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ABSTRACT
Game theory has been used to study a wide variety of human and animal behaviours. It
looks for states of equilibrium, sometimes called solutions. Nash equilibrium is the central
solution concept with diverse applications for most games in game theory. However some
games have no Nash equilibrium, others have only one Nash equilibrium and the rest
have multiple Nash equilibria. For games with multiple equilibria, different equilibria
can have different rewards for the players thus causing a challenge on their choice of
strategies. In this study, to solve the problems associated with existence of multiple
equilibria in games,we identified and computed the most efficient Nash equilibrium in such
experimental economic games. To achieve this we described and carried out an experiment
on a game that was modelled as a three-player experimental economic game. The results
were recorded and by the best response sets method we identified all the Pure Nash
equilibria and computed the most efficient Nash equilibrium for our experimental economic
game. Using the Brauwer’s fixed point theorem we verified the existence of mixed Nash
equilibrium in the experimental economic game. The findings were that the most efficient
equilibrium varied from one player to the other. An individual whose aim was to minimize
risks played the risk dominant strategies whereas for those aiming to maximize their
profits, the payoff dominant strategies were played in cooperation to achieve the most
efficient Nash Equilibrium for the experimental economic game. The computation of
most efficient Nash Equilibrium in games can be applied to most situations in competitive
Economic environment that are faced with multiple choices on which strategy is optimal.
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CHAPTER 1

INTRODUCTION

1.1 Background to the Problem

Game theory is the formal study of conflict and cooperation. It deals with strategic in-

teractions among multiple decision makers, called players (and in some context agents),

with each player’s preference ordering among multiple alternatives captured in an objec-

tive function for that player, which he or she tries to maximize (in which case the objective

function is a utility, payoff or benefit function) or minimize (in which case we refer to the

objective function as a cost or loss function). The concept of game theory provides a

language to formulate, structure, analyze and understand strategic scenarios. The games

studied in game theory are well defined mathematical objects with a set of players, a set

of moves (strategies) available to those players and a specification of payoffs or costs for

each combination of strategies [1].

There are two branches of game theory, namely cooperative and non-cooperative game

theory [15]. Cooperative game theory studies friction-less negotiation among rational

players who can make binding agreements about how to play a game. The emphasis is

on the groups or coalitions of players. Non-cooperative game theory is mainly concerned

with individual behaviour: what decision should each rational player use, or how will

rational players actually choose their actions and what is the most likely outcome of the

game.

Game theory has further been broadly classified into four main subcategories: Classical

game theory, combinatorial game theory, dynamic game theory and other topics such as

evolutionary game theory, experimental game theory and economic game theory [17].

A strong solution concept, which is applicable to all games in game theory, is the Nash
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equilibrium which captures the notion of a stable solution. As much as some experimen-

tal economic games have a unique Nash equilibrium, others have none whereas the rest

have multiple equilibria. On the other hand, most experiments that have been conducted

involve two players yet in real life application we normally have more than two agents

interacting. For this study, we considered a three player experimental economic game

with multiple equilibria and computed the most efficient Nash equilibria for the game.

Using the Brouwer’s fixed point theorem we verified that mixed Nash Equilibrium existed

in the experimental economic game.

1.2 Basic Concepts

1.2.1 Game Theory

Game theory is a mathematical methodology that studies mathematical models of con-

flict and cooperation between intelligent rational decision makers [16]. It was initially

developed in economics to understand a large collection of economic behaviours, includ-

ing behaviour of firms, markets and consumers. To represent a game, we will use the

notation

Γ = 〈N, (Si), (ui)〉 (1.1)

where N is the number of players, Si the available strategies, ui the payoff to the player

i and i = 1, 2, 3.

A game can either be static or dynamic. A static game is only played once while a dynamic

game is played multiple times. There are two types of dynamical games:

(a) Sequential games in which players play one after another.

(b) Stage games which are static games played for a finite number of repetitions.

In evolutionary game theory, the concept of rationality is not meaningful but the idea that

evolutionary forces like natural selection and mutation are the driving forces of change

is very important. Some representative games of evolutionary game theory include hawk
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and dove, war of attrition, stag hunt, tragedy of commons, prisoners’ dilemma among

others. On the other hand, classical game theory is based upon a number of severe as-

sumptions about the structure of the game. Classical game theory describes the behaviour

of rational players and also attempts to mathematically capture behaviour of strategic

situations, in which an individual’s success in making choices depends on the choices of

the others. The mission of evolutionary game theory is to remedy some key deficiencies

of the classical game theory: the lack of dynamics and equilibrium selection in the case

of multiple Nash equilibrium [15].

In experimental economics cash is used to motivate subjects, in order to mimic real world

incentives [1]. Experiments are used to help understand how and why markets and other

exchange system function as they do. Experiments may be conducted in the field or in

laboratory settings, whether of individual or group behaviour.

1.2.2 Solution Methods

A solution concept is a formal rule for predicting how a game will be played. These

predictions are called “solutions” and describe which strategies will be adopted by players

and, therefore, the result of the game. The most commonly used solution concepts are

the equilibrium concepts. When a solution is required for a game, it is necessary to first

specify the form and type of game under investigation. Cooperative solutions are designed

to capture a stable outcome of a bargaining problem whereas Non-cooperative solutions

involve solving a non-cooperative point of the game, for example, Nash equilibrium [3] .

Some solution concepts have been discussed below.

Dominant Strategy

A dominant strategy is a basic solution concept in game theory. It implies that each player

has a unique best strategy, independent of the strategies played by the other players [25].

We will use s to denote the strategies chosen by all n players, S as the set of possible

strategies for all n players, si as the stategy chosen by player i and Si as the set of possible

strategies for player i. ui(s) is the utility (pay-offs in game theoritic usage) incurred by
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player i.

More formally, a strategy vector s ∈ S is a dominant strategy solution, if for each player

i, and each alternate strategy vector s′ ∈ S, we have that

ui(si, s
′
j) ≥ ui(s

′
i, s
′
j) (1.2)

where sj denotes the (n− 1) dimensional vector strategies played by all other players.

Note that:

Γ = 〈N, (Si), (ui)〉

N = {1, 2, · · · , n}

S = S1 × S2 × · · · × Sn
s = (s1, s2, · · · , sn)T ∈ S

sj = (s1, · · · , si−1, si+1, · · · , sn)T

ui : S1 × · · · × Sn → R

Dominant strategy equilibria (strongly dominant or weakly dominant), if they exist, are

very desirable, but rarely do they exist because the conditions to be satisfied are too

demanding [17]. Dominant strategy solution may not give optimal payoff to any of the

players. One limitation of this method is that most games rarely posses dominant strategy

solutions [25].

Nash Equilibrium

The notion of an equilibrium is the basic ingredient in game theory. Every finite game

has an equilibrium point [24]. Nash (1951) proved that every game with a finite number

of players, each having a finite set of strategies, has a Nash Equilibrium of mixed strate-

gies [18]. Nash equilibrium is the central solution concept in game theory with extremely

diverse applications. It captures the notion of stable solution in which no single player

can individually improve his or her welfare by deviating.

More formally, a strategy vector s ∈ S is said to be a Nash equilibrium if for all players i
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and each alternate strategy s′i ∈ S, we have that

ui(si, sj) ≥ ui(s
′
i, sj). (1.3)

In other words, no player i can change his chosen strategy from si to s′i and thereby im-

prove his payoff, assuming that all other players stick to the strategies they have chosen

in s. Such a solution is self enforcing in the sense that once the players are playing such

a solution, it is in every player’s best interest to stick to his or her strategy. Clearly a

dominant strategy solution is a Nash equilibrium [25].

Moreover if the solution is strictly dominating (switching to it always strictly improves

the income), it is also a unique Nash equilibrium. However Nash equilibrium may not

always be unique. For example some games may have multiple equilibria. For games with

multiple Nash equilibria, different equilibria can have (widely) different payoffs for the

players. A game can have either a pure strategy and/or a mixed strategy Nash equilibria

[11].

