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Abstract

The electronic, optical and thermal properties of hexagonal and cubic phases of

Ge2Sb2Te5 (GST) have been calculated using density functional theory (DFT)

as implemented in the QUANTUM ESPRESSO computer package. GST is suc-

cessfully applied in optical memory such as rewritable CDs and is a promising

candidate for non-volatile electronic memory. In optical storage, the reflectiv-

ity contrast can be optimized towards the ultraviolet spectral range, thereby

increasing data storage capacity and doping with nitrogen is one way to achieve

this aim. In this study, the reflectivity of pure and nitrogen-doped GST have

been computed from the dielectric function, which is obtainable from DFT cal-

culations. We show that nitrogen doped GST has a higher reflectivity contrast

in the blue and ultraviolet spectral range and this reflectivity contrast increases

with rising nitrogen content for 10-20 at. % doping levels. Because DFT under-

estimates band gaps of semiconductors and insulators, since it is a ground-state

theory and does not take into account many-body effects, the Liouville-Lanczos

approach to time-dependent density functional theory (TDDFT) has been em-

ployed giving optical band gaps of about 0.48 eV and 0.66 eV for hexagonal and

cubic phases, respectively. This is in reasonably good agreement with optical

measurements which suggest a value of 0.5 eV for both phases. Analyzing the

thermal properties of GST can be useful in validating the structural models

such as those used in this study. Thermal properties have been calculated using

the quasi-harmonic approximation. The specific heat of both phases is found

to exceed the classical Dulong-Petit limit at high temperatures in agreement

with experiment. The heat capacity curves are found to exhibit the same trend

as experimental curves. The entropy of the hexagonal phase is found to vanish

at 0 K, in agreement with experiment.
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Chapter 1

Introduction

1.1 Introduction

Phase-change materials show a significant change in optical as well as electronic

properties upon undergoing a reversible crystalline-to-amorphous phase transi-

tion. Phase-change materials are often Te-based semiconducting or semimetal-

lic alloys, such as those on the pseudobinary line (GeTe)m(Sb2Te3)n or

AgInSbTe.

Upon phase transition, which is the result of a rearrangement in the micro-

scopic structure [1–3], the electrical conductivity can change by several orders

of magnitude [1] whereas the optical reflectivity can change (depending on layer

thickness and wavelength) by up to 30% [4]. Phase-change materials have been

successfully applied in optical storage media such as rewritable compact disks

(RW-CDs), digital versatile disks (DVDs) and blu-ray disks and are possible

candidates for a new generation of non-volatile electronic storage devices known

as phase-change random access memory (PCRAM) [1, 5, 6].

In optical storage, information is written using a focused laser beam to

locally melt the crystalline material and then rapidly quenching it. This results

in an amorphous part of the material which exhibits a lower reflectivity than

the surrounding crystalline background. Erasure is achieved by heating this

amorphous region above the crystallization temperature and thereafter gently

quenching it. The current state of a region on the storage device is then read

by a low-intensity laser pulse.

In electronic data storage, electric pulses are used to switch the material

between amorphous and crystalline phases. The difference in electrical con-

ductivity between the amorphous and crystalline phases is used to store data.

Among phase-change materials, Ge2Sb2Te5 (GST) is the most widely ap-
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plied and is the focus of scientific research because of its enhanced properties

in terms of speed of transition (∼= 50 ns), thermal stability and cyclability

(the number of write-erase cycles that can be performed by a storage device)

[7]. Most current applications of GST exploit the reversible amorphous-to-

crystalline phase transition. However, including the hexagonal phase offers the

possibility of a tri-state memory, hence the importance of hexagonal GST.

1.2 Statement of the Problem

First principles calculation of thermal properties such as heat capacity and

entropy are useful in validating structural models such as those used in this

study. By the time of writing, there was no first principles calculation of the

heat capacity of the cubic GST phase in the available literature. Also lacking

in the available literature is first principles calculation of the entropy of both

hexagonal and cubic GST.

Density functional theory (DFT) is known to underestimate band gaps of

insulators and semiconductors since it is a ground-state theory and does not

take into account many-body effects. Processes such as inter-band transitions

that involve electronic excitations are accounted for by post-DFT theories that

include many body perturbation theory (MBPT) and time dependent density

functional theory (TDDFT). In this study, a computationally efficient approach

to TDDFT, known as Liouville-Lanczos method has been used to estimate the

band gap of hexagonal and cubic GST.

The range of application of GST in optical storage is in the infrared. How-

ever, to increase data storage density it would be necessary to optimize the

reflectivity contrast towards shorter wavelengths (blue and ultraviolet spectral

range). Doping with impurity atoms such as nitrogen is one way to achieve

this. At the time of writing, no theoretical study had investigated this concept.

2



1.3 Objectives of the Study

The objectives of this study are:

1. To compute the temperature dependence of the heat capacity of cubic

Ge2Sb2Te5 and to compute the temperature dependence of the entropy

of cubic and hexagonal Ge2Sb2Te5 from first principles using QUANTUM

ESPRESSO computer code.

2. To estimate the optical band gap of hexagonal and cubic Ge2Sb2Te5

from optical absorption spectra calculated using the Liouville-Lanczos

approach to TDDFT as implemented in the QUANTUM ESPRESSO com-

puter code.

3. To investigate the effect of nitrogen doping on the optical properties

of hexagonal and cubic Ge2Sb2Te5 from first principles using QUANTUM

ESPRESSO computer code.

1.4 Significance of the Study

First principles calculation of the heat capacity and entropy as functions of

temperature are useful in validating the structural models such as those used

in this study. In particular, the heat capacity can reveal the presence of lattice

defects whereas the entropy can reveal the state of the structural configuration

(ordered or disordered lattice).

Estimating optical band gaps from absorption spectra calculated using the

Liouville-Lanczos approach to TDDFT serves to validate the theoretical model.

3



Reducing the wavelength of the writing laser (optimizing the reflectivity

contrast towards the ultraviolet spectral range) reduces the size of the written

bits thereby increasing the data storage density.

1.5 Limitations of the Study

This study does not consider amorphous GST since QUANTUM ESPRESSO only

takes crystalline structures as input.
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Chapter 2

Literature Review

2.1 Electronic Properties

In this section, we review ab initio electronic structure methods and their

accuracy in the calculation of electronic band gaps.

2.1.1 Density Functional Theory

One of the long-standing problems in theoretical physics and chemistry is the

solution of the Schrödinger equation for a many-atom interacting system. DFT

is a way of approaching any interacting problem by mapping it exactly to a

much easier-to-solve non-interacting problem. The main idea in DFT is the

substitution of the many-electron wave-function, which contains 3N variables

(N is the number of electrons and each electron has 3 spatial coordinates) with

the electron density n(r) (which only depends on 3 spatial coordinates) as the

main variable.

DFT rests on two fundamental mathematical theorems originally proved

by Hohenberg and Kohn in 1964 [10] and the derivation of a set of equations

by Kohn and Sham in 1965 [11]. The Thomas-Fermi equation [12, 13], which

is a predecessor to the Kohn-Sham equations of DFT [10, 11], can be derived

from DFT as an approximation.

Theorem I: For any system of interacting particles in an external potential

Vext, the external potential is uniquely determined, except for a constant, by

the ground-state particle density, nGS(r).

Corollary I : Therefore, all properties of the system are completely determined
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given only the ground-state density, nGS(r).

Theorem II: An energy functional, E[n(r)], can be defined, valid for any

external potential, Vext. For any external potential, Vext, the exact ground

state energy of the system is the global minimum of this functional, and the

density, n(r), that minimizes the functional is the exact ground-state density,

nGS(r).

Corollary II : The energy functional, E[n(r)], alone is sufficient to determine

the exact ground-state energy and density. In general, the excited states of

electrons must be determined by other means.

The Kohn-Sham energy functional can be written as

E[n(r)] = T [n(r)] +

∫

d3r Vext(r)n(r)

+
1

2

∫

d3r d3r′
n(r)n(r′)

|r − r′|
+ EXC [n(r)], (2.1)

where T [n(r)] is the kinetic energy of a system with density n(r) in the absence

of electron-electron interactions,

∫

d3r Vext(r)n(r)

is the interaction energy of electrons and the external potential,

1

2

∫

d3r d3r′
n(r)n(r′)

|r − r′|

is the classical Coulomb potential of electrons and EXC is the exchange-correlation

(XC) energy functional. The variational principle applied to eqn. (2.1) under

the constraint that the number of electrons is conserved yields

6



δE[n]

δn(r)
=

δT

δn(r)
+ Vext(r) +

∫

d3r′
n(r′)

|r − r′|
+
δEXC

δn(r)
= µ, (2.2)

where µ is the Lagrange multiplier associated with the requirement of constant

particle number. If we compare this with the corresponding equation for a

system with an effective potential Veff (r) but without electron-electron inter-

actions,

δE[n]

δn(r)
=

δT

δn(r)
+ Veff(r) = µ, (2.3)

it can be seen that the mathematical problems are identical, provided that

Veff (r) = Vext(r) +

∫

d3r′
n(r′)

|r − r′|
+
δEXC

δn(r)
, (2.4)

where

VH =

∫

d3r′
n(r′)

|r − r′|

is the Hartree potential that describes electronic self-interaction and

δEXC

δn(r)

is the exchange-correlation potential.

Hence, a system of interacting particles can be mapped onto a system of

non-interacting particles using the equation

[

−
~
2

2m
∇2 + Veff(r)

]

ψi = ǫiψi, (2.5)

where

n(r) =

N
∑

i=1

|ψi(r)|
2. (2.6)

7
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Initial Guess
n( )r

Solve the Kohn-Sham Equations

Calculate the Electron Density
and Total Energy

n( ); E[n( )]r r

Converged?

Output Quantities
n ( ); E[n ( )]0 0r r

Yes

No

Calculate the Effective Potential

Figure 2.1: Flow diagram showing the practical implementation of DFT.

The set of single particle equations (2.5) are known as the Kohn-Sham (K-

S) equations. To solve the Kohn-Sham equations [11] we need to define the

Hartree potential, and to define the Hartree potential we need to know the

electron density. But to define the electron density, we need to know the

single-electron wave-functions and to define single-electron wave-functions we

must solve the Kohn-Sham equations [11]. To break this cycle, the problem

is treated in an iterative way as outlined in Fig. 2.1. Eqns. (2.5) and (2.6)

are often called self-consistent field (SCF) equations and the process of solving

them is known as an SCF calculation.

There is just one critical complication to this otherwise beautiful formu-
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lation: To solve the single-particle Kohn-Sham equations [11], we must spec-

ify the exchange-correlation energy functional, EXC , whose exact form is not

known. Developing approximate functionals is the core problem of DFT. There

are a number of approximate functionals that have been found to give good

results in a large variety of physical problems. The local density approxima-

tion (LDA) uses only the local density to define the approximate exchange-

correlation functional. The LDA is exact in the limit of slowly-varying densi-

ties. The local spin-density approximation (LSDA) is a straightforward gener-

alization of the LDA to include electron spin. Numerous parameterizations for

the LDA energy functional have been reported in the literature, for example,

by Perdew and Zunger [14]. Although the density in systems of interest is gen-

erally rapidly varying, the use of LDA is justified a posteriori by its surprising

success at predicting physical properties in real systems. This success may be

due in part to the fact that the sum rule for the XC hole [15], which must

be obeyed by the real functional, is reproduced by the LDA. The best known

class of functionals after the LDA uses information about the local electron

density as well as the local gradient in the electron density. This approach

defines the generalized gradient approximation (GGA). In recent years, the

GGA has attracted a great deal of interest as one of the simplest approaches

to improve upon the LDA in first principles calculations of material properties.

The success of GGA derives from its ability to correct with a modest computa-

tional workload some deficiencies of LDA. Many forms of GGA functionals have

been suggested, and some of the most important (and all their parameters) are

given by Filippi et al [16]. For example, Perdew, Burke and Ernzerhof [17] have

described a functional form (PBE) that has several attractive features. The

PBE functional has been shown to correct substantially cohesive energies of a

large set of molecules [18] and solids [19–21], and to accurately predict bond

lengths in weakly bonded systems [22–25]. However, calculations on covalent

solids indicate a tendency of the PBE scheme to underestimate bulk moduli

9



[20, 21, 26]. Recently, Perdew and Wang have proposed a new GGA functional,

the Perdew-Wang 1991 (PW91) [27], which shares several properties with the

exact XC functional. The PW91 functional is more satisfactory from a con-

ceptual point of view and it is, therefore, expected to improve over previous

proposals. However, recent applications of the PW91 functional do not always

confirm these expectations [28].

More recently, a new class of very promising DFT functionals based on the

GGA was developed by including additional semi-local information beyond the

first-order density gradient contained in the GGA. These functionals, which are

termed meta-GGA (M-GGA) depend explicitly on higher order density gradi-

ents. These methods represent a significant improvement in the determination

of properties such as atomization energies. However, they are more technically

challenging, with several difficulties in terms of numerical stability. Several

M-GGA functionals for the exchange functional, correlation functional or both

have been developed. Examples include B95 [29], KCIS [30], TPSS [31] and

VSXC [32].

