three various website tabs.

Table 5.5: Browser memory consumption (MB) for a combination of three various websites

Website/

Browser
TEST

AVG

S.D

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

G
o

o
g

le
,

G
m

ai
l

&

F
ac

eb
o

o
k

MOB 318.2 317.8 317.5 317.3 319.6 317.1 319.4 318.2 317.3 316.5 317.9 0.9

Mozilla

Firefox 377.5 376.7 378.9 378.7 378.9 376.4 377.1 378.6 376.7 377.0 377.6 0.9

G
o

o
g

le
,

G
m

ai
l

&

Y
o

u
T

u
b

e

MOB
302.4 302.2 302.4 303.1 304.1 304.9 303.5 303.5 303.8 303.6 303.4 0.8

Mozilla

Firefox 340.3 341.2 343.8 341.1 342.1 341.3 340.2 343.0 343.6 342.3 341.9 1.2

F
ac

eb
o

o
k

,

G
m

ai
l

 &

Y
o

u
T

u
b

e

MOB
362.7 363.5 361.8 364.8 367.2 367.8 363.0 366.9 361.7 368.2 364.8 2.4

Mozilla

Firefox 402.2 406.2 403.4 404.8 399.7 407.9 400.3 404.6 403.9 407.6 404.1 2.6

F
ac

eb
o

o
k

,

G
o

o
g

le
 &

Y
o

u
T

u
b

e

MOB
218.2 218.5 219.0 219.1 219.6 218.5 218.2 218.6 218.5 218.1 218.6 0.4

Mozilla

Firefox 318.6 320.7 317.6 318.7 320.1 320.1 322.3 322.6 322.4 323.5 320.7 1.9

(Source: Research)

The results in the table demonstrate that opening an additional tab raises memory demand to load

the contents. The amount of memory required for the extra tab is not proportional to the memory

required by opening the first two tabs since tabs share the memory allocated to the browser

process. Figure 5.6 indicates that a combination of Gmail, Facebook, and YouTube pose the

highest demand for memory while a combination of Google, YouTube, and Facebook poses the

least demand for memory. Computer users with browsing habits on Facebook, Gmail, and

YouTube sites are likely to experience system crawl much earlier than those who stream video

on YouTube, chat on Facebook and perform a web search on Google at the same time.

54

Figure 5.6: Memory consumption for a combination of three various websites (Source: Research)

5.1.4.3 Memory consumption by MOB and Mozilla Firefox for four or more heterogeneous website

tabs

Table 5.6 illustrates memory consumptions for the two browsers by opening a combination of

four or more various website tabs. The results in the table demonstrate that opening an additional

tab raises memory demand to load the contents. The amount of memory required for the extra tab

is not proportional to the memory posed by opening the first three tabs and so on since tabs share

the memory allocated to the browser process.

Results indicate that a combination of Google, Gmail, Facebook, and YouTube poses a memory

demand of at least 447.6 MB and 479.3 MB for the MOB and Mozilla Firefox respectively.

Adding more tabs raises the memory demand to a point where the computer freezes. The

additional tabs from the fifth tab comprised of YouTube data. While Facebook, Gmail, and

Google were possible websites to use from the fifth tab, YouTube was more popular than the

latter. Memory consumption of at least 656 MB and 658.2 MB in MOB and Mozilla Firefox

respectively led to computer freezing. Memory demand for MOB was considerably less than that

of Mozilla Firefox in all tested cases. X represents computer freeze and (–) means no value.

Computer system froze by opening beyond seven and eight tabs in Mozilla Firefox and MOB

respectively.

55

Table 5.6: Memory consumption (MB) for a combination of four or more various websites