Given a game (1.1) with pure strategies, the strategy profile

s∗ = (s∗1, · · · , s∗n)T

is said to be a pure strategy Nash equilibrium of (1.1) if

ui(s
∗
i , s
∗
j) ≥ ui(si, s

∗
j) (1.4)

∀si ∈ Si ∀ i = 1, 2 · · ·n.

That is each player’s Nash equilibrium strategy is a best response to the Nash equi-

librium strategies of the other players. Therefore for the game (1.1), the strategy profile

(s∗1, · · · , s∗n)T is a Nash equilibrium if and only if

s∗i ∈ Bi(s
∗
j) ∀i = 1, · · · , n.
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Definition 1.2.1. A strategy profile (s∗i , s
∗
j) is a strict Nash Equilibrium if for every player

i,

ui(s
∗
i , s
∗
j) > ui(si, s

∗
j),

for every s∗i 6= s∗j .

The difference from the original definition of Nash Equilibrium is only in the strict in-

equality sign.

Consider a pure strategy game: (1.1). A pure strategy or a deterministic strategy for

player i specifies the deterministic choice si(I) at each information set I. Let Si be finite

for each i = 1, 2 · · ·n. If player i randomly chooses one element of the set Si, we have

a mixed strategy or a randomized strategy.

More formally, given a player i with Si as the set of pure strategies, a mixed strategy ρi

for player i is a probability density function over Si. That is, ρi : Si 7→ [0, 1] assigns to

each pure strategy si ∈ Si, a probability ρi(si) such that∑
si∈Si

ρi(si) = 1. (1.5)

A mixed strategy profile is a Nash equilibrium if the mixed strategy for each player is a

best response to the mixed strategies of the rest; that is, it attains the maximum possible

utility among all possible mixed strategies of this player. The support of a mixed strategy

is the set of all pure strategies that have non-zero probability in it. A mixed strategy is

a best response if and only if all pure strategies in its support are best responses [6]. If

each player in n-player game has a finite number of pure strategies, then there exists at

least one equilibrium in mixed strategy[18]. If there are no pure strategy equilibria, there

must be a unique mixed strategy equilibrium. However, it is possible for pure strategy

and mixed strategy Nash equilibria to co-exist in games.
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Brouwer’s Fixed Point Theorem

Classical game theory and economics rely heavily on fixed point theorems to prove the

existence of various solution concepts. Brouwer’s fixed point theorem plays a central role

in the proof of existence of general equilibrium in the market economies. Nash’s original

proof relies on Brouwer’s fixed point theorem stating that

Theorem 1.2.2. every continuous function f from the n-dimensional unit ball to itself

has a fixed point: a point x such that f(x) = x [6].

Given any game, Nash constructed a Brouwer map whose fixed points are precisely equi-

libria of the game. As a result, the existence of equilibria followed as a result of the

existence of fixed points [18].

The contribution of Nash was to define a mixed strategy Nash Equilibrium for any game

with a finite set of actions and prove that at least one (mixed strategy) Nash must exist

in such a game. He was able to use Brouwer’s fixed point theorem tp prove that there had

to exist at least one set of mixed strategies that mapped back to themselves for non-zero

sum games, namely, a set of strategies that did not call for a shift in strategies that could

improve payoffs.

Nash considered a game

G = (N,A, u) (1.6)

where N is the original number of players, u is the payoff from the chosen actions and

A = A1 × · · · × AN is the action set of players. All action sets Ai are finite.

He let ∆ = ∆1×· · ·×∆N denote the set of mixed strategies for the players. The finiteness

of Ai ensures the compactness of ∆. He then defined the gain function for player i, Gi.

For a mixed strategy σ ∈ ∆, we let the gain for player i on action a ∈ Ai be

Gi(σ, a) = max{0, Ui(a, σj)− Ui(σi, σj)},

where σi is the mixed strategy for player i and σj is the mixed strategy for all other players

7



in the game (1.6). The gain function represents the benefit a player gets by unilaterally

changing his strategy.

He defines g = (g1, · · · , gN) where gi(σ, a) = σi(a) +Gi(σ, a) for σ ∈ ∆, a ∈ Ai.∑
a∈Ai

gi(σ, a) =
∑
a∈Ai

σi(a) +Gi(σ, a) = 1 +
∑
a∈Ai

Gi(σ, a) > 0.

He used g to define f : ∆ 7→ ∆ as follows:

Let

fi(σ, a) =
gi(σ, a)∑
a∈Ai

gi(σ, a)

for a ∈ Ai.

fi is a valid mixed strategy in ∆i. Also each fi is a continuous function of σ, and hence f

is a continuous function [18]. Now ∆ is the cross product of a finite number of compact

convex sets, and so ∆ is also compact and convex. Therefore he applied the Brauwer fixed

point theorem to f. So f had a fixed point in ∆, call it σ∗.

He claimed that σ∗ is a Nash equilibrium in the game (1.6). For this purpose it sufficed

to show that

∀ 1 ≤ i ≤ N, ∀ a ∈ Ai, Gi(σ
∗, a) = 0.

This simply states that each player gains nothing by unilaterally changing his strategy,

which is exactly the necessary condition for Nash equilibrium.

He assumes that the gains are not zero. ∃ i, 1 ≤ i ≤ N and a ∈ Ai such that

Gi(σ
∗, a) > 0.

Note then that ∑
a∈Ai

gi(σ
∗, a) = 1 +

∑
a∈Ai

Gi(σ
∗, a) > 1.
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So let

C =
∑
a∈Ai

gi(σ
∗, a).

He denotes G(i, ·) as the gain vector indexed by actions in Ai. Since

f(σ∗) = σ∗,

we clearly have that

fi(σ
∗) = σ∗i .

Therefore

σ∗i =
gi(σ

∗)∑
a∈Ai

gi(σ∗, a)
.

⇒ σ∗i =
σ∗i +Gi(σ

∗, ·)
C

Cσ∗i = σ∗i +Gi(σ
∗, ·)

(C − 1)σ∗i = Gi(σ
∗, ·)

σ∗i = (
1

C − 1
)Gi(σ

∗, ·).

Since C > 1, he had that σ∗i is some positive scaling of the vector Gi(σ
∗, ·).

He claims that

σ∗i , a)(ui(ai, σ
∗
j )− ui(σ∗i , σ∗j )) = σ∗i (a)Gi(σ

∗, a)∀a ∈ Ai.

To see this, he first notes that if

Gi(σ
∗, a) > 0,

then this is true by the definition of the gain function.

He assumes that

Gi(σ
∗, a) = 0.

By our previous statements we have that

σ∗i , a =
1

C − 1
Gi(σ

∗, a) = 0,

9



and so the left term is zero, giving the entire expression as 0 as needed.

So finally he had that

0 = (Ui(ai, σ
∗
j )− Ui(σ∗i , σ∗j )

=
∑
a∈Ai

(σ∗i (a)Ui(ai, σ
∗
j )− Ui(σ∗i , σ∗j ))

=
∑
a∈Ai

(σ∗i (a)(Ui(ai, σ
∗
j )− Ui(σ∗i , σ∗j ))

=
∑
a∈Ai

σ∗i (a)Gi(σ
∗, a)

by the previous statements.

=
∑
a∈Ai

(C − 1)σ∗i (a)2 > 0

where the last inequality follows since σ∗i is a non-zero vector.

But this is a clear contradiction, so all the gain must indeed be zero.

Therefore σ∗ is a mixed Nash equilibrium for the game (1.6) as needed [18].

1.3 Statement of the Problem

Multiple Nash Equilibria is one of the fundamental problems in game theory. For games

with multiple equilibria, different equilibria can have (widely) different payoffs or costs for

the players and this poses a challenge on the choice of strategies to be played. Therefore

there was need to identify and compute the most efficient Nash equilibrium in such games.

1.4 Objectives of the Study

The main objective of this study was to compute efficient Nash Equilibria for experimental

economic games. The specific objectives of the study were to:

(i) define and describe a three-player experimental economic game;

(ii) identify all the Nash equilibria in the three-player experimental economic game;
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(iii) compute the most efficient Nash equilibrium in the three-player experimental eco-

nomic game.