Another group of functionals known as Hybrid GGA (H-GGA) combine

the XC of a conventional GGA method with a percentage of Hartree-Fock

exchange. Examples of H-GGA functionals include B3LYP [29, 33], B3P86

[29, 33], B3PW91 [29, 33], B97-1 [34], B97-2 [34], B98 [35], BH&HLYP [33, 36],

MPW1K [27, 37], mPW3LYP [27, 37], O3LYP [36] and X3LYP [33, 36].

Hybrid meta-GGA (HM-GGA) functionals are based on a similar concept

to the M-GGA functionals and are under active development. The differ-

ence lies in the fact that they start from M-GGA instead of standard GGAs.

Hence, these methods depend on the Hartree-Fock exchange, the electron den-

sity and its gradient, and the kinetic energy density. Examples of HM-GGA

XC functionals include B1B95 [29, 33], BB1K [29, 33], MPW1B95 [29, 37],

MPW1KCIS [27, 37], PBE1KCIS [17, 30], TPSS1KCIS [30, 31] and TPSSh

[31]. These methods represent an improvement over the previous formalisms,
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particularly in the determination of barrier heights and atomization energies.

It is clear from the foregoing discussion that density functional calculations

cover a variety of approximations to the XC energy functional. The number

and sophistication of available density functionals is rapidly increasing. The

higher the sophistication, the greater the accuracy but at the expense of more

computational resources.

Apart from hybrid functionals, DFT significantly underestimates the band

gaps of insulators and semiconductors since it is a ground-state theory and does

not take into account many-body effects (Appendix A). Optical measurements

suggest an optical band gap of about 0.5 eV for both hexagonal and cubic GST

[38, 39]. However, theoretical studies based on DFT suggest smaller band gaps.

Using the GGA for the XC energy functional, Lee and Jhi [40] have calculated

an indirect band gap of about 0.26 eV along the Γ-K line for the sequence of

Kooi and de Hosson [41]. In yet another theoretical study, Tsafack et al [8],

using the LDA for the XC energy functional, found out that hexagonal GST is

semi-metallic whereas the cubic phase has a direct band gap of about 0.2 eV

at Γ and an indirect band gap of about 0.1 eV along the Γ-K line. Over the

years, ab initio theories and frameworks which are able to describe electronic

excitations and spectroscopy have become available. These include many-body

perturbation theory (MBPT) and time-dependent density functional theory

(TDDFT). In this work, the optical absorption spectra of crystalline GST

are calculated using TDDFT and the GW0 approximation of MBPT. TDDFT

extends the basic ideas of ground-state DFT to the treatment of excitations

or, generally, time-dependent phenomena. On the other hand, MBPT is a

way to account for electron correlation by treating it as a perturbation to the

Hartree-Fock wave function.
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2.1.2 Time Dependent Density Functional Theory

This brief review of TDDFT is based on Ref. [42]. For simplicity, the Hartree

atomic units (e = ~ = m = 1) have been used and the spin degrees of freedom

are excluded in the notation.

As with DFT, the basic variable is the electron density, n(r), which is

obtained with the help of a fictitious system of non-interacting electrons. The

electrons feel an effective time-dependent potential. The exact form of this

potential is unknown and has to be approximated. If the time-dependent

potential is weak, it is sufficient to resort to linear-response theory to study

the system. In this way, it is possible to calculate, for example, the optical

absorption spectra. On the other hand, if the time-dependent potential is

very strong, a full solution of the Kohn-Sham equations is required. We will

be concerned with the former case. The Runge-Gross theorem [43] is the

time-dependent extension of the ordinary Hohenberg-Kohn theorems [10]. The

Runge-Gross theorem asserts that all observables can be calculated with the

knowledge of one-body density, n(r). Nothing is, however, stated on how

to calculate n(r). To avoid the cumbersome task of solving the interacting

Schrödinger equation, Kohn and Sham utilized the idea of an auxiliary non-

interacting Kohn-Sham electrons, subject to an external local potential, vKS.

This potential is unique, by virtue of the Runge-Gross theorem applied to the

non-interacting system and is chosen so that the density of the Kohn-Sham

electrons is the same as the density of the original interacting system. In

the time-dependent case, these Kohn-Sham electrons obey the time-dependent

Schrödinger equation:

i
∂

∂t
ψi(r, t) =

[

−
∇2

2
+ vKS(r, t)

]

ψi(r, t). (2.7)

The density of the interacting system can then be obtained from the time-
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dependent Kohn-Sham orbitals,

n(r, t) =
N
∑

i

|ψ(r, t)|2 . (2.8)

The Kohn-Sham potential is conventionally given by

vKS(r, t) = vext(r, t) + vH + vXC , (2.9)

where vext(r, t) is the external potential, vH(r, t) accounts for the classical elec-

trostatic interaction between the electrons:

vH(r, t) =

∫

d3r′
n(r, t)

|r − r′|
, (2.10)

and vXC accounts for all the non-trivial many-body effects and can be written

as the functional derivative of the XC part of a new action functional Ã [44]:

vxc(r, t) =
δÃ

δn(r, τ)

∣

∣

∣

∣

∣

n(r,t)

, (2.11)

where τ stands for the Keldish pseudo time.

The exact expression for vXC as a functional of the density is not known and

approximations are in order. In contrast to stationary-state DFT [10, 11] where

very good XC functionals exist, approximations to vXC are still in their infancy.

The first and simplest of these is the adiabatic local density approximation

(ALDA). More recently, other functionals have been proposed such as the time-

dependent exact-exchange (EXX) [45].

As already noted, for a small external time-dependent potential, perturba-

tion theory is sufficient to determine the behavior of the system. The focus is

in the linear change of the density that allows for the calculation of the optical

absorption spectrum. If the perturbing potential is well-behaved (like almost

always in physics) the density can be expanded in a perturbative series:

n(r, t) = n(0)(r) + n(1)(r, t) + n(2)(r, t) + · · · , (2.12)
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where n(1) is the component of n(r, t) that depends linearly on the perturbation

v(1), n(2) depends quadratically, etc. In frequency space, it reads:

n(1)(r, ω) =

∫

d3r′χ(r, r′, ω)v(1)(r′, ω), (2.13)

where χ is the linear electron-density response function of the system. The

evaluation of χ through perturbation theory is demanding. However, use can

be made of TDDFT to simplify this process.

The linear change in density using the Kohn-Sham system is given by:

n(1)(r, ω) =

∫

d3r′χKS(r, r
′, ω)v

(1)
KS(r

′, ω), (2.14)

where χKS is the density response function of a Kohn-Sham system (which is

much easier to solve than the fully-interacting χ) and v
(1)
KS is the linear change

in vKS. v
(1)
KS can be calculated explicitly from the definition of the Kohn-Sham

potential:

v
(1)
KS(r, t) = v(1)(r, t) + v

(1)
H (r, t) + v

(1)
XC(r, t), (2.15)

where v(1) is the variation of the external potential and v
(1)
H is the change in

the Hartree potential:

v
(1)
H (r, t) =

∫

d3r′
n(1)(r′, t)

|r − r′|
. (2.16)

Finally, v
(1)
XC(r, t) is the linear part in n(1) of the functional v

(1)
XC [n]:

v
(1)
XC(r, t) =

∫

dt′
∫

d3r′
δvXC(r, t)

δn(r′, t′)
n(1)(r′, t′). (2.17)

It is useful to introduce the exchange-correlation kernel, fXC , defined by:

fXC(rt, r
′t′) =

δvXC(r, t)

δn(r′, t′)
. (2.18)

Combining the previous results and transforming to frequency space, it can be
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shown that

n(1)(r, ω) =

∫

d3r′χKS(r, r
′, ω)v(1)(r, ω)

+

∫

d3x

∫

d3r′χKS(r,x, ω)

[

1

|x − r′|
+ fXC(x, r

′, ω)

]

n(1)(r′, ω).

(2.19)

From eqns. (2.13) and (2.19) trivially follows the relation:

χ(r, r′, ω) =χKS(r, r
′, ω)

+

∫

d3x

∫

d3x′χ(r,x, ω)

[

1

|x − x′|
+ fXC(x,x

′, ω)

]

χKS(x
′, r′, ω).

(2.20)

This equation is a formally exact representation of the linear density response.

Current implementations of TDDFT fall into three broad categories. In

the first, the TDDFT charge susceptibility is obtained from the independent-

electron susceptibility using a Dyson-like linear equation [46, 47]; in the sec-

ond, the poles of the susceptibility, corresponding to excitation energies, are

addressed as the eigenvalues of a suitable linear operator equation [47, 48];

finally, the full spectrum of a system can be transformed by Fourier analyz-

ing all the time series generated by the expectation of some observable (such

as the dipole) calculated along the perturbed time-evolution of the TDDFT

molecular orbitals [49, 50].

A new approach to linearized TDDFT has been recently introduced allowing

one to simulate molecular systems made of up to several hundred atoms. This

is the Liouville-Lanczos approach, originally proposed by Walker et al [51] and

implemented in the turboTDDFT package [52] of the QUANTUM ESPRESSO

distribution [9]. This approach has been used in this study to calculate the

optical absorption spectra of hexagonal and cubic GST.
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2.1.3 Many Body Perturbation Theory

This brief review of many-body perturbation theory is based on Refs. [53, 54].

Band gaps are experimentally measured by photoelectron spectroscopy. In

direct photoelectron spectroscopy, a photon impinges on a sample and ejects

an electron whose energy is measured. In inverse photoelectron spectroscopy,

an electron is injected into a sample and the energy of the emitted photon is

measured. The fact that the independent-electron picture breaks down due

to the strong Coulomb interaction puts in doubt single-electron concepts such

as band structure or Fermi surface. However, the nearly-independent picture

can be retained if quasi-particles, instead of electrons or holes, are considered.

The addition (removal) of an electron in indirect (direct) photoelectron spec-

troscopy creates (annihilates) an ensemble consisting of the bare electron and

its oppositely charged Coulomb hole. This ensemble behaves in many ways as

a single particle and is called a quasi-particle. The Coulomb hole reduces the

total charge of the quasi-particle and the effective interaction between quasi-

particles is screened and considerably weaker than the bare Coulomb interac-

tion between electrons. The screened interaction is sufficiently small so that

the quasi-particle can be regarded as approximately independent. Many-body

perturbation theory is the theoretical framework that links the N -particle and

the N ± 1-particle systems and the central variable is the time-ordered Green

function, G(r′t′, r′t′).

The Green function Ge(rt, r′t′) is defined such that i~Ge(rt, r′t′) is the prob-

ability amplitude for the propagation of an additional electron from (r′t′) to

(rt) in a many-electron system. Similarly, Gh(r′t′, rt) is defined as the Green

function for the propagation of an additional hole from (rt) to (r′t′). For con-
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venience, the two can be combined in one time-ordered Green function

G(rt, r′t′) = Ge(rt, r′t′)−Gh(r′t′, rt)

= −
i

~

〈

ΨN
0

∣

∣

∣
T̂
[

ψ̂(rt)ψ̂†(r′t′)
]
∣

∣

∣
ΨN

0

〉

, (2.21)

where T̂ is the time ordering operator and ψ̂† and ψ̂ are the creation and

annihilation operators, respectively. Consider the time-ordered Green function

G(r, r′; τ) of a stationary system with τ = t− t′. It can be shown that

G(r, r′; τ) =−
i

~

∑

i

ψN+1
i (r)ψN+1∗

i (r′)e−iǫN+1
i τ/~θ(τ)

+
i

~

∑

i

ψN−1
i (r)ψN−1∗

i (r′)e−iǫN−1
i τ/~θ(−τ), (2.22)

where the sums run over the ground state and all the excited states of the

N−1-particle andN+1-particle systems and θ(τ) is the Heaviside step function

defined by

θ(τ) =







1, if τ > 0.

0, if τ < 0.
(2.23)

The Green function contains the complete excitation spectrum of the N ± 1-

particle system. Fourier transformation of eqn. (2.22) to the frequency axis,

using the Fourier transform of the Heaviside step function, finally yields the

Lehmann representation of the Green function

G(r′, r;ω) =
∑

i

ψN+1
i (r)ψN+1∗

i (r)

~ω − ǫN+1
i + iη

+
∑

i

ψN+1
i (r)ψN−1∗

i (r)

~ω − ǫN−1
i − iη

, (2.24)

where η is an infinitesimal positive number and ǫN±1
i are the true many-particle

excitation energies corresponding to the excitations of an N + 1-particle and

N − 1-particle systems and hence to those processes measured in inverse and

direct photoelectron spectroscopy.