Tabs/

Browser
 TEST

Avg. S.D

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

4

M
O

B

448.8 454.6 453.2 447.6 455.7 452.3 452.6 455.7 455.8 453.3 452.9 2.7

M
o

zi
ll

a

F
ir

ef
o

x

481.6 482.5 479.3 483.4 484.2 494.5 495.0 492.0 492.1 493.5 487.8
5.8

5 M
O

B

488.4 496.4 197.8 487.9 500.9 500.7 501.1 494.3 490.9 496.9 465.5 4.7

M
o

zi
ll

a

F
ir

ef
o

x

517.4 517.5 517.3 517.1 517.4 516.9 516.7 516.6 516.7 516.6 517.0 0.3

6

M
O

B

542.1 548.2 535.9 553.4 545.4 551.8 548.4 552.0 541.2 545.1 546.3 5.2

M
o

zi
ll

a

F
ir

ef
o

x

606.7 606.6 606.3 605.6 605.6 605.6 605.1 603.4 603.9 608.2 605.7 1.3

7

M
O

B

612.6 614.6 613.6 616.7 619.8 620.8 612.9 617.9 617.8 613.7 616.0 2.8

M
o

zi
ll

a

F
ir

ef
o

x

658.4 661.5 656.8 653.1 650.7 651.8 663.1 663.3 668.2 655.2 658.2 5.4

8

M
O

B

652.6 654.6 653.6 656.7 659.8 660.8 652.9 657.9 657.8 653.7 656.0 2.8

M
o

zi
ll

a

F
ir

ef
o

x

X X X X X X X X X X -

-

9

M
O

B

X X X X X X X X X X -
-

M
o

zi
ll

a

F
ir

ef
o

x

X X X X X X X X X X -

-

(Source: Research)

5.1.4.4 Variation of consumed and available memories with heterogeneous website tabs

Table 5.7 illustrates how consumed and available memories vary with the number of opened

heterogeneous website tabs.

There is a gradual decrease in the value of available memory as the number of tabs increases as

illustrated by the results in figure 5.7. Consumed memory increases gradually as the number of

tabs are increased. Computer froze when available memory falls below 65 MB and 63 MB with

Mozilla Firefox and MOB running respectively. X represents computer freeze.

56

Table 5.7: Variation of consumed and available memories with heterogeneous website tabs

Tabs Available Memory in MB Consumed Memory in MB

MOB Mozilla Firefox MOB Mozilla Firefox

1 490.8 438.8 133.6 194.4

2 434.2 384.3 226.1 275.5

3 304.9 250.0 301.2 361.1

4 187.1 154.1 452.9 487.8

5 174.5 125.2 465.5 517.0

6 112.4 92.3 546.3 605.7

7 87.7 65.4 616.0 658.2

8 63.4 X 656.0 X

9 X X X X

(Source: Research)

Consumed memory increases linearly as the number of tabs increase. In MOB, consumed

memory increases by 75.64 MB relative to 1 unit change in a browser tab and a regression model

is expressed as C = 75.64t + 84.29. In Mozilla Firefox, consumed memory increases by

increases by 78.84 MB relative to 1 unit change in a browser tab. Regression model is expressed

as C = 78.84t + 127.4. The value C in the equations represents consumed memory and t

represents the number of tabs. In both browsers, memory consumption is directly proportional to

the number of tabs with a high prediction of 97.3% and 98.4% on MOB and Mozilla Firefox

respectively. The study established that there is a statistically significant association between

browser tabs and consumed memory. Available memory decreases exponentially with an

increase in the number of tabs. In MOB, available memory decays at a rate of 30% per tab and

regression model is expressed as A= 717.7e
-0.30t

. In Mozilla Firefox, available memory decays at

a rate of 33% per tab and regression model is expressed as A = 654.3e
-0.33t

. The value A in the

equations represents available memory and t represents the number of tabs.

In both browsers, available memory is inversely proportional to the number of tabs with high

prediction of 98.7% for both the MOB and Mozilla Firefox.

Consumed memory means between MOB and Mozilla Firefox with a confidence interval of 95%

indicate that the probability that the two means were not different is 0.001, which is, less than the

chosen α hence there is a statistical difference in memory consumption between MOB and

Mozilla Firefox on heterogeneous website tabs.

57

Figure 5.7: Dependence of available and consumed memory on browser tabs (Source: Research)

5.1.4.5 Deduction on consumed and available memories with heterogeneous website tabs.

The study established that MOB consumed less memory as compared to Mozilla Firefox in all

tested websites. On average, MOB consumed 52.08 MB less than Mozilla Firefox. The reduction

in memory consumption is attributed to the enhancement made to the model, which MOB is built

on. The memory analyzer was enriched with garbage collection mechanism to reclaim unused

memory. The Garbage Collector freed memory thus reducing the consumed memory by

reclaiming memory from browser objects whose memories were unused.