1.5 Research Methodology

For this study, a game modelled as an experimental economic game with three players was

defined and described. It was played by high school students, three in each group, and

all the possible outcomes recorded. At the end of the experiment, all the outcomes were

analyzed and the payoffs for every outcome cell calculated and all pure Nash equilibria

identified from the best response sets of the players. Using the Brouwer’s fixed point

theorem we verified the existence of mixed Nash equilibrium as a solution concept in the

experimental economic game and using some refinements of the Nash Equilibrium we iden-

tified and computed the most efficient Nash equilibrium for the three-player experimental

economic game.

1.6 Significance of the Study

The study of game theory will enable us to model competing behaviours of interacting

agents in mathematical economics and business. Using game theory we will be able to

look at states of equilibria, sometimes called solutions. The computation of efficient Nash

equilibria will be applicable in a competitive and interactive economic environment be-

cause it will provide a way of advising and predicting what will happen if several people

or several institutions are making decisions at the same time, and if the outcomes depend

on the decisions of the others.

1.7 Outline of the Thesis

The thesis is structured as follows:

In chapter 2 the review of literature related to this study was done. In section 2.1 some

experimental economic games that have already been done were defined and described.

In section 2.2 an explanation on how Nash Equilibrium has been computed for both zero-
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sum and non-zero sum games was covered.

Chapter 3 contains the results and discussion on the subject of study. Areas covered in

this chapter include description of the experimental economic game in section 3.1 where

the stages of the game were outlined and all possible outcomes of the game recorded . In

section 3.2 computation and identification of efficient Nash equilibria in the experimental

economic game was done. In this section, the Brouwer fixed point theorem has been used

to verify that a mixed Nash Equilibrium existed in the experimental economic game.

The summary, conclusions and the recommendations have been summarized at the end

of the last chapter.
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CHAPTER 2

LITERATURE REVIEW

In this chapter we review the development of some experimental economic games. We

also briefly discuss how Nash Equilibria have been computed for some of these games and

the shortcomings that justify our study.

2.1 Experimental Economic Games

The first experimental economic games were published in 1960s. The earliest experiments

in economics journals focused almost exclusively on markets with particular emphasis on

finding the conditions under which a market would converge to the competitive price and

quantity [9].

Meanwhile on parallel tracks, psychologists and game theorists began to investigate sim-

ple games such as the prisoner’s dilemma which was initially conducted as an experiment

by Melvin Dresher and Merill Flood in January 1950. Prisoner’s dilemma game is an

example of early experiments concerning interactive behaviour [1]. This game involves

two prisoners who are separately given the choice between testifying against the other

(non-cooperation) and keeping silent (cooperation). The payoffs are such that each of

them is better off testifying against the other but if they both pursue this strategy they

are both worse off than by remaining silent. Prisoner’s dilemma helps us understand what

governs the balance between cooperation and competition in business.

In 1972 Peter Bohm conducted the first multi-person continuous prisoner’s dilemma game

referred to as public goods game [9]. A public good is a resource from which all may ben-

efit regardless of whether they have contributed to the good. Free riders enjoy the good

without making any contribution. Altruists contribute heavily to the public pot and con-

tinue to do so even when others ride free. Conditional consenters start by contributing
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some of their wealth but when they realize others free ride they no longer cooperate. In

public good the best strategy is to free ride, but when all do so the payoff is worse off

than if all contributed.

In 1982, three German economists, (Guth, Schmittberger and Schwarze) conducted the

first ultimatum game experiment. Their purpose was to strip bargaining down to its

essentials by creating the simplest possible bargaining situation [10]. The game has two

players namely the Proposer and the Responder. An amount of money is made available

to the pair by the experimenter. The Proposer’s task is to determine the division of money

and the Responder’s task is to either accept or reject the offer. If accepted the money

is divided as proposed; but if rejected both players receive zero earnings and the money

reverts to the experimenter [1]. Behaviour in the ultimatum game has implications for a

broad set of important economic problems involving worker motivation, contracting and

the notion of fair price [26].

In 1994 an improvement on the ultimatum game was made and the game was referred to

as the dictator game. The first player, “the Proposer” determines the allocation (split) of

some endowment (such as cash prize). The second player ”the Responder” simply receives

the remainder of the endowment left by the Proposer. The Responder’s role is entirely

passive (he has no strategic input into the outcome of the game).

Trust game, which is an investment game was first presented by Berg, Dickhaut and

McCabe in 1995 [4]. Like in public goods game, there is no gain in cooperation, but to

achieve those gains, the first mover must first trust by putting his payoffs in the hands

of the second mover, with no promise of return. The amount sent by the first mover is

“trust” and the amount returned is ”reciprocity”. This game has been adapted to mea-

sure trust at individual levels [9].
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2.2 Computation of Nash Equilibrium

The idea of Nash equilibria can be traced back to the work of Antoine [2]. He developed

a model called “duopoly”; a model of competitive markets and mathematically derived

an equilibrium solution.

In 1940’s Neumann and Morgenstern [27] studied two-player zero-sum games (e.g. the

rock-paper and scissors game) where one player’s gain is another player’s loss under the

same competitive equilibrium concept. A proof of the existence of the equilibria for two-

player zero-sum game was established via Von Neumann’s minimax theorem. A finite two

person zero sum game in strategic form is denoted by

(X, Y,A), (2.1)

where X = {x1, · · ·xm}, Y = {y1, · · · yn} and A = aij = A(xi, yj). X and Y are the

strategies for the row player and the column player respectively for the game (2.1). The

von Neumann’s minimax theorem states:

Theorem 2.2.1. For every (m × n) matrix A, there is a stochastic row vector x∗ =

(x∗1, · · · , x∗m) and a stochastic column vector y∗ = (y∗1, · · · y∗n) such that

miny∈∆(S2)x
∗Ay = maxx∈∆(S1)xAy

∗

The most accessible proof is through linear programming duality theorem, a special case

of Von Neumann’s minimax theorem. According to Von Neumann’s minimax theorem,

every finite game has a value, and both players have minimax strategies. The key impli-

cation of the minimax theorem is the existence of a mixed strategy Nash equilibrium in

any matrix game.

Thus, if a game is zero-sum, Nash equilibrium has been formulated in terms of linear

programming and linear programs have been solved efficiently. Oskar Morgenstern and

John Von Neumann showed that the mixed strategy profile (x∗,y∗) is in fact a mixed

strategy NE of the matrix A in the game (2.1). For this they considered

x∗Ay∗ ≥ miny∈∆(S2)x
∗Ay
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= maxx∈∆(S1)xAy∗

≥ xAy∗

∀ x ∈ ∆(S1). This implies

u1(x∗,y∗) ≥ u1(x,y∗)

∀ x ∈ ∆(S1).

Further

x∗Ay∗ ≥ miny∈∆(S2)x
∗Ay

= maxx∈∆(S1)xAy∗

≥ x∗Ay

∀ y ∈ ∆(S2). This implies

u2(x∗,y∗) ≥ u2(x∗,y)

∀ y ∈ ∆(S2). Thus (x∗,y∗) is a mixed strategy NE or a randomized saddle point. This

means that the minimax theorem guarantees the existence of the mixed strategy NE for

any matrix game.

Nash John was the first to study the more general non-zero-sum games (e.g the prisoner’s

dilemma) with two or more players along a competitive equilibrium approach and he

proved in [18] the existence of a competitive equilibrium approach. It was based on

fixed-point theorem of Brauwer :

Theorem 2.2.2. Every continuous map f from [0, 1] to itself must have a fixed point

X∗ ∈ [0, 1] such that f(X∗) = X∗.

This line of techniques of proving the existence of equilibria has proven to be a powerful

tool in the subsequent development of mathematical economics. For non-zero sum games,

it can be formulated as a linear complementary problem [7].

A few years after Nash’s work, Debreu and Arrow derived a first rigorous proof for the

existence of a market clearing equilibrium, under quite mild assumptions on the utility
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functions of market participants. Again their proof was based on fixed point theorems

[8]. Debreu and Arrow result has been regarded by many as one of the most beautiful

application of mathematical theories developed in the last century.