In connection with eqn.(2.22) can be defined the spectral function, A(r, r′;ω),
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that is, the density of the excited (or quasiparticle) states that contribute to

the electron or hole propagation:

A(r, r′;ω) =
∑

i

ψi(r)ψ
∗
i (r

′)δ(~ω − ǫi). (2.25)

Eqn. (2.24) can then be re-written as an integral over frequencies:

G(r, r′;ω) = ~

∫ ∞

−∞

A(r, r′;ω)

~ω − ~ω′ + sgn(~ω′ − µ)iη
dω. (2.26)

It can be shown that the time-ordered Green function, G(r, r′;ω), of the inter-

acting system obeys an integral equation, the Dyson equation:

G(r, r′;ω) =G0(r, r
′;ω)

+

∫ ∫

G0(r, r
′′;ω)

∑

(r′′, r′′′;ω)G(r′′′, r′;ω)d3r′′d3r′′′, (2.27)

where G0(r, r
′;ω) is the Green function of a mean-field system defined by

ĥ0(r)ϕ
0
i (r) = ǫ0iϕ

0
i (r), (2.28)

with the single-particle hamiltonian

ĥ0 = −
~
2

2m
∇2 + Vext(r) +

e

4πε0

∫

n(r)

|r − r′|
d3r′. (2.29)

The Green function, G0(r, r
′;ω), is obtained from eqn. (2.24) with the wave

functions ϕ0
i and energies ǫ0i . The non-local and frequency-dependent function,

Σ(r, r′;ω), is the non-Hermitian self-energy operator, which contains all many-

body XC effects beyond the electrostatic Hartree potential. By inserting the

Lehmann representation (eqn. (2.24)) into eqn. (2.27), it can be shown that

the wave functions ψi and energies ǫi obey the quasi-particle equation

ĥ0(r)ψi(r) +

∫

Σ(r, r′; ǫi/~)ψi(r
′)d3r′ = ǫiψi(r), (2.30)

which is non-linear in ǫi. Although very similar to one-particle equations of

mean-field approaches like Hartree, Hartree-Fock and DFT, it does not con-
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stitute a mean-field formulation, since the self-energy takes all dynamic many-

electron processes into account. The Dyson equation (2.27) can be rewritten in

the form of a geometric series by subsequently replacing G on the right-hand

side by G0 +G0ΣG, which leads to

G = G0 +G0ΣG0 +G0ΣG0ΣG0 +G0ΣG0ΣG0 + . . . . (2.31)

This is a typical equation of scattering theory, where the different terms of the

geometric series describe single, double, triple, etc., scattering processes and
∑

is the scattering potential. Such a succession of scattering processes can be

illustrated by Feynman diagrams. It is more natural to describe the Coulomb

interaction (v) in terms of the screened Coulomb potential (W ) and then write

down the self-energy (
∑

) as a perturbation series in terms of W . Keeping

just the first term of such an expansion gives the GW approximation. The

self-energy can be obtained from a self-consistent set of Dyson-like equations

known as Hedin’s equations:

P (1 2) = −i

∫

d(3 4)G(1 3)G(4 1+)Γ(3 4, 2), (2.32a)

W (1 2) = W (1 2) +

∫

d(3 4)W (1 3)P (3 4)W (4 2), (2.32b)

Σ(1 2) = i

∫

d(3 4)G(1 4+)W (1 3)Γ(4 2, 3), (2.32c)

G(1 2) =GKS(1 2)

+

∫

d(3 4)GKS(1 3)
[

∑

(3 4)− δ(3 4)VXC(4)G(4 2)
]

, (2.32d)

Γ(1 2, 3) =δ(1 2)δ(1 3)

+

∫

d(4 5 6 7)
δΣ(1 2)

δG(4 5)
G(4 6)G(7 5)Γ(6 7, 3), (2.32e)

where the space-time coordinates (r1, t1) are denoted by the natural number 1
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etc. P is the irreducible polarization, Γ is the so-called vertex function and

GKS(r, r
′;ω)Σi

ϕKS
i (r)ϕKS∗

i (r′)

ω − ǫKS
i − sgn(µ− ǫKS

i )iη
, (2.33)

with GKS being the Green function of the Kohn-Sham (KS) system and ϕKS
i

the corresponding KS wave functions with eigenenergies ǫKS
i . The GW approx-

imation is arrived at by eliminating the 2nd term in the vertex function (eqn.

(2.32e)) in such a way that eqns. (2.32a) and (2.32b) reduce to

P (1 2) = −iG(1 2)G(2 1+), (2.34a)

Σ(1 2) = iG(1 2+)W (1 2). (2.34b)

That is, in GW the screened Coulomb potential is calculated at the random

phase approximation (RPA) level and
∑

is just the direct product of G andW

(and hence the name). In most GW applications, self-consistency is set aside,

and P and Σ are obtained by setting G = GKS in eqns. (2.34a) and (2.34b).

The interacting Green function is then obtained by solving eqn. (2.32d) once.

Furthermore, in many cases there is almost a complete overlap of the quasi-

particle (QP) and Kohn-Sham (KS) wave functions. Consequently, the full

resolution of the quasi-particle eqn. (2.30) may be circumvented. Hence, EQP
i

is given as a first order perturbation of the KS energy, ǫKS
i :

EQP
i ≃ ǫKS

i +
〈

ϕKS
i

∣

∣Σ(ǫKS
i )− VXC −∆µ

∣

∣ϕKS
i

〉

, (2.35)

where ∆µ has been added to align the chemical potential before and after

the inclusion of the GW correction. The procedure has been summarized in

Fig. 2.2. Non-self-consistent GW (i.e. G0W0) has been applied to calculate

QP properties (band structures and life times) for a variety of systems. The

G0W0 approximation is able to fairly reproduce the experimental band gaps

of many semiconductors and insulators and so circumventing the well-known

failure of LDA when calculating excitation gaps. However, G0W0 has some
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Figure 2.2: Flow diagram showing the practical implementation of the GW
method.

limitations. In this study, the partially self-consistent GW0 method has been

used to compute the absorption spectra of hexagonal and cubic GST. Although

the fully self-consistent GW method is designed for analysis of excited states

of the (N ± 1)-electron systems, the treatment of optical absorption processes

where the particle number does not change due to the promotion of valence

electrons into unoccupied conduction states rather than emission requires the

simultaneous description of two particles: an electron and a hole (i.e. an

exciton). This requires a two-particle Green function. In this case many-

body perturbation theory leads to the Bethe-Salpeter equation (BSE). Another

alternative is the time-dependent perturbation theory, which also gives access

to the excited states of an N -electron system.
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2.2 Thermal Properties

In the theory of lattice dynamics, the harmonic approximation (HA) can be

used to calculate the phonon dispersion spectra within the framework of density

functional perturbation theory (DFPT). However, in the HA the vibrations in

the crystal are independent of the interatomic distance, that is, the vibrational

energy does not depend on volume and so the equilibrium lattice parameter

does not depend on temperature. A proper way to take anharmonic effects

into account is to calculate all unharmonic terms, but this is not a reasonable

task. A simple way to take anharmonic effects into account is through the

Quasiharmonic Approximation (QHA). QHA is a phonon-based model used to

treat frequencies as volume dependent so as to account for thermal effects.

The low-temperature heat capacity of solids is experimentally found to

vanish as the cube of the temperature, with a cubic coefficient that is sys-

tem specific [55, 56]. This is contrary to the predictions of classical statistical

mechanics according to which the heat capacity of a system of harmonic os-

cillators is neither dependent on the temperature nor its spectrum. One of

the landmarks of modern solid-state physics that greatly contributed to the

establishment of our present quantum mechanical picture of matter is the De-

bye model for the heat capacity of solids [55]. This model naturally explains

the low-temperature specific heat of solids in terms of the (quantum) statis-

tical mechanics of an ensemble of harmonic oscillators, which can in turn be

periodically described as a gas of non-interacting quasi-particles obeying the

Bose-Einstein statistics (i.e. phonons).

The internal energy of a single harmonic oscillator of angular frequency, ω,

in thermal equilibrium at temperature, T , is

< E >=
~ω

2
+

~ω

e
~ω

kBT − 1
, (2.36)

where kB is the Boltzmann constant. By differentiating with respect to tem-
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perature the sum over all the possible values of the phonon momentum in the

Brillouin zone (BZ) of eqn. (2.36), it can be shown that the isochroic specific

heat of a crystal is

CV (T ) =
1

V

∑

q,ν

~ω(q, ν)n′(q, ν), (2.37)

where ω(q, ν) is the frequency of the ν-th mode (phonon) at point q in the BZ,

n′(q, ν) =
∂

∂T
[e

( ~ω(q,ν)
kBT

)
− 1]−1, (2.38)

and the sum is extended in the first BZ. By assuming that there are three

degenerate modes at each point of the BZ, each one with frequency, ω(q, ν) =

c|q|, c being the velocity of sound, and converting the sum in eqn. (2.37)

into an integral, the resulting expression for the heat capacity, valid in the

low-temperature limit, is

CV =
1

Ω

12π4

5
kB

(

T

ΘD

)3

, (2.39)

where Ω is the volume of the unit cell and ΘD, given by

ΘD =

(

2π~

kB

)

c

(

3

4πΩ

)
1
3

, (2.40)

is the so-called Debye temperature. In the Born-Oppenheimer approximation

[57], the vibrational properties of molecules and solids are determined by their

electronic structure through the dependence of the ground-state energy on

the co-ordinates of the atomic nuclei [58]. At low temperatures, the ampli-

tudes of atomic vibrations are much smaller than interatomic distances, and

one can assume that the dependence of the ground-state energy on the devi-

ation from equilibrium of the atomic positions is quadratic. In this so called

harmonic approximation (HA), energy differences can be calculated from elec-

tronic structure theory using static response functions [59, 60] or perturbation

theory [61].
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As already noted, in the HA vibrational frequencies do not depend on in-

teratomic distances, so that the vibrational contribution to the crystal internal

energy does not depend on volume. As a consequence, constant-pressure and

constant-volume specific heats coincide in this approximation, and the equi-

librium volume of a crystal does not depend on temperature. Other short-

comings of the HA include its prediction of an infinite thermal conductivity,

infinite phonon lifetimes, and the independence of the vibrational spectra (as

well as the related properties: elastic properties, sound velocities e.t.c.) on

temperature, to name but a few. A proper account of anharmonic effects on

the static and dynamical properties of materials would require the calculation

of phonon-phonon interaction coefficients for all modes in the BZ zone. Al-

though the leading terms of such interactions can be computed even from first

principles [62, 63] - and the resulting vibrational line widths have in fact been

evaluated in some cases [63–65] - the extensive sampling of the phonon-phonon

interactions over the BZ required for free-energy evaluations remains a daunt-

ing task. The simplest generalization of the HA, which corrects for most of

the above-mentioned deficiencies, while not requiring any explicit calculation

of the anharmonic interaction coefficients, is the QHA.

In the QHA, the crystal free energy is assumed to be determined by the

vibrational spectrum via the standard harmonic expression:

F (X, T ) = U0(X) +
1

2

∑

q,ν

~ω(q, ν|X)

+ kBT
∑

q,ν

log
(

1− e
(~ω(q,ν)|X)

kBT

)

, (2.41)

where X indicates any global static constraint upon which vibrational frequen-

cies may depend (most commonly just the volume V , but X may also include

anisotropic components of the strain tensor, some externally applied fields, the

internal distortions of the crystal unit cell or other thermodynamic constraints

that may be applied to the system), and U0(X) is the zero-temperature energy
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of the crystal as a function of X . In the case where X = V , differentiation of

eqn. (2.41) with respect to the volume gives the equation of state:

P = −
∂F

∂V

= −
∂Uo

∂V
+

1

V

∑

q,ν

~ω(q, ν)γ(q, ν)

(

1

2
+

1

e
~ω(q,ν)
kBT

−1

)

, (2.42)

where

γ(q, ν) = −
V

ω(q, ν)

∂ω(q, ν)

∂V
(2.43)

are the so-called Grüneisen mode parameters. In a perfectly harmonic crys-

tal, phonon frequencies do not depend on the interatomic distances as men-

tioned earlier and, hence, do not depend on volume too. In such a harmonic

crystal, (2.42) implies that the temperature derivative of pressure at fixed vol-

ume vanish, that is, (∂P/∂T )V = 0. It follows that the thermal expansivity,

β = V −1(∂V/∂T )P , which is given by the thermodynamic relation:

β = −
(∂P/∂T )V
(∂P/∂V )T

=
1

BT

(

∂P

∂T

)

V

=
1

BT

∑

q,ν

~ω(q, ν)γ(q, ν)n′(q, ν), (2.44)

where BT = V (∂P/∂V )T is the crystal bulk modulus, would also vanish for

perfectly harmonic crystals. Inspired by eqn. (2.37), let us define

CV (q, ν) =
~ω(q, ν)n′(~ω)

V
, (2.45)

as the contribution of the ν-th normal mode at the q-point of the BZ to the

total specific heat and

γ̂ =

∑

q,ν γ(q, ν)CV (q, ν)
∑

q,ν CV (q, ν)
, (2.46)

as the weighted average of the various Grüneisen parameters. In terms of γ,
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the thermal expansivity simply reads:

β =
γ̂CV

BT

. (2.47)

The vanishing of the thermal expansivity in the HA would also imply the

equality of the constant-pressure and the constant-volume specific heats. By

imposing the constraint that the total differentials of the entropy as a function

of pressure and temperature or of volume and temperature coincide, and by

using the Maxwell identities, one can show that [56]:

CP − CV = −
T

V

(

∂P

∂V

)

T

(

∂V

∂T

)

P

= TBTβ
2. (2.48)

We conclude by noting that the ansatz given by eqn. (2.41) for the crystal free

energy in terms of its vibrational frequencies, which are volume-dependent,

gives immediate access to all the equilibrium thermal properties of the system.

Whether this implicit account of anharmonic effects through the volume de-

pendence of the vibrational frequency only is sufficient to describe the relevant

thermal effects, or an explicit account of the various phonon-phonon interac-

tions is in order (calculating each anharmonic term), is a question that can

only be addressed by extensive computational experience and comparison to

experiment.