5.2 Hypothesis Testing

The hypothesis for this study was expressed as:

H0: µnon-analyzer - µanalyzer = 0 ("the difference of the memory means is equal to zero")

where µanalyzer and µnon-analyzer are the memory consumption means for browser integrated

with memory analyzer and non-integrated browser respectively. With a confidence interval of

95%, the mean memory consumption for the MOB and Mozilla Firefox is 323.62 MB and

362.26 MB respectively with homogeneous tabs. The p-value is 0.025. Similarly, the mean

memory consumption for the MOB and Mozilla Firefox is 289.24 MB and 341.33 MB

respectively with heterogeneous tabs. The p-value is 0.001. Both cases depict lower p-value than

58

the chosen α hence; the study established that there is a statistical difference in memory

consumption between MOB and Mozilla Firefox.

5.3 Summary

Memory consumption between Mozilla Firefox and MOB was compared on Google, YouTube,

Facebook and Gmail websites. The comparative study aimed at finding the impact of the

memory analyzer in MOB with regard to browser memory consumption. An independent t-test

was adopted to deduce the difference in memory consumption was statistically significant or not.

Regression analysis on obtained data aimed at deducing the rate of change of memory

consumption by opening browser tabs. Conclusion about the presented results is given in chapter

6.

59

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS

This chapter gives a conclusion and recommendations of the undertaken research. Section 6.1

gives a detailed conclusion of the research findings while section 6.2 enumerates the

recommendations.

6.1 Conclusion

This research was conducted to find out the applicability of a memory analyzer to the browser

reference architecture with a view to controlling memory hogging by web browsers. A memory

analyzer was developed successfully based on specified functional requirements. The analyzer was

then integrated in the browser prototype and its performance on memory optimization was

evaluated by comparing its memory consumption with that of the contemporary Mozilla Firefox.

The study results indicated that the integration provided a control mechanism in which the

maximum amount of memory a browser would consume was set. This phenomenon, controlled

browser memory hogging which consequently raised the amount of available memory.

The study confirmed that memory consumption by browsers increases by opening tabs. However,

memory posed by the browser in accessing a webpage was not uniform across the investigated

websites. Research findings indicate that memory consumption was dependent on the nature of

web content that was fetched. Google page consumed the least memory in both browsers.

YouTube page was second while Facebook was third. Gmail application was found to consume the

highest memory in all tested cases.

However, memory consumption by the two browsers was different though the trend was the same.

The integration of the memory analyzer in the developed browser prototype showed positive

results. The study found out that the average memory consumption for memory analyzer-

integrated browser was 38.65 MB and 52.08 MB less with homogeneous and heterogeneous tabs

opened respectively compared to Mozilla Firefox. This was influenced by the role played by the

Garbage Collector in reclaiming unused memory from browser objects.

Furthermore, it was possible to limit how much memory a browser should use with the MOB

browser thus controlling memory hogging. With a memory threshold at 100 MB, a computer

user would only perform a Google search. Raising TM to 200 MB allowed the computer user to

perform Google search, chat on Facebook, and watch a video from YouTube with YouTube and

60

Facebook on one tab each. The study established that integration of the memory analyzer in the

browser architectural model lowered memory consumption by the browser thus increasing the

amount of available memory, which translated to improved concurrency.

The research study rejected the null hypothesis.

6.2 Recommendations

The researcher recommends that further investigations to be carried out to determine the best

strategy that would optimize memory as well as improve the level of concurrency in computers

with less memory. Having achieved the set objectives, the research recommends the following.

i. Further research on the performance of the developed model on computer machines

having more than 1 GB RAM.

ii. Evaluation of the developed architecture in x64 bit operating systems.

iii. Development and integration of the memory analyzer for UNIX-based operating systems.

61

REFERENCES
Adam, O. (2011).Web Browser Grand Prix 3: IE9 Enters The Race.Efficiency Benchmarks:

Memory Usage and Management. Retrieved from

https://www.tomshardware.com/reviews/internet-explorer-9-chrome-10-opera-

11,2897.html

Ader, J. (2008). Missing data. In Ader, H. J. & Mellenbergh, G. J. (Eds). Advising on research

Methods: A consultant‟s companion. (pp. 305-332). Huizen, The Netherlands:

Johannes van Kessel Publishing.