For games that are not zero-sum, several algorithms have been proposed over the past

century, but all of them are either of unknown complexity, or known to require, in the

worst case, exponential time [6]. During the same decades that these concepts were being

explored by the game theorists, computer science theorists were busy developing indepen-

dently a theory of algorithm addressing precisely the kind of problems raised above.

In 1964 Mangasarian represented all equilibria of a bi-matrix game as convex combinations

of the vertices of certain polyhedra defined by the payoff matrix [14]. During the same

year, Lemke and Howson developed a path-following, simplex-like algorithm for general

two player games [13]. The Lemke-Howson algorithm for bi-matrix games provides both

an elementary proof of the existence of equilibrium point and an efficient computation

method for finding atleast one equilibrium point. It is based upon a simple pivoting strat-

egy which corresponds to following a path whose endpoint is a Nash equilibrium [17].

Rosenmuller extended Lemke-Howson algorithm to n-person finite games [21]. Later in-

spired by the path-following approach of Lemke and Howson, Herbert Scarf (1973) devel-

oped the first converging algorithm to compute fixed points and to compute equilibrium

prices of competitive markets [22]. His algorithm was also for n-person games. Today

the path-following method has been recognized as one of the most important algorithm

paradigms in optimization.

In 1979, Khachiyan designed an ellipsoid algorithm that can solve a linear program in

polynomial time. The existence of such algorithm implies that Nash equilibrium in two-

player zero-sum game can be found in polynomial time [12].

Most experimental economic games have been modelled as prisoner’s dilemma and an
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easy numerical way that has been used to identify the Nash equilibria is by use of a payoff

matrix. The matrix has been helpful especially in two-person games where players have

more than two strategies. To find the Nash equilibria, one way has been to check the

pairs of strategies, and ask for each one of them whether the individual strategies are

best responses to each other. The other way has been to compute each player’s best

response(s) to each strategy of the other player, and then find strategies that are mutual

best responses.

Despite the considerable effort that has been devoted to the search of efficient algorithm

for Nash’s problem, no polynomial time algorithm has been found. The first step towards

understanding complexity of Nash equilibria began in 1994 when Christos [6] defined the

complexity class, Polynomial Parity Arguments on Directed Graphs (PPAD), to charac-

terize that mathematical proofs rely on parity arguments. Such an argument appears in

proofs of many important theorems, including Sperner’s lemma, which led to one of the

most elegant proofs of Brouwer’s fixed-point theorem. Therefore both a discreet version

of the fixed point problem and the Nash equilibrium problem are members of PPAD.

Nash equilibrium is not always unique. Some games have no Nash equilibrium whereas

others have multiple Nash equilibria. For the games with multiple Nash equilibria, it be-

comes difficult to predict what strategies will be chosen by the players and there is need

for players to make the best choices so as to optimize from the outcomes of the game.

Two-person games do not take us very far because many of the games that are most im-

portant in real world involve considerably more than two players, for example, economic

competition, highway congestion, over-exploitation of the environment and monetary ex-

change. Therefore there was need to put more emphasis on games with more than two

players. In this study, the identification and computation of efficient Nash equilibria in a

three-player experimental economic game with multiple equilibria was done.
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CHAPTER 3

RESULTS AND DISCUSSION

In this chapter, a social cooperation circumstance in a school has been described and

modelled as a stag hunt (assurance) game and played by high school students. The possible

outcomes of the three player experimental economic game have also been displayed and the

payoff for all the players in every outcome cell calculated. In the last section, identification

of pure Nash Equilibria in the game (3.1) was done. The mixed strategy Nash equilibrium

was also computed. The fixed point theorem of Brauwer was used to verify the existence

of mixed Nash equilibrium in the game (3.1). Finally the computation and identification

of most efficient Nash Equilibrium in the game (3.1) was done.

3.1 Description of the Game

3.1.1 Stag Hunt Game

Many circumstances that have been described as prisoner’s dilemma, which is an exper-

imental economic game, might be interpreted as stag hunt, depending on how fitness is

calculated. The original stag hunt game was described by the philosopher Jean-Jacques

Rousseau in the year 1755 . This game is a well known coordination game in which two

players go out to hunt together. If they cooperate they have a chance of capturing a stag,

constituting a high reward. On their own, the hunters can only hope to capture a hare

yielding a lower payoff. Should one player try to cooperate, while the other chooses to

hunt alone (defects), the cooperator will fail and get nothing, whereas the defector can

still get a hare. In order to make the stag hunt game to be more applicable in real world,

it was generalized into an N -player Stag hunt game [20].

For this study, the following social cooperation situation was modelled as three- player

stag hunt game: In a certain High School, students were given two assignments to at-

tempt. The first assignment (stag) was quite challenging and for an individual to succeed
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he must have the cooperation of one of his partners. The second assignment (hare) is

simpler and can be done by any one student without a problem.

The students were required to make a choice between attempting the first assignment

or attempting the second assignment. Attempting the first assignment together and ob-

taining a correct solution was more rewarding than individually finding a solution to the

second assignment. Any student who cooperated with any other to correctly complete

the first assignment was given a payoff of 10 and whoever cooperated with any other

student to complete the second assignment correctly was given a payoff of 7 points. At-

tempting the first assignment individually was doomed to failure and had a payoff of zero.

The following assumptions were made:

(i) All the players (students) were rational as they made their choice.

(ii) All the players had the same ability in making choices.

(iii) All the players had the same strategy profile.

We denote the above game as

Γ1 = 〈N, (Si), (ui)〉 (3.1)

where N is the number of players, Si the available strategies, ui the payoffs to the players

and i = 1, 2, 3. The game (3.1) is a pure strategy game with the strategy profile β =

(β1, β2) where:

β1 represents the first pure strategy (choosing the first assignment - stag), β2 represents

the second pure strategy (choosing the second assignment - hare. Note that β ∈ Si.

3.1.2 Stages of the Game (3.1)

The stag hunt game and the game modelled as the stag hunt game, (3.1), was explained

to students so that they had the full knowledge of the game and they made their choices

independently. It was a dynamical stage game in that the students were allowed to play

it for a finite number of repetitions as they varied their strategies as well. The students

had complete information about the game since all the parameters and the rules of the
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game were well known by all of them.

The game modelled in (3.1) had three players (three students) in each group. The two

strategies available to the players were:

(β1) and (β2). The following steps were followed:

(i) Students were asked to choose their strategies, β1 or β2. Note that players chose

their strategies independently.

(ii) The outcomes were recorded before they were allowed to repeat the same game.

(iii) The payoffs for all the possible outcome cells from the game were calculated.

3.1.3 Outcomes of the Game (3.1)

In the three person stag hunt game (3.1) modelled above, each player had two choices, at-

tempting the first assignment or attempting the second assignment. This resulted to eight

possible outcomes (cells) for the three players, (Player 1, Player 2, Player 3) respectively

as: (β1, β1, β1); (β1, β1, β2); (β1, β2, β1); (β1, β2, β2); (β2, β1, β1); (β2, β1, β2); (β2, β2, β1)

and (β2, β2, β2).

Therefore to find the number of possible outcomes we use the expression SN where S

represents the number of strategies available to the players and N represents the number

of players. Thus 23 = 8.

Payoffs were calculated by examining each pair-wise payoff set among players, and the

payoffs for three players were calculated by considering the type of interaction they had.

For example, the payoffs for three players for (β1, β2, β1) was as follows: Player 1 received 0

points for the interaction with player 2 and 10 points for cooperating with player 3. Player

2 received 7 points for not cooperating with player 1 and 7 points for not cooperating

with player 3. Player 3 received 10 points for cooperating with player 1 and 0 points for

not cooperating with player 2. Therefore (β1, β2, β1) = (10, 14, 10). This implies that

u1(β1, β2, β1) = 10,
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u2(β1, β2, β1) = 14

u3(β1, β2, β1) = 10

where u1, u2 and u3 are the payoffs of player 1, player 2 and player 3 respectively. Applying

the same rules, we have the summary for the payoffs to the three players as per the eight

possible outcomes as shown below:

(Player 1, Player 2, Player 3)

(β1, β1, β1) = (20, 20, 20)

(β1, β1, β2) = (10, 10, 14)

(β1, β2, β1) = (10, 14, 10)

(β1, β2, β2) = (0, 14, 14)

(β2, β1, β1) = (14, 10, 10)

(β2, β1, β2) = (14, 0, 14)

(β2, β2, β1) = (14, 14, 0)

(β2, β2, β2) = (14, 14, 14)

(see Figure 3.1).