In one theoretical study [8], the specific heat capacity for hexagonal GST

as a function of temperature has been calculated by integrating the vibrational

density of states. In this work, we calculate the heat capacity of cubic GST as

well using the QHA. Moreover, we calculate the entropy of hexagonal GST as

a function of temperature.
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2.3 Effect of Nitrogen Doping on Hexagonal

and Cubic Ge2Sb2Te5

For electronic phase-change memory to be viable, the writing current has to

be reduced so as to minimize energy consumption and dissipation. One of the

proposals put forward to address this issue is to dope GST with a small amount

of impurity atoms such as N, O, Sn, Si, In and Ag [66–74]. Among these, N

seems to be the most promising method to improve the physical properties by

increasing the resistivity of the crystalline film [66].

Another driving force for research in new phase-change materials is to de-

crease the wavelength of the laser used for writing, reading and erasing bits. By

decreasing the wavelength, the size of the written bits also decreases and hence

the storage density increases [75]. Pure GST possesses a high optical contrast

in the red and infrared spectral range. Decreasing the wavelength beyond vis-

ible blue light is very challenging since light-emitting diodes are not available

for this spectral range. Hence, this requires a different approach. This study

explores the possibility of incorporating N atoms into GST to optimize the

reflectivity contrast in the blue and ultraviolet regions of the electromagnetic

spectrum. At the time of writing, no theoretical study had investigated this

concept.
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Chapter 3

Methodology

In this study, the electronic structure calculations were performed within the

framework of density functional theory as implemented in the QUANTUM

ESPRESSO distribution [9]. Plane wave basis sets were used for the expansion

of atomic orbitals. The electron-ion interactions were described using pseu-

dopotentials.

3.1 Choice of Pseudopotentials

In describing ion-electron interactions, this study makes use of two sets of pseu-

dopotentials. The first set consists of the norm-conserving pseudopotentials

Te.pz-bhs.UPF, Sb.pz-bhs.UPF and Ge.pz-bhs.UPF [76], generated according

to the Bachelet-Hamann-Schluter (BHS) scheme without non-linear correc-

tions, the exchange-correlation energy functional being in the Local Density

Approximation (LDA) of Perdew and Zunger (PZ) [14]. In this case, only the

valence electrons were considered. The valence configurations are Ge 4s24p2,

Sb 5s25p3 and Te 5s25p4.

The second set consists of the norm-conserving pseudopotentials Te.pbe-

hgh.UPF, Sb.pbe-hgh.UPF and Ge.pbe-hgh.UPF [77, 78] with the exchange and

correlation energy in the general gradient approximation (GGA) of Perdew,

Burke and Ernzerhof (PBE) [17]. In this case, the Ge 3d, Sb 4d and Te 4d

semicore electrons were considered alongside the Ge 4s24p2, Sb 5s25p3, and

Te 15s25p4 valence electrons. Lee and Jhi [40] and Do et al [79] have shown that

including the Te 4d electrons in the valence configuration has an effect on the

value of the calculated lattice constants. If more core states are considered, the

accuracy of the calculations is improved, although at a higher computational

cost. Van Lenthe et al [80] have noted the effect of spin-orbit coupling on
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bond distances and, hence, lattice parameters, on such heavy atoms as Ge, Sb

and Te. An accurate description of spin-orbit coupling requires a relativistic

treatment. The pseudopotentials used in this study do not take into account

relativistic effects. This is due to the limitations of the pseudopotential library

at the time of this study.

3.2 Convergence Criteria

The size of the basis set is determined by the kinetic cut-off energy. The

electronic states in a crystal are given by the Bloch waves,

ψk(r) =
∑

G

ck,G exp[i(k + G) · r], (3.1)

where G is the reciprocal lattice vector, each state having kinetic energy,

E =
~
2

2m
|k + G|2. (3.2)

It is usual to truncate the infinite sum in eqn. (3.1) such that

~
2

2m
|k + G|2 < Ecut, (3.3)

where Ecut is the kinetic energy cutoff. Hence, the infinite sum reduces to

ψk(r) =
∑

|k+G|<Gcut

ck,G exp[i(k + G) · r]. (3.4)

In this study, the kinetic energy cutoff was set to 50 Ry for both hexagonal

and cubic GST.

DFT calculations involve the evaluation of integrals of the form:

Ω

(2π)3

∫

IBZ

H(k)dk =
1

Ω′

∫

IBZ

H(k)dk, (3.5)

where Ω and Ω′ are the unit cell volumes in real and reciprocal space, re-

spectively and IBZ denotes the irreducible Brillouin zone. In this study, the
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Brillouin zone (BZ) integration was performed using an un-unshifted k-point

grid of 8 × 8 × 2, generated according to the Monkhorst-Pack scheme [81].

Monkhorst-Pack grids are now the most widely used because they lead to a

uniform set of points determined by a simple formula valid for any crystal:

kn1,n2,n3 ≡

3
∑

i

2ni −N − 1

2N
Gi, (3.6)

where G are the primitive vectors of the reciprocal lattice and ni = 1, 2, . . . , N .

For metals and materials with small band gaps (about 0.5 eV for hexagonal

and cubic GST), the k-grid has a discontinuity at the Fermi surface. This

complication causes slow convergence in the total energy. Smearing methods

are used to circumvent this difficulty. In this study, gaussian smearing was

used.

3.3 Bulk Crystal Structures for Input

GST has two crystalline phases, a metastable cubic phase (which undergoes the

reversible crystalline-to-amorphous transition) and a stable hexagonal phase.

Hexagonal GST has P3m1 symmetry and nine atoms per unit cell in nine

layers stacked along the c axis. Three possible sequences have been proposed.

Kooi and de Hosson [41] proposed the sequence Te−Ge−Te−Sb−Te−Te−

Sb − Te− Ge, which is hereafter referred to as phase A (Fig. 3.1). Petrov et

al [82] have proposed the sequence in which the positions of Ge and Sb atoms

have been reversed. This sequence is hereafter referred to as phase B (Fig.

3.2). Most recent diffraction experiments [83] suggest a random placement of

Ge and Sb layers. This configuration is hereafter referred to as phase C (Fig.

3.3) . In this study, total energy calculations were performed for each sequence,

thereafter the sequence having the lowest total energy at equilibrium volume

was considered. The ball and stick models in Figs. 3.1-3.5 were generated

using the crystal/molecular structure visualizing package, XCrysDen [84, 85].
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Figure 3.1: A ball and stick model of phase A of hexagonal GST.

Figure 3.2: A ball and stick model of phase B of hexagonal GST.

Cubic GST has a rock salt structure in which Te atoms occupy the anion (4a-

type) sites whereas Ge, Sb and intrinsic vacancies (v) occupy randomly the

cation (4b-type) sites [7, 86–89]. Any rock salt structure can be viewed as a
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Figure 3.3: A ball and stick model of phase C of hexagonal GST.

close packing of hexagonal planes along any of its diagonals ( [111] direction).

For purposes of implementation, this study has replaced cubic GST with an

equivalent hexagonal lattice, which is the result of taking the atomic stacking

along the [111] direction in the rock salt structure. Hence, the unit cell has 27

atoms and three vacancies arranged in the stacking sequence Te−Ge− Te−

Sb− Te−v−Te− Sb− Te−Ge repeated three times along the c-axis [8]. Fig.

3.4 shows only one-third of the unit cell.

3.4 Nitrogen Doping

The atomic radii of Ge, Sb and Te atoms are approximately twice that of N

atom [90]. Hence, N cannot substitute Ge, Sb or Te under normal circum-

stances. N can only occupy interstitial sites. The relative concentration of

N in hexagonal and cubic GST was set to 10 and 25 at. %, where relative

concentration has been defined as the ratio of the number of N atoms to the

total number of atoms in the unit cell. The position of N atoms in hexagonal
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Figure 3.4: A ball and stick model of cubic GST.

a b c

Figure 3.5: A ball and stick model of pure (a) and doped (b and c) hexagonal
GST.

GST is shown in Fig. 3.5.
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3.5 Structural Optimization

3.5.1 Optimization of Lattice Parameters

In order to obtain equilibrium lattice parameters, calculations of the total

energy were carried out for a number of unit cell volumes. The resulting energy

versus volume data were then fitted to the Murnaghan equation of state (EOS)

[91]:

E(V ) = E0 +
B0V

B′
0

(

(V0/V )B
′
0

B′
0 − 1

+ 1

)

−
B0V0
B′

0 − 1
, (3.7)

where V is the volume of the unit cell, B0 and B
′
0 are the bulk modulus and its

pressure derivative at equilibrium volume, respectively. The Murnaghan EOS

is well-known and extensively used.

3.5.2 Optimization of Atomic Coordinates

The total energy in not only a function of lattice constants but also a function

atomic positions. For simple crystals, the equilibrium atomic positions are

known and fixed. However, in more complex crystals, for instance Ge2Sb2Te5,

the equilibrium atomic positions are not known and have to be calculated.

This is done by performing what is known as variable-cell relaxation. In the

relaxed structure, the forces acting on the atoms is almost zero. In this study,

the structures were relaxed at the optimized cell parameters.

3.6 Calculation of the Formation Energy

The formation energy, Ef , was calculated using the relation:

Ef =
{Etotal − Eclean − (EN ×M)}

n
, (3.8)

where Etotal is the total energy of nitrogen-doped GST (NGST), Eclean is the

total energy of pure GST, EN is the total energy of nitrogen, M is the number
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of nitrogen atoms and n is the total number of atoms in the unit cell. In this

scheme, Ef = 0 for pure GST.

3.7 Calculation of Thermal Properties

Phonon dispersion spectra and the associated density of states (DOS) have

been calculated within the framework of density functional perturbation theory

(DFPT) [61] as implemented in the code Phonon within QUANTUM ESPRESSO

[9]. The calculation involves three major steps:

1. The usual ground state SCF calculation for the unperturbed system.

2. Calculation of dynamical matrices on a grid of q-vectors which was done

on a 4× 4× 4 grid of q-vectors for both hexagonal and cubic GST. The

convergence threshold was set to 10−14 Ry for hexagonal GST and 10−12

Ry for cubic GST. The convergence threshold for cubic GST was set

lower so as to reduce the computation time. With 60 processors, it took

slightly more than a month to calculate the dynamical matrices for the

cubic phase whereas for the hexagonal phase, it took about two weeks.

3. The transformation of the dynamical matrices from G-space (reciprocal

space) to R-space (real space).

Thermal properties were then calculated within the framework of the Quasi-

Harmonic Approximation (QHA) [92] in which the input includes basic infor-

mation about the system (such as atomic masses and lattice type) and a file

containing the dynamical matrices stored in an appropriate format. In this

study, the internal energy, vibrational energy, heat capacity and entropy have

been calculated over the temperature range 5-1000 K.
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3.8 Calculation of Electronic Properties

The electronic DOS is one of the primary quantities used to describe the elec-

tronic state of a material. It describes the number of states at each energy level

that are available to be occupied by electrons. An expression for the number

of available states in a solid can be obtained by considering the electrons in a

solid as a free electron gas. If we choose to represent the electron state as a

ky

kx

kz

k

Figure 3.6: Spherical surface in k-space for electrons in a three-dimensional
crystalline material with isotropic effective mass.

vector in k-space, then the energy of the electron is

E =
~
2

2m
(k2x + k2y + k2z) =

~
2|k|2

2m
, (3.9)

meaning that vectors of the same magnitude have the same energy, forming

spherical shells (Fig. 3.6). Classically, all values of energy would be allowed and

there would be no restriction on the number of electrons with the same value of
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k. However, at the atomic scale, the uncertainty and exclusion principles come

into play, which means that the wave function for the electron must satisfy

the Schrödinger equation, subject to boundary conditions. With the DOS, the

situation is complicated by energy degeneracy. That is, for some of the allowed

energy levels, there are more than one possible combination of components

in k-space that will give the same energy. In general, the total DOS can be

expressed as

g(E) =
2

VBZ

∑

n

∫

Ω′

δ(E − En(k))dk, (3.10)

where Ω′ is the unit cell volume in reciprocal space and n is the band index.

The sum in eqn. (3.10) is over all energy bands and the integral is over all

k-points in reciprocal space while the factor of two accounts for the spin-up

and spin-down electrons.

For a system such as Ge2Sb2Te5 built out of three atom types, it is desirable

to express the relative contribution of the atoms to the total DOS by calculating

the projected density of states for each atom. The projected DOS of the atom

of type t is given by

gtl (E) =
2

VBZ

∑

n

∫

Ω′

Qt
l δ(E −En(k))dk, (3.11)

where Qt
l is the partial charge of an atom and l is the atomic orbital index.

When plots of the projected DOS are matched with the plots of the total DOS,

it can be shown which atom and which orbital delivers the biggest contribution

to the total DOS of the system.

A more detailed view of a material’s electronic structure is often possible by

examination of its band structure from which the band gap can be evaluated.

The band structure represents the energy of the available electronic states along

a series of lines in reciprocal space that typically forms a closed loop beginning

and ending at the Γ-point (Fig. 3.7).