Ader, J., Gideon J. & David J. (2011). Advising on Research Methods: A Consultant's

Companion.

Alan, D., Barbara, H., & Roberta, R. (2012). Systems Analysis and Design, Fifth Edition. USA:

John Wiley & Sons, Inc.

Allan, G. & Michael, W. (2006). Reference architecture for Web browsers.” In: 21st IEEE

International Conference on Software Maintenance (ICSM‟05). pp. 661–664.

Andre, C., Bryan, L., Neal C., Sunpreet J. & Stephen H. (2007). Conceptual Architecture of

Firefox.

Andreessen, M., Bina & Eric (1994). "NCSA Mosaic: A Global Hypermedia System". Internet

Research. Bingley, U.K.: Emerald Group Publishing Limited.

Antero, T., Tommi, M., Dan, I. & Krzysztof, P. (2008). Web browser as an application platform:

The lively Kernel experience. Beginners (2nd.ed.), Singapore, Pearson Education.

Braga, M. (2011). Web Browser Showdown: Memory Management Tested. Retrieved from http:

//www.tested.com/tech/web/2420-web-browser-showdown-memory-management-

tested/

Brian, A., Lars B., David, H. & Josh, M. (n.d.). Experience Report: Developing the Servo Web

Browser Engine using Rust. Mozilla research.

Brinkmann, M. (2014). Tools to optimize the Memory Usage of Firefox and Chrome. Retrieved

from http://www.ghacks.net/2014/09/07/tools-to-optimize-the-memory-usage-of-

firefox-and-chrome/

Brinkmann, M. (2018). What you can do if your browser uses too much Memory. Retrieved from

https://www.ghacks.net/2018/09/18/what-you-can-do-if-your-browser-uses-too-much-

memory/

Chris, A. (2012).The Man Who Makes the Future: Wired Icon Marc Andreessen. Retrieved from

http: //www.wired.com/2012/04/ff_andreessen/all/

Chua, C.K., Leong K.F. & Lim C.S. (2010). Rapid Prototyping. Principles and Applications.

World Scientific, New Jersey-London- Singapore-Hong Kong.

Coates, M. (2010). A journey in Security. HTML5, Local Storage, and XSS.Retrieved from

http://michael-coates.blogspot.com/2010/07/html5-local-storage-and-xss.html

Dave, T. (2002). "How was Mozilla born". Retrieved from http://www.davetitus.com/mozilla/

Doug, D., (2012). HTML5 security in the modern web browser perspective. Retrieved from

https://www.nccgroup.trust/uk/our-research/html5-security-the-modern-web-browser-

perspective/

http://www.ghacks.net/2014/09/07/tools-to-optimize-the-memory-usage-of-firefox-and-chrome/
http://www.ghacks.net/2014/09/07/tools-to-optimize-the-memory-usage-of-firefox-and-chrome/
http://www.davetitus.com/mozilla/

62

Eldad, E. (2007). Reversing: secrets of reverse engineering. John Wiley & Sons.

Fernando, O. (2013) .Software which enables faster browsing by eliminating memory leaks in

Firefox. Retrieved from http://firemin.en.lo4d.com/

Gnome desktop environment. (n.d.) Retrieved from http: //gnome.org.

Google developers. (n.d.). Retrieved from https://developers.google.com/v8/intro

Google, (2008). Chromium blog. Retrieved from https://blog.chromium.org/2008/09/multi-

process-architecture.html

Gordon, W. (2017) .Stop complaining that your browser uses lots of RAM: It is a Good Thing.

Retrieved from https://www.howtogeek.com/334594/stop-complaining-that-your-

browser-uses-lots-of-ram-its-a-good-thing/

Gregor, W., Andreas, G., Christian, W., Brendan, E. & Michael, F. (2011). Compartmental Memory

Management in a Modern Web Browser.

Hanson, D. R. (1990). Fast allocation and deallocation of memory based on object lifetimes.

Software - Practice and Experience, 20(1):5–12, 1990. doi: 10.1002/spe.4380200104.