The payoffs for all the three players, ui(β) will be as shown below:

u1(β1, β1, β1) = 20, u2(β1, β1, β1) = 20 and u3(β1, β1, β1) = 20

u1(β1, β1, β2) = 10, u2(β1, β1, β2) = 10 and u3(β1, β1, β2) = 14

u1(β1, β2, β1) = 10, u2(β1, β2, β1) = 14 and u3(β1, β2, β1) = 10

u1(β1, β2, β2) = 0, u2(β1, β2, β2) = 14 and u3(β1, β2, β2) = 14

u1(β2, β1, β1) = 14, u2(β2, β1, β1) = 10 and u3(β2, β1, β1) = 10

u1(β2, β1, β2) = 14, u2(β2, β1, β2) = 0 and u3(β2, β1, β2) = 14

u1(β2, β2, β1) = 14, u2(β2, β2, β1) = 14 and u3(β2, β2, β1) = 0

u1(β2, β2, β2) = 14, u2(β2, β2, β2) = 14 and u3(β2, β2, β2) = 14
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Figure 3.1: Tree Diagram on outcomes and payoffs
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3.2 Computation and Identification of Efficient Nash Equilibria

3.2.1 Identification of Pure NE in the Game (3.1)

The game (3.1) is an example of non-cooperative coordination game. Nash equilibrium is

based on the premises that

(i) each individual acts rationally given their beliefs about the other players’ actions

and that

(ii) these beliefs are correct.

It is the second element which makes this an equilibrium concept. Nash equilibrium is an

action profile with the property that no player can do better by changing their actions,

given the other players actions. We can alternatively define a Nash equilibrium as an ac-

tion profile for which every player’s action is the best response to the other players’ actions.

Definition 3.2.1. A pure strategy game (1.1), the strategy profile (s∗1, · · · , s∗n)T is a Nash

equilibrium if and only if s∗i ∈ Bi(s
∗
j),∀ i = 1, · · · , n [17].

This means that the pure strategy chosen by player i will lead to Nash Equilibrium if it

is a best response for player i to the strategies chosen by all other players, where s∗i is the

pure strategy profile for player i, Bi is the best response for player i and s∗j is the pure

strategy profile for all other players.

The game (3.1) has eight different action profiles:

(β1, β1, β1) = (20, 20, 20), (β1, β1, β2) = (10, 10, 14), (β1, β2, β1) = (10, 14, 10), (β1, β2, β2) =

(0, 14, 14), (β2, β1, β1) = (14, 10, 10), (β2, β1, β2) = (14, 0, 14), (β2, β2, β1) = (14, 14, 0) and

(β2, β2, β2) = (14, 14, 14) for the three players, (Player 1, Player 2, Player 3), respectively.

Since the game has only a few actions, we found Nash equilibria for the game by exam-

ining each action profile in turn to determine if it satisfied the conditions for equilibrium.

The best response sets for the game (3.1) were:
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(i) Bi(β1; i = 1, 2, 3) = β1 , that is, the best response for player i when he or she plays

β1 is β1 and

(ii) Bi(β2; i = 1, 2, 3) = β2 which means that the best response for player i when β2 is

played is β2.

Therefore

B1(β1) = β1; B1(β2) = β2,

B2(β1) = β1; B2(β2) = β2 and

B3(β1) = β1; B3(β2) = β2.

B1, B2 and B3 are the best response for player 1, 2 and 3 respectively.

Since β1 ⊂ B1(β1), β1 ⊂ B2(β1) and β1 ⊂ B3(β1), then (β1, β1, β1) = (20, 20, 20) is a pure

Nash Equilibrium.

Similarly, since β2 ⊂ B1(β2),β2 ⊂ B2(β2) and β2 ⊂ B3(β2), then (β2, β2, β2) = (14, 14, 14)

is a pure Nash equilibrim.

The other profiles: (β1, β1, β2) = (10, 10, 14), (β1, β2, β1) = (10, 14, 10), (β1, β2, β2) =

(0, 14, 14), (β2, β1, β1) = (14, 10, 10), (β2, β1, β2) = (14, 0, 14) and (β2, β2, β1) = (14, 14, 0)

are not pure Nash equilibria since:

β1 ( Bi(β2)and

β2 ( Bi(β1)

In summary, the results of the game (3.1) are as shown below:

(i) (β1, β1, β1) is a pure Nash equilibrium because each player prefers this profile to

that in which she chooses β2 alone. A player is better off remaining attentive to

the pursuit of a stag, β1, than running after a hare, β2, if all other players remain

attentive).

(ii) (β2, β2, β2) is a pure Nash equilibrium because each player prefers this profile to that

in which she pursues a stag, (β1), alone. A player is better off catching a hare, (β2),

than pursuing a stag, (β1), if no one else pursues a stag.
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(iii) No other profile is a pure Nash equilibrium because in any other profile at least one

player chooses a stag, (β1), and at least one player chooses a hare, (β2), so that any

player choosing (β1) is better off switching to (β2)

Since (β1, β1, β1) is a strict NE, then β1 is evolutionary stable. (β2, β2, β2) is also a strict

NE, therefore β2 is also evolutionary stable.

3.2.2 Mixed Nash Equilibrium in the Game (3.1)

Since this game had multiple equilibrium points, the optimal choice is a mixed strategy.

Thus randomization of the pure strategies was done as shown below:

Suppose (ρ1, ρ2, ρ3) is a mixed strategy profile. This means that ρ1 is a probability density

function on S1 = {β1, β2}, ρ2 is a probability density function on S2 = {β1, β2} and ρ3 is

a probability density function on S3 = {β1, β2}

Let us represent:

ρ1 = (ρ1(β1)ρ1(s2)),

ρ2 = (ρ2(β1)ρ2(s2))

and

ρ3 = (ρ3(β1)ρ3(s2)).

We have

S = S1 × S2 × S3

= {(β1, β1, β1)(β1, β1, β2)(β1, β2, β1)(β1, β2, β2)(β2, β1, β1)(β2, β1, β2)(β2, β2, β1)(β2, β2, β2).}

We computed the payoff functions u1, u2 and u3. Note that

ui(ρ1, ρ2, ρ3) =
∑

S1,S2,S3∈S

ρ(S1, S2, S3)ui(S1, S2, S3)
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and i = 1, 2, 3. That is:

u1(ρ1, ρ2, ρ3) =ρ1(β1)ρ2(β1)ρ3(β1)u1(β1, β1, β1) + ρ1(β1)ρ2(β1)ρ3(β2)u1(β1, β1, β2)+

ρ1(β1)ρ2(β2)ρ3(β1)u1(β1, β2, β1) + ρ1(β1)ρ2(β2)ρ3(β2)u1(β1, β2, β2)+

ρ1(β2)ρ2(β1)ρ3(β1)u1(β2, β1, β1) + ρ1(β2)ρ2(β1)ρ3(β2)u1(β2, β1, β2)+

ρ1(β2)ρ2(β2)ρ3(β1)u1(β2, β2, β1) + ρ1(β2)ρ2(β2)ρ3(β2)u1(β2, β2, β2).

(3.2)

u1(ρ1, ρ2, ρ3) = 20ρ1(β1)ρ2(β1)ρ3(β1) + 10ρ1(β1)ρ2(β1)ρ3(β2)+

10ρ1(β1)ρ2(β2)ρ3(β1) + 14ρ1(β2)ρ2(β1)ρ3(β1)+

14ρ1(β2)ρ2(β1)ρ3(β2) + 14ρ1(β2)ρ2(β2)ρ3(β1)+

14ρ1(β2)ρ2(β2)ρ3(β2).