In this study, the electronic band structures and the corresponding density
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Figure 3.7: First Brillouin zone of fcc lattice showing symmetry labels for high
symmetry lines and points.

of states for hexagonal and cubic GST were computed at the equilibrium lattice

constants. The first step involved the usual SCF calculation where the Kohn-

Sham orbitals were expanded on a plane-wave basis set upto 50 Ry for both

hexagonal and cubic GST. k-grids of 14× 14× 4 and 14× 14× 2 were used for

hexagonal and cubic GST structures, respectively.

3.9 Calculation of Optical Properties

DFT [10, 11] is a ground-state theory and does not take into account many-

body effects. Thus, it is inadequate for analyzing material properties such

as band structure and optical absorption which involve electronic excitation.

However, dielectric properties of materials, which do not involve electronic ex-
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citation, can be analyzed using DFT [10, 11]. In this study, the dielectric

function (ǫ) was calculated within the framework of DFT as implemented in

QUANTUM ESPRESSO [9]. From the calculated dielectric function, the refrac-

tive index (n), extinction coefficient (k), reflectivity (R) and conductivity (σ)

were obtained. The refractive index (n) and the extinction coefficient (k) were

calculated using the expressions [93, 94]:

n =

√

|ǫ| + ǫ1
2

, (3.12)

k =

√

|ǫ| − ǫ1
2

, (3.13)

were |ǫ| =
√

ǫ21 + ǫ22 is the modulus of the complex dielectric function whose real

and imaginary parts are ǫ1 and ǫ2, respectively. The reflectivity was calculated

using the relation [93, 94]:

R =
(n− 1)2 + k2

(n + 1)2 + k2
. (3.14)

A high reflectivity contrast is a prerequisite for a high signal-to-noise ratio.

The reflectivity contrast (C) was calculated using the relation [95]:

C = 2×

∣

∣

∣

∣

R1 − R2

R1 +R2

∣

∣

∣

∣

× 100%, (3.15)

where R1 and R2 denote the reflectivity of two different phases, cubic and

hexagonal structures in this case. The real part of the optical conductivity, σ1,

was calculated using the relation [93, 94]:

σ1 =
ω

4π
ǫ2, (3.16)

where ω is the frequency.

Optical absorption spectra for hexagonal and cubic Ge2Sb2Te5 were cal-

culated from first principles using TDDFT and MBPT as implemented in the

code turboTDDFT [52] (within QUANTUM ESPRESSO [9]) and Yambo [96], re-
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spectively. In MBPT, the spectrum was calculated using the partially self

consistent GW0 correction to the electronic self-energy,
∑

.
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Chapter 4

Results and Discussion

4.1 Convergence Criteria

Figs. 4.1-4.4 show the convergence of the total energy with respect to the ki-

netic energy cutoff and k-grid, calculated using the local density approximation

for the XC energy functional. Figs. 4.5-4.8 show the convergence of the total

energy with respect to the kinetic energy cutoff and k-grid, calculated using

the generalized gradient approximation for the XC energy functional. From

the graphs of total energy versus kinetic energy cut-off, the total energy is seen

to stabilize beyond 50 Ry. Subsequently, a value of 50 Ry was chosen for the

kinetic energy cut-off. Similarly, from the graphs of total energy versus k -grid,

the total energy is seen to stabilize beyond 8 × 8 × 8. Subsequently, a k -grid

of 8× 8× 8 was used in this study.
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Figure 4.1: The LDA convergence criteria for phase A of hexagonal GST.
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Figure 4.2: The LDA convergence criteria for phase B of hexagonal GST.
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Figure 4.3: The LDA convergence criteria for phase C of hexagonal GST.
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Figure 4.4: The LDA convergence criteria for cubic GST.
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Figure 4.5: The GGA convergence criteria for phase A of hexagonal GST.
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Figure 4.6: The GGA convergence criteria for phase B of hexagonal GST.
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Figure 4.7: The GGA convergence criteria for phase C of hexagonal GST.
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Figure 4.8: The GGA convergence criteria for cubic GST.

4.2 Structural Properties

For each structure, the total energy was calculated for a number of unit cell

volumes. The energy versus volume data were then fitted to the Murnaghan

equation of state [91]. The results are shown in Tables 4.1-4.4 in which a (in

a.u.) and c (in a.u.) are the equilibrium lattice constants, c/a is the axial ratio,

V0 (in a.u.3) is the equilibrium unit cell volume, B0 is the bulk modulus (in

GPa) and B′
0 is the pressure derivative of the bulk modulus. The last columns

give the percentage deviation from experiment. For GGA calculations, the

percentage deviation is enclosed in brackets. The calculated lattice parameters

hold for zero pressure and temperature since DFT is a ground state theory.

However, experimental measurements of lattice parameters are generally done

at non-zero temperature and pressure. This partly accounts for the error in

calculating the lattice parameters.
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Table 4.1 LDA and GGA lattice parameters for phase A of hexagonal GST.

LDA GGA Exp. % deviation

a 7.81 8.21 8.034a -2.79%(2.19%)

c 31.38 32.60 32.647a -3.88%(-0.14%)

c/a 4.02 3.97 4.064a -1.08%(-2.31%)

V0 1720.30 1900.64

B0 56.5 44.0 44b 28.4%(0%)

B′
0 6.21 3.25 4b 55.25%(-18.75%)

aExperimental data are from [41].

bExperimental data are from [97].

Table 4.2 LDA and GGA lattice parameters for phase B of hexagonal GST.

LDA GGA Exp. % deviation

a 8.00 8.21 8.034a -0.43%(2.19%)

c 31.61 32.98 32.647a -3.18%(1.02%)

c/a 3.95 4.02 4.064 a -2.81%(-1.08%)

V0 1808.49 1900.72

B0 57.5 50.8 44b 30.68%(15.45%)

B′
0 2.71 3.46 4b -32.25%(-13.5%)

aExperimental data are from [41].

bExperimental data are from [97].
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Table 4.3 LDA and GGA lattice parameters for phase C of hexagonal GST.

LDA GGA Exp. % deviation

a 8.00 8.21 8.034a -0.43%(2.19%)

c 31.59 32.78 32.647a -3.24%(0.41%)

c/a 3.95 3.99 4.064a -2.81%(-1.82%)

V0 1807.28 1899.53

B0 57.3 52.2 44b 30.23%(18.64%)

B′
0 1.45 2.43 4b -63.75%(-39.25%)

aExperimental data are from [41].

bExperimental data are from[97].

Table 4.4 LDA and GGA lattice parameters for cubic GST.

LDA GGA Exp. % deviation

a 7.80 7.80 8.053a -3.14%(-3.14%)

c 95.64 99.41 98.544a -2.95%(0.89%)

c/a 12.26 12.74 12.237a 0.19%(4.11%)

V0 5190.92 5190.96

B0 55.3 59.2 39b 41.80%(51.79%)

B′
0 4.74 3.642 4 b 18.5%(8.95%)

aExperimental data are from [86].

bExperimental data are from [97].

A comparison of total energies can give an indication of the relative sta-

bility of structures. Generally, the structure with the lowest total energy at

equilibrium volume is considered to be the most stable. In Fig. 4.9, the fitted
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energy versus volume curves for the three possible stacking sequences of hexag-

onal GST are reported . Table 4.5 shows the total energies at equilibrium of

phases A, B and C of hexagonal GST. For both LDA and GGA calculations,

phase A has the lowest total energy at equilibrium. In Table 4.6, the total

energies after structural relaxation of the three phases of hexagonal GST are

compared.

Figure 4.9: The LDA and GGA (inset) total energy versus normalized volume
for phases A, B and C of hexagonal GST. In some cases the error bars are
smaller than the symbol used.
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Table 4.5 The LDA and GGA total energies (Ry/atom) at equilibrium for

phases A, B and C of hexagonal GST. The associated errors are enclosed

in brackets.

Phase

Phase A Phase B Phase C

LDA -13.42668(±0.00087) -13.41816(±0.00036) -13.42285(±0.00088)

GGA -13.29241(±0.00179) -13.28541(±0.00016) -13.29040(±0.00054)

Table 4.6 The LDA and GGA total energies (Ry/atom) after structural re-

laxation of phases A, B and C of hexagonal GST.

Phase

Phase A Phase B Phase C

LDA -13.4262 -13.4259 -13.4267

GGA -13.2941 -13.2928 -13.2937

LDA calculations suggest that phase C is marginally lower in energy than phase

A after structural relaxation, with an energy difference of 0.000305 Ry/atom

(∼ 4 meV/atom). This difference is of the same order of magnitude expected

for the free energy contribution (at 300 K) due to the configurational entropy

of the disordered phase C (4
9
kB ln 2 = 8 meV/atom) [98]. Using the B3PW

hybrid functional, Becke [99] has also found that phase C has a slightly lower

energy after structural relaxation. On the other hand, GGA calculations in

this study show that phase A has the lowest energy after structural relaxation,

in agreement with other theoretical studies using the GGA for the XC energy

functional [98, 100]. It can be concluded that the hierarchy in energy between

phases A and C depends, to a larger extent, on the choice for the XC energy
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functional. Hence, on the basis of energetics, phases A and C seem to be plau-

sible candidates for hexagonal GST. In this study, phase A has been adopted

for purposes of comparison with other studies.

Fig. 4.10 shows the fitted energy versus volume curves for hexagonal GST

(phase A) as well as cubic GST. The corresponding total energies at equilibrium

volume are shown in Table 4.7. It is evident that hexagonal GST has a slightly

lower energy at equilibrium for both LDA and GGA calculations.

Figure 4.10: The LDA and GGA (inset) total energy as a function of volume
for cubic and hexagonal GST.
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Table 4.7 The LDA and GGA total energies (Ry/atom) at equilibrium for

hexagonal and cubic GST. The associated errors are enclosed in brackets.

Phase

Hexagonal Cubic

LDA -13.42668(±0.00087) -13.42552(±0.00170)

GGA -13.29241(±0.00179) -13.28934(±0.01812)

Table 4.8 The LDA and GGA total energies (Ry/atom) after structural re-

laxation of hexagonal and cubic GST.

Phase

Hexagonal Cubic

LDA -13.42620 -13.42584

GGA -13.29412 -13.29173

In Table 4.8, the total energies of hexagonal and cubic GST after structural re-

laxation are compared. It is evident that for both LDA and GGA calculations,

hexagonal GST is marginally lower in energy. Hence, the hexagonal phase is

slightly stable than the cubic phase. This is later confirmed through phonon

calculations.

In Table 4.9, the lattice parameters for hexagonal and cubic GST are com-

pared with experiment and other theoretical studies. Compared to experimen-

tal values, it is evident from Table 4.9, together with Tables 4.1-4.4, that the

LDA tends to underestimate whereas the GGA tends to overestimate lattice

parameters and the unit cell volume. This is an observation that has been

reported in the literature [101]. It is also evident from Table 4.9, together

with Tables 4.1-4.4, that lattice constants calculated using the GGA are more

accurate than lattice constants calculated using the LDA for the XC energy
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functional. Theoretical studies available in the literature show that explicit

inclusion of the semi-core Te 4d electrons in the valence states results in more

accurate lattice constants and bulk moduli for Telluride compounds as com-

pared to experiment and all-electron calculations [102, 103].

Table 4.9 The LDA and GGA (in brackets) lattice constants for hexagonal

and cubic GST compared with experiment and other theoretical studies.

Hexagonal

This Study Exp. Others % Dev.

a 7.81(8.21) 8.034a 8.091c, 8.072e -2.8%(2.19%)

c 31.38(32.60) 32.647a 32.722c, 33.819e -3.9%(-0.14%)

c/a 4.02(3.97) 4.064a 4.044c, 4.19e -1.1%(-2.31%)

V0 1720.30(1900.64)

B0 56.5(44.0) 44g 28.4%(0%)

B′
0 6.21(3.25) 4g 55.3%(-18.75%)

Cubic

This Study Exp. Others % Dev.

a 7.80(7.80) 8.053b 8.11d, 8.072f -3.1%(-3.14%)

c 95.64(99.41) 98.544b 100.38d, 104.121f -2.9%(0.89%)

c/a 12.26(12.74) 12.237b 12.38d, 12.899f 0.19%(4.11%)

V0 5190.92(5190.96)

B0 55.3(59.2) 39g 41.8%(51.79%)

B′
0 4.74(3.642) 4g 18.5%(8.95%)

aExperimental data are from [41].

bExperimental are from [86].

cTheoretical data are from [98].

dTheoretical data are from [104]

e,fTheoretical data are from [105]; gExperimental data are from [97].

52



For example, the calculated lattice constant for the rocksalt-like structure of

GeTe is found to be smaller than the experimental value by more than 5%

without the inclusion of the Te 4d orbitals in the valence states [79]. In this

study, the GGA pseudopotential included the semi-core Te 4d in the valence

states whereas the LDA pseudopotential did not. In Table 4.9, the lattice

parameters for hexagonal and cubic GST have been underestimated by as much

as 3.1% without the inclusion of Te 4d electrons in the valence states.

The bulk modulus can be defined as a measure of stiffness. It is evident

from Table 4.9, together with Tables 4.1-4.4, that the LDA bulk moduli are,

in general, greater than the GGA bulk moduli. This is consistent with the

earlier observation that the LDA underestimates lattice constants whereas the

GGA overestimates lattice constants. Smaller lattice constants correspond to

stronger bonds resulting in increased stiffness whereas larger lattice constants

correspond weaker bonds and the result is reduced stiffness. The pressure

derivative of the bulk modulus is a dimensionless constant and the calculated

values compare well with experiment for both hexagonal and cubic GST.