Ilushin, E. & Namiot, D. (2015). JavaScript Memory Management. International Journal of

Open Information Technologies

Ilya, K. (2011). Memory leaks. Retrieved from http://javascript.info/tutorial/memory-leaks

Jesee, B., Katricia, B., Lukas, B., Bennett, C. & Tom, F. (2009). Conceptual architecture of

Google Chrome. ArCHROMEtecs

Josh, M. & Keegan M. (2014, Aug 26).JavaScript: Servo’s only garbage collector. Retrieved

from https://blog.mozilla.org/research/2014/08/26/javascript-servos-only-garbage-

collector/

Josh, M., Brian, A. Lars, B., David, H., Keegan, M., Jack, M., Simon, S. & Manish, G. (2015, May 26).

Experience Report: Developing the Servo Web Browser Engine using Rust.
Kamau, H.,McOyowo, S. & Okoyo, H. (2018). Techniques to Control Memory Hogging by Web

Browsers: An in-Depth Review. International Journal of Computer Applications Technology and

Research, 185-192.

Kamau, H.,McOyowo, S. & Okoyo, H. (2019). An Enhanced Browser Reference Model . International

Journal of Computer Applications Technology and Research, 299-302.

Karl, G. (2013).Optimize Firefox‟s Performance with these Memory Add-Ons! : Retrieved from

http://www.drakeintelgroup.com/2013/06/25/Firefox-memory-addons/

Kimak, S., Ellman, J. & Laing, C. (2014). Some Potential Issues with the Security of HTML5

IndexedDB. In: System Safety and Cyber Security 2014 (IET Conference), 14-16th

October 2014, The Midland Hotel, Manchester, UK.

Klein, H. (2019). Modern Multi-Process Browser Architecture. Retrieved from

https://helgeklein.com/blog/2019/01/modern-multi-process-browser-architecture/

Konqueror. (n.d.) Retrieved from http: //konqueror.org.

Kothari, C.R. (1985). Research Methodology- Methods and Techniques, New Delhi, Wiley

Eastern Limited

http://konqueror.org/

63

Krill, P. (2014). Mozilla tackles the browser memory conundrum. Retrieved from

https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-the-

browser-memory-conundrum.html

Kumar, R. (2005). Research Methodology-A Step-by-Step Guide form. Hirzel. Connectivity-

Based Garbage Collection. PhD thesis, Department of Computer Science, University

of Colorado at Boulder, 2004.

Lasar, M. (2011, OCT 11). "Before Netscape: the forgotten Web browsers of the early

1990s".retrived from https://arstechnica.com/information-technology/2011/10/before-

netscape-forgotten-web-browsers-of-the-early-1990s/

Legan, D. (2001). "Text-Mode Web Browsers for OS/2". Retrieved from

http://www.scoug.com/os24u/2001/scoug009.textbrowsers.html

Michael Coates, (2010). A journey in Security. HTML5, Local Storage, and XSS.Retrieved from

http://michael-coates.blogspot.com/2010/07/html5-local-storage-and-xss.html

Microsoft. (2017). Internet Explorer Architecture. Retrieved from

https://msdn.microsoft.com/en-us/library/aa741312%28v=vs.85%29.aspx

Moeskopf, E., Feenstra, F. (2008). Introduction to Rapid Prototyping. In: Raja V., Fernandes K.

(eds) Reverse Engineering. Springer Series in Advanced Manufacturing. Springer,

London

Mozilla Developer Network. (2018). Retrieved from https://developer.mozilla.org/en-

US/docs/Mozilla/Projects/Spidermonkey

Mozilla Developer Network. (2019, March 23). Common causes of memory leaks in extensions.

Retrieved from https://developer.mozilla.org/en-

US/docs/Extensions/Common_causes_of_memory_leaks_in_extensions

Mozilla Foundation. (2017). Module Owners. Retrieved from

http://www.mozilla.org/owners.html.

Mozilla Foundation. (2017). Module Owners. Retrieved from

http://www.mozilla.org/owners.html.

Nield, D.(2018). 9 Common Browser Problems and How to Fix Them.Retrieved from

https://gizmodo.com/9-common-browser-problems-and-how-to-fix-them-1827014349

Nyce, J. M. & Kahn P. (1991). From Memex To Hypertext: Vannevar Bush and the Mind's

Machine. Academia press, San Diego.