(3.3)

u1(ρ1, ρ2, ρ3) = 20ρ1(β1)ρ2(β1)ρ3(β1) + 10ρ1(β1)ρ2(β1)(1− ρ3)(β1)+

10ρ1(β1)(1− ρ2)(β1)ρ3(β1) + 14(1− ρ1)(β1)ρ2(β1)ρ3(β1)+

14(1− ρ1)(β1)ρ2(β1)(1− ρ3)(β1) + 14(1− ρ1)(β1)(1− ρ2)(β1)ρ3(β1)+

14(1− ρ1)(β1)(1− ρ2)(β1)(1− ρ3)(β1).

(3.4)

u1(ρ1, ρ2, ρ3) =14− 14ρ1(β1) + 10ρ1(β1)ρ2(β1) + 10ρ1(β1)ρ3(β1). (3.5)

Similarly,

u2(ρ1, ρ2, ρ3) =14− 14ρ2(β1) + 10ρ1(β1)ρ2(β1) + 10ρ2(β1)ρ3(β1). (3.6)

and finally we had

u3(ρ1, ρ2, ρ3) =14− 14ρ3(β1) + 10ρ1(β1)ρ3(β1) + 10ρ2(β1)ρ3(β1). (3.7)

Basing on the assumption that all the students were rational, they had the same strategy

profile to choose from and their ability in making choices were the same, we let

ρ1 = (
1

3
,
1

3
,
1

3
), ρ2 = (

1

3
,
1

3
,
1

3
), ρ3 = (

1

3
,
1

3
,
1

3
).
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Then

u1(ρ1, ρ2, ρ3) =
104

9
, u2(ρ1, ρ2, ρ3) =

104

9
, u3(ρ1, ρ2, ρ3) =

104

9
.

Suppose (ρ1, ρ2, ρ3) is a mixed strategy profile. It can be seen that

u1(ρ1, ρ2, ρ3) = 14− 14ρ1(β1) + 10ρ1(β1)ρ2(β1) + 10ρ1(β1)ρ3(β1),

u2(ρ1, ρ2, ρ3) = 14− 14ρ2(β1) + 10ρ1(β1)ρ2(β1) + 10ρ2(β1)ρ3(β1)

and

u3(ρ1, ρ2, ρ3) = 14− 14ρ3(β1) + 10ρ1(β1)ρ3(β1) + 10ρ2(β1)ρ3(β1).

Let (ρ∗1, ρ
∗
2, ρ
∗
3) be a mixed strategy equilibrium. Then

u1(ρ∗1, ρ
∗
2, ρ
∗
3) ≥ u1(ρ1, ρ

∗
2, ρ
∗
3) ∀ ρ1 ∈ ∆(S1);

u2(ρ∗1, ρ
∗
2, ρ
∗
3) ≥ u1(ρ∗1, ρ2, ρ

∗
3) ∀ ρ2 ∈ ∆(S2);

u3(ρ∗1, ρ
∗
2, ρ
∗
3) ≥ u1(ρ∗1, ρ

∗
2, ρ3) ∀ ρ3 ∈ ∆(S3).

(3.8)

The inequalities (3.8) are equivalent to:

14− 14ρ∗1(β1) + 10ρ∗1(β1)ρ∗2(β1) + 10ρ∗1(β1)ρ∗3(β1)

≥ 14− 14ρ1(β1) + 10ρ1(β1)ρ∗2(β1) + 10ρ1(β1)ρ∗3(β1)

∀ρ1 ∈ ∆(S1);

14− 14ρ∗2(β1) + 10ρ∗1(β1)ρ∗2(β1) + 10ρ∗2(β1)ρ∗3(β1)

≥ 14− 14ρ2(β1) + 10ρ∗1(β1)ρ2(β1) + 10ρ2(β1)ρ∗3(β1)

∀ρ2 ∈ ∆(S2);

14− 14ρ∗3(β1) + 10ρ∗1(β1)ρ∗3(β1) + 10ρ∗2(β1)ρ∗3(β1)

≥ 14− 14ρ3(β1) + 10ρ∗1(β1)ρ3(β1) + 10ρ∗2(β1)ρ3(β1)

∀ρ3 ∈ ∆(S3).

(3.9)
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These inequalities (3.9) are equivalent to:

10ρ∗1(β1)ρ∗2(β1) + 10ρ∗1(β1)ρ∗3(β1)− 14ρ∗1(β1) ≥ 10ρ1(β1)ρ∗2(β1) + 10ρ1(β1)ρ∗3(β1)− 14ρ1(β1)

∀ρ1 ∈ ∆(S1);

10ρ∗1(β1)ρ∗2(β1) + 10ρ∗2(β1)ρ∗3(β1)− 14ρ∗2(β1) ≥ 10ρ∗1(β1)ρ2(β1) + 10ρ2(β1)ρ∗3(β1)− 14ρ2(β1)

∀ρ2 ∈ ∆(S2);

10ρ∗1(β1)ρ∗3(β1) + 10ρ∗2(β1)ρ∗3(β1)− 14ρ∗3(β1) ≥ 10ρ∗1(β1)ρ3(β1) + 10ρ∗2(β1)ρ3(β1)− 14ρ3(β1)

∀ρ3 ∈ ∆(S3).

(3.10)

In turn the inequalities (3.10) are equivalent to:

ρ∗1(β1){10ρ∗2(β1) + 10ρ∗3(β1)− 14} ≥ ρ1(β1){10ρ∗2(β1) + 10ρ∗3(β1)− 14}

∀ρ1 ∈ ∆(S1);

ρ∗2(β1){10ρ∗1(β1) + 10ρ∗3(β1)− 14} ≥ ρ2(β1){10ρ∗1(β1) + 10ρ∗3(β1)− 14}

∀ρ2 ∈ ∆(S2);

ρ∗3(β1){10ρ∗1(β1) + 10ρ∗2(β1)− 14} ≥ ρ3(β1){10ρ∗1(β1) + 10ρ∗2(β1)− 14}

∀ρ3 ∈ ∆(S3).

(3.11)

Some of the possible cases are:

(i) 5
7
{ρ∗2(β1) + ρ∗3(β1)} > 1 which leads to the pure strategy profile β1, β1, β1 that is a

NE.

(ii) 5
7
{ρ∗2(β1) + ρ∗3(β1)} < 1 which leads to the pure strategy profile β2, β2, β2 that is a

NE.

(iii) 5
7
{ρ∗2(β1)+ρ∗3(β1)} = 1 which leads to a mixed strategy profile that we indeed showed

that it was also a NE.
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Verification of Existence of Equilibria in the Game (3.1)

Considering the game (3.1) analyzed above, the two multiple equilibria (pure Nash equilib-

ria) were (β1, β1, β1) = (20, 20, 20) and (β2, β2, β2) = (14, 14, 14) . We proved the existence

of mixed Nash equilibrium using the Brauwer’s fixed point theorem as shown below:

We had the game (3.1),

Γ1 = 〈N, (Si), (ui)〉,

where N is the number of players and Si = S1 × S2 × S3 is the action set for the players.

All the action sets Si are finite.

Using the method used to obtain the results for game (1.6), we let ∆ = ∆1 × · · · × ∆N

denote the set of mixed strategies for the players in the game (3.1). The finiteness of Si

ensures the compactness of ∆.

We then defined the gain function for player i, Gi. For a mixed strategy ρ ∈ ∆, we let

the gain for player i on action β ∈ Si be

Gi(ρ, β) = max{0, ui(β, ρj)− ui(ρi, ρj)},

where ρi is the mixed strategy for player i and ρj is the mixed strategy for all other players

in the game (3.1). The gain function represents the benefit a player gets by unilaterally

changing his strategy.

We now define g = (g1, · · · , gN) where gi(ρ, β) = ρi(β) +Gi(ρ, β) for ρ ∈ ∆, β ∈ Si.

We see that

∑
β∈Si

gi(ρ, β) =
∑
β∈Si

ρi(β) +Gi(ρ, β) = 1 +
∑
β∈Si

Gi(ρ, β) > 0.