Table 4.10 shows the dependence of lattice parameters and formation energy

on N content. It is evident that lattice parameters increase with increasing N

content. Jeong et al [106] have used x-ray diffraction technique to study the

structure and microstructure of N -doped GST (NGST). In that study, lattice

parameters were found to increase with rising N content. As already noted,

N occupies interstitial sites. This stretches the unit cell and makes lattice

parameters to increase. It is also clear from Table 4.10 that the formation

energy of hexagonal GST becomes more negative whereas that of cubic GST

becomes more positive with rising N content. That is, hexagonal GST becomes

more stable whereas cubic GST becomes more unstable with rising N content.
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Table 4.10 Dependence of lattice parameters and formation energy Ef (Ry/atom)

on N content for hexagonal and cubic GST.

Hexagonal GST

Nitrogen Content at. %

0 10 25

a 8.200 8.207 8.210

c 31.258 40.474 43.168

B0 65.4 84.9 86.8

B′
0 2.85 5.075 5.675

Ef 0 -0.0131 -0.0382

Cubic GST

Nitrogen Content at. %

0 10 25

a 7.799 8.201 8.602

c 105.914 120.00 124.984

B0 69.65 78.45 66.85

B′
0 3.76 5.22 2.315

Ef 0 0.0060 0.0088
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Table 4.11 LDA and GGA (in brackets) bond lengths (a.u.) for hexagonal

GST compared to values from experiment and other theoretical calcula-

tions.

This Study Experimenta Others

Ge− Te 5.48, 5.51(5.75, 5.69) 5.46, 6.03 5.65b, 5.69b; 5.34c, 5.41c

Sb− Te 5.59, 5.87(6.08, 5.72) 5.46, 6.03 5.69b, 6.03b; 5.46c, 5.61c

aExperimental data are from reference [83].

bTheoretical data are from reference [98].

cTheoretical data are from reference [40]

Table 4.12 LDA and GGA (in brackets) bond lengths (a.u.) for cubic GST

compared to values from experiment and other theoretical calculations.

This Study Experimenta Others

Ge− Te 5.59, 5.52(5.75, 5.69) 5.35, 6.05 5.43b, 6.12b; 5.67c, 5.71c

Sb− Te 5.58, 5.86(6.08, 5.72) 5.50, 6.05 5.60b, 6.24b; 5.69c, 6.05c

aExperimental data are from reference [89].

bTheoretical data are from reference [105].

cTheoretical data are from reference [40]

Understanding the structure of a solid requires a knowledge of not only the

lattice constants but also the bond lengths and bond angles (i.e. angle between

each pair of bonds to the same atom). In Tables 4.11 and 4.12, the calculated

bond lengths for hexagonal and cubic GST, respectively, are reported alongside

experimental values and other theoretical calculations. It is evident that two

different bond lengths exist for Ge − Te and Sb − Te bonds in both phases.

This is in agreement with experiment and other theoretical calculations. In

subsequent discussion, this phenomenon has been referred to as bond length

splitting and the difference between the two values is denoted by ∆b.
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Table 4.13 LDA and GGA (in brackets) bond length difference, ∆b, for hexag-

onal GST.

This Study Experimenta Others

Ge− Te 0.04(0.05) 0.57c 0.04a, 0.07b

Sb− Te 0.28(0.36) 0.57c 0.34a,

aTheoretical data are from reference [98].

bTheoretical data are from reference [40].

cExperimental data are from reference [83]

Table 4.14 LDA and GGA (in brackets) bond length difference, ∆b, for cubic

GST.

This Study Experimenta Others

Ge− Te 0.07(0.05) 0.07c 0.69a, 0.04b

Sb− Te 0.28(0.33) 0.55c 0.55a

aTheoretical data are from reference [105].

bTheoretical data are from reference [40].

cExperimental data are from reference [89].

In Tables 4.13 and 4.14, the calculated ∆b values are compared with experiment

and other theoretical calculations. In this study, there was no Sb − Ge bond

detected, in agreement with the fact that Sb and Ge do not intermix in the

solid phase. Also, there was no Te− Te bond detected.
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Table 4.15 LDA and GGA (in brackets) bond angles (◦) for hexagonal and

cubic GST.

Phase

Hexagonal Cubic

Te−Ge− Te 89.4-179.4(88.3-170.2) 90.0-179.6(88.7-179.3)

Sb− Te− Sb 83.4, 88.7(84.9, 91.6) 83.4, 88.7(81.3, 87.8)

Ge− Te−Ge - 90.0-180.0(88.7-91.3)

Ge− Te− Sb 92.7, 174.8(91.3, 174.9) 92.9, 175.0(94.1, 174.6)

Te− Sb− Te 93.9(91.6) 83.4-176.4(81.3-175.9)

In Table 4.15, the calculated bond angles for the configurations Te − Ge −

Te, Te − Sb − Te and X − Te − X , where X ≡ Ge/Sb, are reported. It

is important to note that QUANTUM ESPRESSO does not give the angular

distribution or weight of the configurations. The angular distribution or weight

of a configuration refers to the relative number of the configuration as a function

of angle. Nevertheless, the calculated bond angles are between 60◦ and 180◦,

in agreement with experiment. In a recent experimental study, Akola and

Jones [107] have determined the angular distribution of the various possible

configurations to be in the range 60◦ - 120◦ and 150◦ - 180◦ for crystalline GST.

In particular, it was established in that study that the angular distribution for

configurations centered around Ge and Sb have a pronounced maximum at

90◦ and a weaker peak at 180◦, indicating octahedral features. Moreover, the

angular distribution for configurations centered around Te was found to have a

pronounced maximum around 90◦ but a much weaker peak near 180◦ compared

to configurations centered around Ge or Sb [107]. From EXAFS measurements

and first principles calculations, it has been shown that the local structure

around Ge changes from six-fold co-ordination in the crystalline state to four-

fold coordination in the amorphous state [75].
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Experimental studies suggest that there is no pressure-induced transition

between hexagonal and cubic GST structures. Kolobov et al [108] have shown

that cubic GST becomes amorphous under hydrostatic pressure at around 10

GPa. This phenomenon has been shown to be general and can be observed

for other compositions along the pseudobinary line (GeTe)m(Sb2Te3)n [109].

Subsequent studies have shown that this pressure-induced amorphization is

independent of temperature [110]. Krbal et al [97] have shown that while

metastable GST becomes amorphous under hydrostatic compression at around

15 GPa, stable GST remains crystalline. Upon higher hydrostatic compression,

a body-centered cubic phase is obtained in both cases at around 30 GPa. On

hydrostatic decompression, the amorphous phase is retained for the starting

cubic phase while the initial structure is recovered for the starting hexagonal

phase [97].
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Figure 4.11: Unit cell volume as a function of pressure for hexagonal GST.
Experimental data is due to Krbal [97].

A way of determining pressure-induced structural transition is by monitor-

ing discontinuities in the volume versus pressure curves. The dependence of
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volume on pressure for hexagonal and cubic GST is reported in Figs. 4.11 and

4.12, respectively. Discontinuities are evident along the experimental curves

whereas the theoretical curves do not show any obvious discontinuities. Never-

theless, it is still possible to demonstrate pressure-induced structural transition

using alternative ways such as the common-tangent method and the intersec-

tion of pressure-enthalpy curves.
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Figure 4.12: Unit cell volume as a function of pressure for cubic GST. Experi-
mental data is due to Krbal [97].

4.3 Thermal Properties

Fig. 4.13 and 4.14 show the phonon dispersion spectra and the associated

vibrational density of states (VDOS) for hexagonal and cubic GST structures,

respectively. It is evident that the phonon spectra for hexagonal and cubic

GST structures are almost similar in profile except for the fact that the cubic

phase has a more dense set of curves. The absence of negative frequencies in

the phonon spectrum for hexagonal GST is an indication that the structure is

stable.
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Figure 4.13: Phonon dispersion (left) and the corresponding density of states
(right) for the hexagonal GST structure.

On the other hand, the presence of negative frequencies in the phonon spectrum

for cubic GST is an indication that the structure is unstable. This structure

is often referred to as metastable, and it is the one involved in the reversible

crystalline-to-amorphous phase transformation that finds application in phase-

change memory technology [111]. The phonon spectrum of hexagonal GST

structure shows a set of 27 branches that stretches from 0 cm−1 to about 182

cm−1. This corresponds to 9 atoms in the unit cell with each atom having 3

modes, giving a total of 27 modes. In addition, the phonon spectrum has 6

acoustic branches (i.e. branches having zero frequency at the Γ-point), leaving

a majority of 21 optical branches (i.e. branches having non-zero frequency at

the Γ-point). On the other hand, the phonon spectrum of cubic GST structure

shows a set of 81 branches spanning from about -21 cm−1 to about 186 cm−1.
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Figure 4.14: Phonon dispersion (left) and the corresponding density of states
(right) for the cubic GST structure.

This corresponds to 27 atoms per unit cell, each atom having 3 modes, giving a

total of 81 modes. The vibrational density of states gives the number of modes

per unit frequency per unit volume of real space.

The top panel of Fig. 4.15 shows the calculated heat capacity (CV ) as a

function of temperature (T ) for hexagonal and cubic GST. The bottom panel

of Fig. 4.15 zooms in on the same curves in the low temperature region. It

is evident that CV → 0 as T → 0 for both hexagonal and cubic GST, in

agreement with the Debye model of specific heats. For cubic GST, CV has

a linear dependence on temperature as T → 0 whereas for hexagonal GST,

CV has a cubic dependence on temperature as T → 0. However, the Debye

model of specific heats predicts that CV should have a cubic dependence on

temperature as T → 0. Heat capacity can be expressed as:
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Figure 4.15: The top panel shows heat capacity curves for hexagonal and cubic
GST. The bottom panel shows the same curves at low temperatures.
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CV = (CV )ele + (CV )pho, (4.1)

where (CV )ele is the electronic contribution and (CV )pho is the phonon/lattice

contribution to the heat capacity. (CV )ele has a linear dependence on tem-

perature whereas (CV )pho has a cubic dependence on temperature. Zalden et

al [112] have estimated that the electronic contribution to the specific heat

of cubic GST is less than 0.08 J· mol−1· K−1, irrespective of the tempera-

ture. Hence, as T → 0, the electronic contribution is predominant in the cubic

phase. This explains the linear dependence of CV on T as T → 0 for cubic

GST. On the other hand, heat capacity at high temperatures is significantly

larger than 0.08 J· mol−1· K−1, an indication that the phonon contribution is

predominant in that region for cubic GST. In this study, the Debye temper-

ature (θD) was found to be 197 K for hexagonal GST and 137 K for cubic

GST. Above θD, the heat capacity approaches a limiting value. However,

this limiting value is apparently larger than the predicted Dulong-Petit limit,

CV = 3R = 3NAkB ≈ 24.944 J · mol−1 · K−1. The increase of CV above

the Dulong-Petit limit at high temperatures is in agreement with experiment

[113–115]. Due to a low Debye temperature, the Dulong-Petit limit is always

exceeded [113]. Kalb et al [114] attributes this effect to chemical disorder and

point defects. According to Kuwahara et al [115], the heat capacity slightly

increases in the high temperature region as the result of structural relaxation of

point defects. Point defects such as vacancies, self-interstitials and extra atoms

(not in regular lattice positions) can strongly affect the properties of materials.

When point defects are thermally generated, their energy of formation gives

an extra contribution to the heat capacity of the crystal. Thus, the creation of

point defects provides an additional component to the heat capacity, (CV )def .

Hence, CV can be expressed as:
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Figure 4.16: Theoretical and experimental heat capacity curves for hexagonal
GST. Experimental data is due to Kuwahara et al [115].

CV = (CV )pho + (CV )ele + (CV )def , (4.2)

where (CV )def is the contribution to the heat capacity from lattice defects.

From Fig. 4.15, it is clear that the cubic phase has a slightly higher heat

capacity than the hexagonal phase within the range 0-200 K. Zalden et al [112]

have shown that the heat capacity of crystalline GST is related to disordered

vacancies. In that study, it is apparent that there is an enhancement of the heat

capacity for the disordered cubic phase as compared to the ordered hexagonal

phase. Configurational disorder results in a higher formation energy required

to generate vacancies in cubic GST. This accounts for the slightly higher CV

for cubic GST as compared to hexagonal GST. The calculated heat capacity

is compared with experiment in Figs. 4.16 and 4.17. For both hexagonal and
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Figure 4.17: Theoretical and experimental heat capacity curves for cubic GST.
Experimental data is due to Kalb [114].

cubic GST, the experimental heat capacity is slightly larger than the calculated

heat capacity at high temperatures. According to Tsafack et al [8], theory

does not adequately take into account the contribution of vacancies to the

heat capacity. The theoretical curves exhibit the same trend as experimental

curves. Moreover, the theoretical curves give an idea of how the heat capacity

behaves for temperature ranges where experimental data are not available, in

this case T < 300 K for the hexagonal phase and T < 400 K for the cubic

phase.