Otto, K. & Antonsson, E. (1991). Trade-off strategies in Enginnering Design. Research in

Engineering Design Volume 3, Number 2 (1991), pages 87-104

Paul, K. (2016). Mozilla tackles the browser memory conundrum. Retrieved from

https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-

the-browser-memory-conundrum.html

Paulina, S., Raúl M., & Eduardo, B. (2016). A Reference Architecture for web browsers: Part I,

A pattern for Web Browser Communication

Pryden, D. (2015, September 6). Why do languages such as C and C++ not have garbage

collection, while Java does? [closed]. Retrieved from

https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-the-browser-memory-conundrum.html
https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-the-browser-memory-conundrum.html
https://arstechnica.com/business/2011/10/before-netscape-forgotten-web-browsers-of-the-early-1990s/
https://arstechnica.com/business/2011/10/before-netscape-forgotten-web-browsers-of-the-early-1990s/
http://www.scoug.com/os24u/2001/scoug009.textbrowsers.html
http://www.mozilla.org/owners.html
https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-the-browser-memory-conundrum.html
https://www.javaworld.com/article/2600354/java-web-development/mozilla-tackles-the-browser-memory-conundrum.html

64

https://softwareengineering.stackexchange.com/questions/113177/why-do-languages-

such-as-c-and-c-not-have-garbage-collection-while-java-does

Raúl R. (2015). Browser comparison, 2015 edition. Retrieved from

http://blog.en.uptodown.com/browser-comparison-2015/

Raúl, R. (2015). Browser comparison, 2015 edition. Retrieved from

http://blog.en.uptodown.com/browser-comparison-2015/

Sagar, A., Pratik, G., Rajwin, P. & Aditya, G. (2010). Market research on web browsers.

Retrieved from http://www.slideshare.net/sagar_agrawal/research-on-web-browsers.

Sebrechts, J. (2012). Why do browsers leak memory? Software Engineering. Retrieved from

https://softwareengineering.stackexchange.com/questions/173627/why-do-browsers-leak-

memory

Serea, R. (2019). SpeedyFox 2.0.26 Build 140. Retrieved

fromhttps://www.neowin.net/news/speedyfox-2026-build-140/

SimilarWeb. (2018). Website ranking .Retrieved from https://www.similarweb.com/global

Statista. (2018). Operating Systems - Statistics & Facts. Retrieved from

https://www.statista.com/

Tali, G. & Paul, I. (2011). How Browsers Work: Behind the scenes of modern web browsers.

Retrieved from https://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Tedd, H. (1965).Complex information processing: a file structure for the complex, the changing

and the indeterminate. Proceeding ACM '65 Proceedings of the 1965 20th national

conference pp.84-100

Tim, B. (1999). Weaving the Web: The Original Design and Ultimate Destiny of the World Wide

Web by Its Inventor. Harper San Francisco.

Vladan, D. & Ashvin G. (2009). Securing script-based extensibility in web browsers.
Vrbanec, T., Kiric, N. & Varga, M. (2013). “The evolution of web browser architecture”.

SCIECONF 2013, pp. 472–480.

W3C. (2004). Architecture of the World Wide Web, Volume One. Online. Retrieved from

http://www.w3.org/TR/webarch/

W3C. (2017). Browser & Platform Market Share. Retrieved from

https://www.w3counter.com/globalstats.php?year=2017&month=12

Wayne, W. (2018).How to stop browser freezing.Retrieved from

https://www.cloudpro.co.uk/leadership/cloud-essentials/7443/how-to-stop-your-browser-

freezing

William, M. (2017). About: addons-memory 12. Retrieved from

https://www.techworld.com/download/internet-tools/aboutaddons-memory-12-

3329018

Xi, Y., Zhichao, H., Bin, H., Senjie, Z., Chao, W., Feifei, G., & Shi, J. (2017). RaPro: A Novel

5G Rapid Prototyping System Architecture. IEEE Wireless Communication Letters.

https://softwareengineering.stackexchange.com/questions/173627/why-do-browsers-leak-memory
https://softwareengineering.stackexchange.com/questions/173627/why-do-browsers-leak-memory
https://www.similarweb.com/global
http://www.w3.org/TR/webarch/
https://www.cloudpro.co.uk/leadership/cloud-essentials/7443/how-to-stop-your-browser-freezing
https://www.cloudpro.co.uk/leadership/cloud-essentials/7443/how-to-stop-your-browser-freezing

65

APPENDICES
Appendix I: Research permit.

	thesis pdf.pdf
	num2.pdf