We now use g to define f : ∆ 7→ ∆ as follows:
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Let

fi(ρ, β) =
gi(ρ, β)∑
β∈Si

gi(ρ, β)

for β ∈ Si.

It is easy to see that fi is a valid mixed strategy in ∆i. It is also easy to check that each

fi is a continuous function of ρ, and hence f is a continuous function. Now ∆ is the cross

product of a finite number of compact convex sets, and so we get that ∆ is also compact

and convex. Therefore we may apply the Brouwer fixed point theorem to f. So f has a

fixed point in ∆, call it ρ∗.

We claim that ρ∗ is a Nash equilibrium in the game (3.1). For this purpose it suffices to

show that

∀ 1 ≤ i ≤ N, ∀ β ∈ Si, Gi(ρ
∗, β) = 0.

This simply states that each player gains nothing by unilaterally changing his strategy,

which is exactly the necessary condition for Nash equilibrium.

Now assume that the gains are not zero. ∃ i, 1 ≤ i ≤ N and β ∈ Si such that

Gi(ρ
∗, β) > 0.

Note then that ∑
β∈Si

gi(ρ
∗, β) = 1 +

∑
β∈Si

Gi(ρ
∗, β) > 1.

So let

C =
∑
β∈Si

gi(ρ
∗, β).

We denote G(i, ·) as the gain vector indexed by actions in Si. Since

f(ρ∗) = ρ∗,

we clearly have that

fi(ρ
∗) = ρ∗i .
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Therefore we see that

ρ∗i =
gi(ρ

∗)∑
β∈Si

gi(ρ∗, β)
.

⇒ ρ∗i =
ρ∗i +Gi(ρ

∗, ·)
C

Cρ∗i = ρ∗i +Gi(ρ
∗, ·)

(C − 1)ρ∗i = Gi(ρ
∗, ·)

ρ∗i = (
1

C − 1
)Gi(ρ

∗, ·).

Since C > 1, we have that ρ∗i is some positive scaling of the vector Gi(ρ
∗, ·).

Now we claim that

ρ∗i (β)(Ui(βi, ρ
∗
j)− Ui(ρ∗i , ρ∗j)) = ρ∗i (β)Gi(ρ

∗, β)∀β ∈ Si.

To see this, we first note that if

Gi(ρ
∗, β) > 0,

then this is true by the definition of the gain function.

We assume that

Gi(ρ
∗, β) = 0.

By our previous statements we have that

ρ∗i (β) =
1

C − 1
Gi(ρ

∗, β) = 0,

and so the left term is zero, giving the entire expression as 0 as needed.

So finally we have that

0 = (Ui(βi, ρ
∗
j)− Ui(ρ∗i , ρ∗j)

=
∑
β∈Si

(ρ∗i (β)Ui(βi, ρ
∗
j)− Ui(ρ∗i , ρ∗j))

=
∑
β∈Si

(ρ∗i (β)(Ui(βi, ρ
∗
j)− Ui(ρ∗i , ρ∗j))
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=
∑
β∈Si

ρ∗i (β)Gi(ρ
∗, β)

by the previous statements.

=
∑
β∈Si

(C − 1)ρ∗i (β)2 > 0

where the last inequality follows since ρ∗i is a non-zero vector.

But this is a clear contradiction, so all the gain must indeed be zero.

Therefore ρ∗ is a mixed Nash equilibrium for the game (3.1) as needed.

More often, most situations involve population of players and to study multi-player games

effectively we need to deviate from classical game theory to Evolutionary Game Theory.

Edgar (2012)[19] presented an approach that deviates from classical game theory in regard

to rationality of players, belief about the behaviour of other players and the alignment

of such beliefs across players. This is important because in a multi-player game, some

players may make their choices irrationally. Evolutionary Game Theory will effectively

enable us determine equilibria of games played by a population of players, where the fit-

ness (payoff) of the players is derived from the success each player has in playing the game.

Together with Evolutionary Game Theory, new concepts were developed such as the Evo-

lutionary Stable Strategy which is applied to study the stability of populations [23]. ESS

is an equilibrium refinement of NE. It is a NE that is evolutionary stable in the sense that

if adopted by a population of players in a given environment, it cannot be invaded by any

alternative strategy that is initially rare. It is known that any ESS is an asymptotically

stable strategy [5]. In particular, in games with multiple ESS, we resolve the problem of

equilibrium selection by choosing the one that is stochastically stable.

Suppose in the game (3.1), a third pure strategy (attempting the third assignment, β3) is

introduced such that attempting the first assignment (β1) together is still more rewarding

than individually attempting either the second assignment (β2) or the third assignment
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(β3.) We denote the new game as

Γ2 = 〈N, (Si), (ui)〉 (3.12)

where N is the number of players, Si the available strategies, ui the payoffs to the players

and i = 1, 2, 3.

The game (3.12) is a pure strategy game with the strategy profile β = (β1, β2, β3), where

β1 represents the first pure strategy (choosing the first assignment),

β2 represents the second pure strategy (choosing the second assignment),

β3 represents the third pure strategy (choosing the third assignment) and N is the number

of players.

The rewards for β1 and β2 are maintained as in the game (3.1). However the third assign-

ment (β3) has the lowest reward of 5. We considered two cases: where the third assignment

(β3) could be completed successfully on its own and where the reward for β3 depends on

cooperation among the students. The result was twenty seven possible outcome cells and

their respective payoffs were calculated by examining each pair-wise payoff set among

players, and the payoffs for three players were calculated by considering the type of inter-

action they had as was done in the game (3.1). The first eight possible outcomes of this

game and their respective payoffs for the three players were the same as the outcomes in

the game (3.1). However the other 19 possible outcome cells and their respective payoffs

for the three players were calculated and the results were as displayed in Table (3.1).

In the game (3.12), we had multiple equilibria. Assuming that all players acted rationally,

the two pure Nash Equilibria are (β1, β1, β1) and (β2, β2, β2) profiles since no player had an

incentive to deviate from either the first or second equilibria. Since the two pure NE are

strict, then the two pure strategies of the game (3.12) are evolutionary stable strategies.

The mixed strategy that resulted from the two pure Nash Equilibria is also evolutionary

stable.

In some cases, some students decided to behave irrationally by attempting the third as-
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Table 3.1: Possible outcomes and their respective payoffs for the game (3.12)

OUTCOMES FIRST PAYOFF, Ui(β) SECOND PAYOFF,Ui(β)

β3, β3, β3 (10, 10, 10) (10, 10, 10)

β3, β3, β1 (10, 10, 0) (5, 5, 0)

β3, β1, β1 (10, 10, 10) (0, 10, 10)

β3, β1, β3 (10, 0, 10) (5, 0, 5)

β3, β3, β2 (10, 10, 14) (5, 5, 14)

β3, β2, β2 (10, 14, 14) (0, 14, 14)

β3, β2, β3 (10, 14, 10) (5, 14, 5)

β1, β2, β3 (0, 14, 10) (0, 14, 0)

β3, β2, β1 (10, 14, 0) (0, 14, 0)

β2, β3, β1 (14, 10, 0) (14, 0, 0)

β2, β3, β3 (14, 10, 10) (14, 5, 5)

β1, β3, β3 (0, 10, 10) (0, 5, 5)

β1, β3, β1 (10, 10, 10) (10, 0, 10)

β1, β1, β3 (10, 10, 10) (10, 10, 0)

β1, β3, β2 (0, 10, 14) (0, 0, 14)

β2, β1, β3 (14, 0, 10) (14, 0, 0)

β3, β1, β2 (10, 0, 14) (0, 0, 14)

β2, β2, β3 (14, 14, 10) (14, 14, 0)

β2, β3, β2 (14, 10, 14) (14, 0, 14)

signment, β3 which was less rewarding than the first two assignments. Since β1 and β2

were evolutionary stable strategies, any student with mutant behaviour who decided to

adopt the third strategy, β3, could not successfully invade this population of players.