Fig 4.18 shows the dependence of internal energy, U , on temperature, T ,
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Figure 4.18: Internal energy as a function of temperature for hexagonal and
cubic GST.

for hexagonal and cubic GST. Using the first law of thermodynamics:

dU = dQ− pdV

= CvdT − pdV, (4.3)

where Q is heat, P is pressure and V is volume. That is, the only way of

changing the internal energy of a system is by raising its temperature (CvdT )

or by doing work on it (−pdV ). However, for solids the term pdV is insignificant

and the internal energy is a function of temperature only. Hence, the internal

energy is proportional to temperature in agreement with this work.

Fig. 4.19 shows the dependence of entropy on temperature for hexagonal

GST. The entropy is usually referenced to its value at very low temperatures,
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Figure 4.19: Dependence of entropy on temperature for hexagonal GST.

which (according to the law of thermodynamics) equals zero, that is:

lim
T→0

S = 0. (4.4)

However, this law only holds for a system having a non-degenerate ground

state. A system with a g0-fold degenerate ground state results in a residual

entropy at T = 0, that is:

S(T = 0) = kBlog(g0). (4.5)

It is clear from Fig. 4.19 that the entropy of the hexagonal phase goes to zero

upon cooling to 0 K, in agreement with one experimental study [113]. In that

study, the cubic phase was found to have a residual entropy at T = 0. The
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configurational entropy is defined in general by:

Sconf = −kBln(W ), (4.6)

where W is the number of possible configurations of the whole system for a

given energy. Thus, single crystals have no configurational entropy. Com-

pounds from the pseudobinary line (GeTe)m(Sb2Te3)n possess a large configu-

rational entropy in the metastable cubic phase due to substitutional disorder on

the Ge/Sb/v sub-lattice [113]. Hexagonal (stable) GST does not have lattice

disorder and hence the entropy becomes zero at 0 K. At high temperatures, a

system becomes disorderly and unpredictable. Hence, entropy is proportional

to temperature.
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Figure 4.20: Dependence of vibrational energy on temperature for hexagonal
GST.

Fig. 4.20 shows the calculated vibrational energy as a function of tempera-
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ture for hexagonal GST. All quantum harmonic oscillators undergo fluctuations

even in their ground state (T = 0 K) and the associated energy is then known

as the zero-point energy. This is in agreement with this study where a zero-

point energy of 0.0126 Ry/atom was calculated for hexagonal GST. Vibrational

energy increases with temperature. The negative values of energy is an indi-

cation that these states are bound states, that is, energy must be expended to

cause fluctuations in atomic positions.

As noted previously, cubic GST is metastable, and hence it has some imag-

inary (or negative) vibrational frequencies. This brings with it challenges in

calculating some thermal quantities such as entropy and vibrational energy

using QHA code as it is currently.

4.4 Electronic Properties

4.4.1 Band Structure and Density of States

The calculated band structures and the associated electronic DOS are shown in

Figs. 4.21-4.24. For LDA calculations, hexagonal GST is almost semimetallic

(Fig. 4.21), that is, the top of the valence band and the bottom of the conduc-

tion band are non-degenerate at Γ. On the other hand, cubic GST has a direct

band gap of about 0.08 eV at Γ with a marginal intrusion of the Fermi level

into the valence band (Fig. 4.23). GGA calculations show that hexagonal GST

has a direct band gap of about 0.33 eV at Γ (Fig. 4.22) whereas cubic GST has

a direct band gap of about 0.24 eV at Γ and an indirect band gap of about 0.04

eV along the Γ-K line (Fig. 4.24). In general, LDA and GGA results in this

work give band gaps that are less than the measured optical band gap of 0.5

eV for both phases [38, 39]. In comparison, Lee and Jhi [40] have calculated

an indirect band gap of about 0.26 eV along the Γ-K line for the sequence of

Kooi and de Hosson [41]. In yet another theoretical study, Tsafack et al found

out that hexagonal GST is semi-metallic whereas the cubic phase had a direct
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Figure 4.21: The LDA band structure and the associated DOS (right) for
hexagonal GST. The Fermi level is shifted to zero.

band gap of about 0.2 eV at Γ and an indirect band gap of about 0.1 eV along

the Γ-K line.

Differences in the calculated bad gap values between the theoretical studies

mentioned above and this study lies in the approximation for the XC energy

functional and treatment of Te 4d electrons. The use of different XC terms and

the treatment of Te 4 electrons as core or semicore results in different lattice

constants and hence band gap values.

The underestimation of band gaps (Appendix A) is a well-known effect of

DFT calculations since DFT is a ground state theory and does not take into

account many-body effects. This can be corrected through the use of hybrid

functionals, projector augmented wave (PAW) methods, DFT + U , Quantum
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Figure 4.22: The GGA band structure and the associated DOS (right) for
hexagonal GST. The Fermi level is shifted to zero.

Monte Carlo (QMC) methods, MBPT and TDDFT. Using PAW method with

GGA, Park et al [104] have calculated band gap values of 0.41 eV and 0.51 eV

for hexagonal and cubic GST, respectively.

In Figs. 4.25 and 4.26, the variation of band gap values with lattice pa-

rameters is predicted. In this analysis, the LDA was considered for the XC

energy functional. The band gap is almost zero at the equilibrium lattice

constants (c/a=4.02 for hexagonal GST and c/a=12.26 for cubic GST) as ex-

pected. However, the band gap increases with rising a (falling c/a) up to some

maximum value, then falls off. For hexagonal GST, the band gap is maximum

(∼ 0.22 eV) at around c/a=3.49 whereas for the cubic phase, the band gap is

maximum (∼ 0.23 eV) at around c/a=10.62. The dependence of the band gap
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Figure 4.23: The LDA band structure and the associated DOS (right) for cubic
GST. The Fermi level is shifted to zero.

on lattice parameters suggests the possibility of tuning electronic properties of

GST for various applications.

In order to get a more detailed picture of the electronic structure and bond-

ing in crystalline GST, the projected density of states (PDOS) for hexagonal

and cubic GST structures were obtained. These are included in Figs. 4.22 and

4.24 for hexagonal and cubic GST, respectively. The PDOS gives the contri-

bution of individual atomic orbitals to the band structure. In calculating the

PDOS, the GGA was considered for the XC energy functional. In addition, the

semicore Ge 3d, Sb 4d and Te 4d orbitals were included in the valence states.

It is evident that there is a certain amount of orbital overlap or hybridization

in hexagonal and cubic GST, which is an indication of covalent bonding in
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Figure 4.24: The GGA band structure and the associated DOS (right) for of
cubic. The Fermi level is shifted to zero.

GST. In both phases, the Ge s, Sb s, Te s, Ge d, Sb d and Te d orbitals are

located inside the valence band whereas the Ge p, Sb p and Te p orbitals are

centered near the Fermi level (∼ 7.4 eV). Hence, the Ge s, Sb s, Te s, Ge d,

Sb d and Te d electrons are more tightly bound than the Ge p, Sb p and Te p

electrons. Specifically, the Te 5s, Sb 4d and Ge 3d orbitals are located deeper

in the valence band, suggesting that they are more tightly bound as compared

to the Ge 4s, Sb 5s and Te 4d orbitals, which are shifted slightly towards the

Fermi level. X-ray photoemission spectroscopy (HX-PES) studies by Kim et al

[116] established that peaks at the lowest binding energy are due to the Ge 4p,

Sb 5p and Te 5p orbitals; peaks at the second lowest binding energy are due

to the Ge 4s and Sb 5s orbitals; peaks at the highest binding energy are due
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Figure 4.25: Dependence of band gap on lattice parameters c and a for hexag-
onal GST.

to the Te 5s orbital. This is in agreement with this work. Kim et al [116] con-

firmed that such a three-peak structure is characteristic of (GeTe)m(Sb2Te3)n

pseudobinary compounds including Ge2Sb2Te5 (GST), which is the subject of

this study.

Figs. 4.27 and 4.28 show the calculated band structures along high-symmetry

lines for pure and nitrogen-doped GST. The Fermi level is shifted to zero. It

is evident that the band gap vanishes with rising N content for both hexag-

onal and cubic GST. However, Lai et al [117] have determined from optical

measurements that the optical band gap increases with rising N -content, indi-

cating a reduction (an increase) in conductivity (resistivity). Two mechanisms

are responsible for the reduction in resistivity with rising N -content: Grain
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Figure 4.26: Dependence of band gap on lattice parameters c and a for cubic
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boundary scattering of mobile carriers and a shift of the Fermi level towards

the middle of the band gap due to the relatively larger electronegativity value

of N as compared to Ge, Sb and Te. Clearly, the band structure diagrams do

not support the latter case. Thus, the scattering of mobile carriers at grain

boundaries could explain the increase in resistivity with rising N content.
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Figure 4.27: Band structure of pure (left) and doped hexagonal GST with
nitrogen at 10 at. % (center) and at 25 at. % (right).
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Figure 4.28: Band structure of pure (left) and doped cubic GST with nitrogen
at 10 at. % (center) and at 25 at. % (right).

4.5 Optical Properties

4.5.1 Dielectric Function, Optical Conductivity and Re-

flectivity Contrast

In Fig. 4.29, the real and imaginary parts of the dielectric function for hexag-

onal and cubic GST are compared. For both phases, Re(ε) is negative in the

energy range 1-4 eV. It is evident that for hexagonal GST, Re(ε) is even more

negative within the same range. Negative values in the real part of the dielec-

tric function are characteristic of metallic systems. This is in agreement with

electrical measurements, which indicate that hexagonal GST has metallic-like
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Figure 4.29: A comparison of the real and imaginary parts of the dielectric
function for hexagonal and cubic GST.

conductivity [118]. Generally, Re(ε) becomes positive at lower energies, in

agreement with experiment [118]. The imaginary part of the dielectric function,

Im(ε), shows a narrower and stronger absorption edge at low energies for the

hexagonal phase, in agreement with experiment [118]. This is of special interest

since the energy of the semiconductor infrared laser beam used for the write,

read and erase operations in optical disk technology is in this range. In Fig.

4.30, the real and imaginary parts of the dielectric function for hexagonal

and cubic GST, respectively, are compared with experiment [119] and other

theoretical calculations [8]. It is evident that the curves have similar trends. In

Fig. 4.31, the real and imaginary parts of the optical conductivity as functions

of N -content are shown for hexagonal and cubic GST. The real part of optical

conductivity, associated with free current, decreases with rising N -content in

the spectral range 0.5-3 eV. From I-V characteristics, Lai et al [117] have

shown that the resistivity of crystalline GST increases with rising N -content

at all annealing temperatures (that is, wether hexagonal or cubic).
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content for hexagonal and cubic GST.
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Two possible reasons can be given for the increase (decrease) in resistivity (con-

ductivity). One is grain boundary scattering. According to the theory of grain

boundary scattering [120], carriers can be scattered by grain boundaries during

transportation. Some doped nitrogen existing in the grain boundaries suppress

grain growth resulting in more grain boundaries and these act as scattering cen-

ters for carriers, resulting in an increase (decrease) in resistivity (conductivity).

The second reason is the movement of the Fermi level. In crystalline GST, N

acts like an acceptor ( due to its relatively larger electronegativity value), mak-

ing the Fermi level move toward the middle of the band gap, resulting in an

increase (decrease) in resistivity (conductivity). Thus, the writing current can

be successfully reduced through N -doping and this is important for practical

application of GST in high-density non-volatile random access memory.
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Figure 4.32: Comparison of the reflectivities of hexagonal and cubic GST.

Reflectivity is one of the most important parameters considered in opti-

cal phase-change storage. In Fig. 4.32, the reflectivity of hexagonal GST is
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compared to that of cubic GST. It turns out that the maximum difference in

reflectivity between hexagonal and cubic GST is about 8% and this happens

in the spectral range 0.5-1.75 eV, which is the range of application for GST.

Using optical ellipsometry, Garćıa et al [118] have shown that the reflectivity

increases by about 7% when samples are transformed from the cubic phase to

the hexagonal phase. Fig. 4.33 shows the calculated reflectivity contrast for

pure GST as compared to experiment [95] and other theoretical studies [95].

It is evident that the profiles are similar. Moreover, the reflectivity contrast is

seen to rise towards the red and infrared spectral range (1-2 eV), which is the

range of application of GST [121].
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Figure 4.33: Calculated reflectivity contrast as compared to experiment and
other theoretical studies.

A main driving force in the search for new materials is to decrease the wave-

length of the laser used for writing, reading and erasing bits. By decreasing
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Figure 4.34: Dependence of reflectivity contrast on nitrogen content.

the wavelength, the size of the written bits decreases and, as a result, the stor-

age density increases. As already noted in this study and others [121], GST

possesses a large reflectivity contrast in the red and infrared spectral range

and is therefore used in CDs and DVDs. If the optical contrast can be opti-

mized at shorter wavelengths, then GST can be used in hight-density optical

media such as DVD and Blu-ray disks. Fig. 4.34 shows the dependence of

the reflectivity contrast on N -content as calculated in this study. It is clear

that pure GST has a higher reflectivity contrast in the red and infrared region

(1-2 eV). However, N -doped GST has a higher reflectivity contrast in the vis-

ible and ultraviolet region (2.5-3.5 eV) and this reflectivity contrast increases

with rising N -content for the levels of doping considered here (10-25 at. %).