More precisely, β1 is an ESS if either:

(i) the payoff for playing β1 against other players playing β1 is greater than that of

playing any other strategy β3 against players playing β1, for example,

Ui(β1, β1, β1) > Ui(β3, β1, β1),
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(ii) the payoff of playing β1 against itself is equal to that of playing β3 against β1 but

the payoff of playing β3 against β3 is less than that of playing β1 against β3, for

example

Ui(β1, β1, β1) = Ui(β3, β1, β1)

and

Ui(β1, β1, β3) > Ui(β3, β3, β3).

Alternatively, β2 is an ESS if either:

(i) the payoff for playing β2 against other players playing β2 is greater than that of

playing any other strategy β3 against players playing β2, for example,

Ui(β2, β2, β2) > Ui(β3, β2, β2),

(ii) the payoff of playing β2 against itself is equal to that of playing β3 against β2 but

the payoff of playing β3 against β3 is less than that of playing β2 against β3, for

example

Ui(β2, β2, β2) = Ui(β3, β2, β2)

and

Ui(β2, β2, β3) > Ui(β3, β3, β3).

Note that for both evolutionary stable strategies, either (i) or (ii) will do and that the

former is a stronger condition than the latter. It is most likely that players will always

adopt the evolutionary stable strategies since no mutant strategy can successfully invade

this game.

3.2.3 Identification of Efficient Nash Equilibria in the Game (3.1)

The game (3.1) modelled in this study is an example of coordination game with multiple

Nash equilibria. Some equilibria may give higher payoffs, some may be naturally more

salient, others may be safer and/or fairer. When there are several NE, how will a rational

agent decide on which of the several equilibria is the right one to settle upon? Attempts to

36



resolve this problem have produced a number of refinements to the concept of NE. This ne-

cessitated the need to identify which equilibria is efficient in the case of multiple equilibria.

Risk dominance and payoff dominance are two related refinements of NE solution concept

in game theory. A NE is considered payoff dominant if it is Pareto superior to all other

NE in the game. When faced with a choice among equilibria, all players would agree on

the payoff dominant equilibrium since it offers each player at least as much payoff as the

other NE. This implies that

ui(β1, β1, β1) > ui(β2, β2, β2).

In the game modelled in (3.1), (β1, β1, β1) is a payoff dominant equilibrium because each

player prefers this profile to that in which she chooses β2 alone. A player is better off

remaining attentive in attempting the first assignment, β1, than attempting the second as-

signment, β2, if all other players remain attentive since this will give them a higher reward.

Conversely, a NE equilibrium is considered risk dominant if it has the largest basin of

attraction. This implies that the more uncertainty players have about the actions of the

other player(s), the more likely they will choose a strategy corresponding to it. In the

game (3.1), (β2, β2, β2) is a risk dominant equilibrium because each player prefers this

profile to that in which she attempts the first assignment, (β1), alone. A player is better

off attempting the second assignment, (β2), than the first assignment, (β1), if no one else

attempts the first assignment because this option is less risky.

In conclusion, the Pareto dominant and the risk dominant strategies are both ESS. A

player who wishes to have a higher gain will always play the cooperative equilibrium

(attempting the first assignment with a higher payoff). The player who wishes to minimize

risks will play the defective equilibrium(attempting the second assignment because it is

safer).
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Summary, Conclusions and Recommendations

This study was set up with an objective of computing efficient Nash Equilibria for exper-

imental economic games. We refer back to the introductory section of this study where

we set up our objectives, and seek to answer the question of whether we met the study

objectives. We effectively managed to :

(i) define and describe a three-player experimental economic game (3.1)

(ii) identify all the Nash Equilibia in our experimental economic game (3.1)

(iii) compute and identify the most efficient Nash equilibrium in the game (3.1).

In conclusion, the experimental economic game (3.1) had two Pure Nash equilibria that

were evolutionary stable and the Mixed Nash equilibrium that resulted from randomiza-

tion of pure strategies was also evolutionary stable. Since all the Nash Equilibria in the

game (3.1) were evolutionary stable, they were all considered as most efficient equilibria

because any student with mutant behaviour could not successfully invade the population

of students playing the evolutionary stable strategy.

Alternatively, any student whose main objective was to maximize the points earned played

the payoff dominant strategy, β1, and this implied that (β1, β1, β1) was the most efficient

Nash Equilibrium in the game (3.1). On the other hand, students who were uncertain

about the strategies chosen by the other players and wanted to avoid the risk of completely

loosing in the game (3.1) played the risk dominant strategy, β2, and thus (β2, β2, β2) being

the risk dominant Nash Equilibrium was most efficient in that case.

A major contribution that this study has made is that since most situations in economics

such as cooperative projects and security dilemma are usually faced with multiple choices

which challenge players in this field, and if Economics strives to be a predictive Science,

then multiplicity of equilibria is a problem that needs to be dealt with. More often, in

selecting from multiple equilibria, economists make use of efficiency considerations and
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that not only equilibria that are payoff dominant should be chosen, but also risk domi-

nance should be considered as well.

In any Economic environment, we may have more than three firms interacting and this has

also necessitated further study on multi-player games not only in the case of multiplicity

of equilibria, but also in future, finding a more appropriate polynomial time algorithm for

efficient Nash equilibrium.
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Proof of Minimax Theorem

We refer to the minimax theorem (2.2.1) and the game (2.1). Given a matrix A, linear

programs LP1 and LP2 were derived. LP1 represented the optimal strategy of row player

while LP2 represented the optimal strategy for the column player. First an observation

was made that the linear program LP2 was the dual to the linear program LP1. If an LP

has an optimal solution, then its dual also has an optimal solution: moreover the optimal

value of the dual is the same as the optimal value of the original(primal) LP(strong du-

ality theorem)[17].

We considered the row player’s optimization problem, P1(maxminimization) and the col-

umn player’s optimization problem, P2(minmaximization).

Maximize

minj

m∑
i=1

aijxi

subject to
m∑
i=1

xi = 1, xi ≥ 0, i = 1, · · · ,m.

Therefore

P1 = maxx∈∆(S1)miny∈∆(S2)xAy.

Also minimize

maxi

n∑
j=1

aijyj

subject to
n∑
j=1

yj = 1, yj ≥ 0, j = 1, · · · , n.
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Therefore

P2 = miny∈∆(S2)maxx∈∆(S1)xAy.

Applying the strong duality theorem, it was observed that the problem P1 had an optimal

solution by the very nature of the problem. Since LP1 was equivalent to the problem P1,

the immediate implication was that LP1 had an optimal solution. Thus we had two LPs,

LP1 and LP2 which are duals of each other. Then by strong duality theorem, LP2 also

had an optimal solution and the optimal value for LP2 was the same as the optimal value

of LP1.

Let z∗, x∗1, · · · , x∗m be an optimal solution of LP1. Then we had

z∗ =
m∑
i=1

aij∗x
∗
i

for some j∗ ∈ {1, · · · , n}. By the feasibility of the optimal solution of LP1, we had

m∑
i=1

aij∗x
∗
i ≤

m∑
i=1

aijx
∗
i

for j = 1, · · · , n. This implied that

m∑
i=1

aij∗x
∗
i = minj

m∑
i=1

aijx
∗
i

= miny∈∆(S2)x
∗Ay.

Thus

z∗ = miny∈∆(S2)x
∗Ay.

Similarly, we let w∗, y∗1, · · · , y∗n be an optimal solution of LP2. Then

w∗ =
n∑
j=1

ai∗jy
∗
j
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for some i∗ ∈ {1, · · · ,m}. By the feasibility of the optimal solution of LP2, we had

n∑
j=1

ai∗jy
∗
j ≥

n∑
j=1

aijy
∗
j

for j = 1, · · · , n. This implied that

n∑
j=1

ai∗jy
∗
j = maxi

n∑
j=1

aijy
∗
j

= maxx∈∆(S1)xAy
∗.

Thus

w∗ = maxx∈∆(S1)xAy
∗.

By strong duality theorem, the optimal values of the primal and the dual were the same

and therefore z∗ = w∗. This meant that

miny∈∆(S2)x
∗Ay = maxx∈∆(S1)xAy

∗.

This proved the minimax theorem.
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