Thus, in N -doping lies the possibility of reducing the size of the written bits

by lowering the wavelength of the writing laser. One experimental study [122]

shows that Ag-doped GST has a higher reflectivity contrast in the blue laser

wavelength. At the time of writing, there was no theoretical or experimental
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study on N -controlled reflectivity contrast of GST.

4.5.2 Optical Absorption

Figs. 4.35 and 4.36 show the calculated optical absorption spectra for hexag-

onal and cubic GST, respectively. For the hexagonal phase, a major peak at

about 0.48 eV and a minor peak at about 1.65 eV are observed in the spectrum

calculated using TDDFT whereas the spectrum calculated using GW0 gave a

major peak at about 0.21 eV and a minor peak at about 1.30 eV.
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Figure 4.35: Calculated optical absorption spectra for hexagonal GST.
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Figure 4.36: Calculated optical absorption spectra for cubic GST.

For the cubic phase, TDDFT gave a major peak at about 0.66 eV and a minor

peak at about 1.70 eV whereas GW0 gave a major peak at about 0.12 eV

and a minor peak at about 1.50 eV. Major peaks in the calculated spectra

correspond to the onset of absorption and they give an estimate of the optical

band gap. Minor absorption peaks (peaks at higher energies) in the calculated

spectra correspond to optical excitations of unbound states. Experimental

findings of Sun et al [123] show that the valence band of thermally crystallized

GST films (cubic phase) is dominated by Te p, Ge p and Sb p states with

minor contributions from Ge s and Sb s states, whereas the conduction band

is mainly populated by anti-bonding Ge p/Sb p states and Te p states. Anti-

bonding states are known to be higher in energy and hence less stable than

bonding states. Orava et al [124] have assigned a peak at 1.77 eV in the
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spectrum of cubic GST system to transitions between Te p bonding states

and Ge p/Sb p anti-bonding states. Such a peak is obtained in this study

for the cubic GST system at 1.70 eV using TDDFT and at 1.50 eV using

GW0. Yamanaka et al [125] have assigned a peak at 1.8 eV in the spectrum

of hexagonal GST structure to transitions between Te p and Sb p states. Such

a peak is obtained in this study for the hexagonal GST system at 1.65 eV

using TDDFT and at 1.30 eV using GW0. In general, TDDFT gives better

estimates to the optical band gap of GST than the partially self-consistent

GW0. To improve on the results ofGW0, the fully self-consistent GW is needed.

However, as noted earlier, GW is designed for the analysis of excited states of

the (N ±1) electron systems. Treatment of optical absorption processes where

the particle number remains constant requires a two-particle Green function,

which leads to the Bethe-Salpeter equation (BSE) of MBPT. TDDFT also

treats constant-particle systems. In this study, GW and BSE were not possible

since the Yambo code does not go beyond GW0 for metallic or near metallic

systems such as Ge2Sb2Te5.
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Summary and Conclusions

This study has dealt with first principles calculation of the structural, elec-

tronic, optical and thermal properties of hexagonal and cubic GST.

Calculation of thermal properties was performed within the framework of

quasi-harmonic approximation as implemented in the code QHA within QUANTUM

ESPRESSO distribution. The calculated heat capacity curves are found to ex-

hibit the same trend as experimental curves. Moreover, the calculated heat ca-

pacity is found to exceed the classical Dulong-Petit limit at hight temperatures

for both hexagonal and cubic Ge2Sb2Te5, in agreement with the experimental

trend. This effect has been attributed to lattice defects, lattice vacancies in this

case. When lattice vacancies are thermally generated, their heat of formation

gives an extra contribution to the heat capacity of the crystal. The calculated

entropy of hexagonal Ge2Sb2Te5 is found to vanish at 0 K, in agreement with

the fact that for a system with a non-degenerate ground-state, the entropy

should vanish at 0 K. Configurational disorder results in a non-zero entropy at

0 K. Hence, in this study, hexagonal Ge2Sb2Te5 has been shown not to have

configurational disorder in its ground state, in agreement with experimental

studies. The thermal calculations have validated the structural models used in

this study as well as the theoretical model used to calculate their properties.

Processes such as optical absorption that involve electronic excitations are

out of reach of density functional theory. In this study, the optical absorption

spectra of hexagonal and cubic GST have been calculated using the Liouville-

Lanczos approach to time-dependent density functional theory as implemented

in the QUANTUM ESPRESSO distribution and many body perturbation theory

with the partially self-consistent GW0 approximation to the electronic self en-
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ergy as implemented in the Yambo code. Time-dependent density functional

calculations give optical band gaps of about 0.48 eV and 0.66 eV for hexagonal

and cubic GST, respectively, in reasonably good agreement with experimental

studies, which suggest a value of 0.5 eV for both GST phases.

This study has considered the effect of nitrogen doping on the optical prop-

erties of hexagonal and cubic GST. The relative concentration of nitrogen was

set to 10-20 at. %. Pure GST is found to have a high reflectivity contrast

in the spectral range 1-2 eV, in agreement with experimental studies. How-

ever, nitrogen-doped GST is found to have a high reflectivity contrast towards

shorter wavelengths (2.5-3.5 eV). The reflectivity contrast is found to rise with

increasing nitrogen content within 10-20 at. % doping levels. Hence, nitrogen

doping of GST provides a way to decrease the wavelength of the writing laser,

thereby increasing data storage density in optical memory applications.
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Recommendations

There are a number of additional areas for further research that have been

highlighted by the study undertaken in this thesis. They include:

1. Calculation of the temperature variation of entropy for cubic Ge2Sb2Te5

using alternative methods such as molecular dynamics (MD).

2. Analysis of pressure-induced structural transformation in hexagonal and

cubic Ge2Sb2Te5.
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Institute for Computing, NIC Series, 2006.
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C, Matei E, Socol G, Mihailescu IN, Andonie A and Stamatin

I. Steucture and Properties of Silver Doped SnSe2 and Ge2Sb2Te5 Thin

Films Prepared by Pulsed Laser Deposition. Phys. Status Solidi A 207 :

516, 2010.

[74] Wang K, Steimer C, Wamwangi D, Ziegler S and Wuttig M. Effect

of Indium Doping on Ge2Sb2Te5 Thin Films for Phase-Change Optical

Storage. Appl. Phys. A 80 : 2005.

[75] We lnic W and Matthias W. Reversible Switching in Phase Change

Materials. Mater. Today 11 : 20, 2008.

[76] Gonze X, Stumpf R and Scheffler M. Analysis of Separable Poten-

tials. Phys. Rev. B. 44 : 8503, 1990.

[77] Goedecker S, Teter M and Hutter J. Separable Dual-Space Gaussian

Pseudopotentials. Phys. Rev. B. 54 : 1703, 1996.

[78] Hartwigsen C, Goedecker S and Hutter J. Relatisistic Separable

Dual-Space Gaussian Pseudopotentials from H to Rn. Phys. Rev. B 58 :

3641, 1998.

[79] Do GS, Kim J, Jhi SH, Louie SG and Cohen ML. Ab Initio Calcu-

lations of Pressure-Induced Structural Phase Transitions of GeTe. Phys.

Rev. B. 82 : 054121, 2010.

[80] Van Lenthe E, Snijders JG, Baerends EJ. The Zero-Order Regular

Approximation for Relativistic Effects: The Effect of Spin-Orbit Coupling

in Closed Shell Molecules. J. Chem. Phys. 105 : 6505, 1996.

96



[81] Monkhorst HJ and Pack JD. Special Points for Brillouin Zone Inte-

gration. Phys. Rev. B 13 : 5188, 1976.

[82] Petrov II, Imanov RM and Pinsker ZG. Electron-Diffraction Deter-

mination of the Structure of Ge2Sb2Te5 and GeSb4Te7. Kristallografiya

13 : 339, 1968.

[83] Matsunaga T, Yamada N and Kubota Y. Structures of Stable and

Metastable Ge2Sb2Te5, an Intermetallic Compound in the GeTe−Sb2Te3

Pseudobinary Systems. Acta Crystallogr. B 60 : 685, 2004.

[84] Kokalj A. Computer Graphics and Graphical User Interfaces as Tools in

Simulations of Matter at the Atomic Scale. Comp. Mater. Sci. 28 : 155,

2003.

[85] http://www.xcrysden.org/ [Jan. 2016].

[86] Park YJ, Lee JY, Youm MS and Lee HS. Crystal Structure and

Atomic Arrangement of the Metastable Ge2Sb2Te5 Thin Films Deposited

on SiO2/Si Substrates by Sputtering Method. J. Appl. Phys 97 : 093506,

2005.

[87] Kolobov AV, Frenkel AI, Fons P, Ankudinov AL, Tominaga J and

Uriga T. Understanding the Phase-Change Mechanism of Rewritable Op-

tical Media. Nature Mater. 3 : 703, 2004.

[88] Nonaka T, Ohbayashi G, Toriumi Y, Mori Y and Hashimoto H.

Crystal Structure of GeTe and Ge2Sb2Te5 Meta-Stable Phase. Thin Solid

Films 370 : 258, 2000.

[89] Kolobov AV, Fons P, Tominaga J, Frenkel AI, Ankudinov AL,

Yannopoulos SN, Andikopoulos KS and Uruga T. Why Phase-

Change Media are Fast and Stable: A New Approach to an Old Problem.

Jpn. J. Appl. Phys. 44 : 3345, 2005.

97



[90] Miller FM. Chemistry: Structure and Dynamics. New Yor: McGraw

Hill, 1984.

[91] Murnaghan FD. The Compressibility of Media under Extreme Pres-

sures. Proc. Nat. Acad. Sci. 30 : 224, 1944.

[92] Baroni S, Giannozzi P and Esaev E. Thermal Properties of Materials

from Ab Initio Quasi-Harmonic Phonons. Rev. Mineral. and Geochem. 71 :

39, 2010.

[93] Maxwell JC. A Dynamical Theory of the Electromagnetic Field. Phil.

Trans. Royal Soc. 155 : 459, 1865.

[94] Jackson JD. Classical Electrodynamics. New York: John Wiley, 1975.

[95] Xu M, Wei S-J, Wu S, Pei F, Li J, Wang SY and Chen LY.

Theoretical and Experimental Unvestigations of the Optical Properties of

Ge2Sb2Te5 for Multi-State Optical Data Storage. JKPS 53 : 2265, 2008.
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Appendices

Appendix A

Underestimation of the Band Gap in DFT

This theoretical treatment of the underestimation of band gaps in DFT is based

on Ref. [8].

If one electron in the state υ is removed from the system, EN −EN−1 = ǫυ,

where EN is the energy of the system with N electrons. Likewise, an addition

of an electron in the state c leads to EN+1 −EN = ǫc. The difference between

the largest addition energy and the smallest removal energy defines the energy

band gap

Eg = ǫc − ǫυ = EN−1 + EN+1 − 2EN . (A.1)

In solids, this is the onset of the continuum of optical transitions, if the gap is

direct (if the lowest empty state and the highest filled state have the same k vec-

tor). From atomic and molecular physics, the highest occupied and the lowest

unoccupied states are respectively called HOMO (Highest Occupied Molecular

Orbital) and LUMO (Lowest Unoccupied Molecular Orbital), while addition

and removal energy are respectively refereed to as electron affinity, A, and

ionization potential, I. Due to the discontinuity of the XC potential, it is safe

to say, Eg = I − A which in turn can be written as

Eg = µ(N + δ)− µ(N − δ),

=
δE

δn(r)

∣

∣

∣

∣

∣

N+1

−
δE

δn(r)

∣

∣

∣

∣

∣

N−1

, (A.2)
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where δ → 0. This is substituted into the explicit Kohn-Sham form for the

energy functional, E[n(r)]. The Hartree and external potential terms of the

functional will yield no discontinuity and no contribution to Eg. Only the

kinetic and XC terms may have a discontinuity and contribute to Eg. For

a non-interacting system, only the kinetic term contributes, and the gap is

exactly given by the auxiliary non-interacting system gap

E0
g =

δT0
δn(r)

∣

∣

∣

∣

∣

N+1

−
δT0
δn(r)

∣

∣

∣

∣

∣

N+1

,

= ǫLUMO − ǫHOMO. (A.3)

It is remarked that even the kinetic energy of non-interacting electrons, con-

sidered as a function of the density, must have a discontinuous derivative when

crossing an integer number of electrons. This is one reason why it is so difficult

to produce explicit functionals of the charge density for T0 that are able to

yield good results: no single functional form will yield the discontinuity, but

this is needed in order to get the correct energy spectrum. For the interacting

system

Eg =
δT0
δn(r)

∣

∣

∣

∣

∣

N+1

−
δT0
δn(r)

∣

∣

∣

∣

∣

N+1

+
δEXC

δn(r)

∣

∣

∣

∣

∣

N+1

−
δEXC

δn(r)

∣

∣

∣

∣

∣

N−1

,

= E0
g + Exc

g . (A.4)

Note that the kinetic energy term is evaluated at the same charge density as for

the non-interacting system, so it coincides with the auxiliary non-interacting

system gap. By virtue of eqn. (A.4), the gaps calculated through DFT are not

by construction equal to the true gap because they are missing a term, Exc
g ,

coming from the discontinuity of derivatives of XC functionals. This is absent

by construction from any current approximated functional, be it LDA, GGA

or more complex. There is some evidence that this missing term is responsible

for a large part of the band gap problem, at least in common semiconductors.
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